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Abstract 

An unsupervised part-of-speech (POS) 
tagging system that relies on graph 
clustering methods is described. Unlike 
in current state-of-the-art approaches, the 
kind and number of different tags is 
generated by the method itself. We 
compute and merge two partitionings of 
word graphs: one based on context 
similarity of high frequency words, 
another on log-likelihood statistics for 
words of lower frequencies. Using the 
resulting word clusters as a lexicon, a 
Viterbi POS tagger is trained, which is 
refined by a morphological component. 
The approach is evaluated on three 
different languages by measuring 
agreement with existing taggers.  

1 Introduction 

1.1 Motivation 

Assigning syntactic categories to words is an 
important pre-processing step for most NLP 
applications.  

Essentially, two things are needed to construct 
a tagger: a lexicon that contains tags for words 
and a mechanism to assign tags to running words 
in a text. There are words whose tags depend on 
their use. Further, we also need to be able to tag 
previously unseen words. Lexical resources have 
to offer the possible tags, and our mechanism has 
to choose the appropriate tag based on the 
context.  

Given a sufficient amount of manually tagged 
text, several approaches have demonstrated the 
ability to learn the instance of a tagging 
mechanism from manually labelled data and 
apply it successfully to unseen data. Those high-
quality resources are typically unavailable for 
many languages and their creation is labour-
intensive. We will describe an alternative 
needing much less human intervention. 

In this work, steps are undertaken to derive a 
lexicon of syntactic categories from unstructured 
text without prior linguistic knowledge. We 
employ two different techniques, one for high-
and medium frequency terms, one for medium- 
and low frequency terms. The categories will be 
used for the tagging of the same text where the 
categories were derived from. In this way, 
domain- or language-specific categories are 
automatically discovered. 

1.2 Existing Approaches 

There are a number of approaches to derive 
syntactic categories. All of them employ a 
syntactic version of Harris’ distributional 
hypothesis: Words of similar parts of speech can 
be observed in the same syntactic contexts. 
Contexts in that sense are often restricted to the 
most frequent words. The words used to describe 
syntactic contexts will be called feature words in 
the remainder. Target words, as opposed to this, 
are the words that are to be grouped into 
syntactic clusters.  

The general methodology (Finch and Chater, 
1992; Schütze, 1995; inter al.) for inducing word 
class information can be outlined as follows: 

1. Collect global context vectors for target 
words by counting how often feature 
words appear in neighbouring positions. 

2. Apply a clustering algorithm on these 
vectors to obtain word classes 

Throughout, feature words are the 150-250 
words with the highest frequency. Contexts are 
the feature words appearing in the immediate 
neighbourhood of a word. The word’s global 
context is the sum of all its contexts. 

For clustering, a similarity measure has to be 
defined and a clustering algorithm has to be 
chosen. Finch and Chater (1992) use the 
Spearman Rank Correlation Coefficient and a 
hierarchical clustering, Schütze (1995) uses the 
cosine between vector angles and Buckshot 
clustering.  

An extension to this generic scheme is 
presented in (Clark, 2003), where morphological 
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information is used for determining the word 
class of rare words. Freitag (2004) does not sum 
up the contexts of each word in a context vector, 
but the most frequent instances of four-word 
windows are used in a co-clustering algorithm. 

Regarding syntactic ambiguity, most 
approaches do not deal with this issue while 
clustering, but try to resolve ambiguities at the 
later tagging stage.  

A severe problem with most clustering 
algorithms is that they are parameterised by the 
number of clusters. As there are as many 
different word class schemes as tag sets, and the 
exact amount of word classes is not agreed upon 
intra- and interlingually, inputting the number of 
desired clusters beforehand is clearly a 
drawback. In that way, the clustering algorithm 
is forced to split coherent clusters or to join 
incompatible sub-clusters. In contrast, 
unsupervised part-of-speech induction means the 
induction of the tag set, which implies finding 
the number of classes in an unguided way. 

1.3 Outline 

This work constructs an unsupervised POS 
tagger from scratch. Input to our system is a 
considerable amount of unlabeled, monolingual 
text bar any POS information. In a first stage, we 
employ a clustering algorithm on distributional 
similarity, which groups a subset of the most 
frequent 10,000 words of a corpus into several 
hundred clusters (partitioning 1). Second, we use 
similarity scores on neighbouring co-occurrence 
profiles to obtain again several hundred clusters 
of medium- and low frequency words 
(partitioning 2). The combination of both 
partitionings yields a set of word forms 
belonging to the same derived syntactic category. 
To gain on text coverage, we add ambiguous 
high-frequency words that were discarded for 
partitioning 1 to the lexicon. Finally, we train a 
Viterbi tagger with this lexicon and augment it 
with an affix classifier for unknown words.  

The resulting taggers are evaluated against 
outputs of supervised taggers for various 
languages. 

2 Method 

The method employed here follows the coarse 
methodology as described in the introduction, 
but differs from other works in several respects. 
Although we use 4-word context windows and 
the top frequency words as features (as in 
Schütze 1995), we transform the cosine 

similarity values between the vectors of our 
target words into a graph representation. 
Additionally, we provide a methdology to 
identify and incorporate POS-ambiguous words 
as well as low-frequency words into the lexicon. 

2.1 The Graph-Based View 

Let us consider a weighted, undirected graph 
G(V,E) (v∈V vertices, (vi,vj,wij)∈E edges with 
weights wij). Vertices represent entities (here: 
words); the weight of an edge between two 
vertices indicates their similarity.  

As the data here is collected in feature vectors, 
the question arises why it should be transformed 
into a graph representation. The reason is, that 
graph-clustering algorithms such as e.g. (van 
Dongen, 2000; Biemann 2006), find the number 
of clusters automatically1. Further, outliers are 
handled naturally in that framework, as they are 
represented as singleton nodes (without edges) 
and can be excluded from the clustering. A 
threshold s on similarity serves as a parameter to 
influence the number of non-singleton nodes in 
the resulting graph.  

For assigning classes, we use the Chinese 
Whispers (CW) graph-clustering algorithm, 
which has been proven useful in NLP 
applications as described in (Biemann 2006). It is 
time-linear with respect to the number of edges, 
making its application viable even for graphs 
with several million nodes and edges. Further, 
CW is parameter-free, operates locally and 
results in a partitioning of the graph, excluding 
singletons (i.e. nodes without edges). 

2.2 Obtaining the lexicon 

Partitioning 1: High and medium frequency 
words 

Four steps are executed in order to obtain 
partitioning 1: 

1. Determine 200 feature and 10.000 target 
words from frequency counts 

2. construct graph from context statistics 
3. Apply CW on graph. 
4. Add the feature words not present in the 

partitioning as one-member clusters. 
The graph construction in step 2 is conducted 

by adding an edge between two words a and b 

                                                 
1 This is not an exclusive characteristic for graph 
clustering algorithms. However, the graph model 
deals with that naturally while other models usually 
build some meta-mechanism on top for determining 
the optimal number of clusters. 
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with weight w=1/(1-cos(a,b)), if w exceeds a 
similarity threshold s. The latter influences the 
number of words that actually end up in the 
graph and get clustered. It might be desired to 
cluster fewer words with higher confidence as 
opposed to running in the danger of joining two 
unrelated clusters because of too many 
ambiguous words that connect them. 

After step 3, we already have a partition of a 
subset of our target words. The distinctions are 
normally more fine-grained than existing tag 
sets. 

As feature words form the bulk of tokens in 
corpora, it is clearly desired to make sure that 
they appear in the final partitioning, although 
they might form word classes of their own2. This 
is done in step 4. We argue that assigning 
separate word classes for high frequency words 
is a more robust choice then trying to 
disambiguate them while tagging.  

Lexicon size for partitioning 1 is limited by 
the computational complexity of step 2, which is 
time-quadratic in the number of target words. For 
adding words with lower frequencies, we pursue 
another strategy.  

Partitioning 2: Medium and low frequency 
words 

As noted in (Dunning, 1993), log-likelihood 
statistics are able to capture word bi-gram 
regularities. Given a word, its neighbouring co-
occurrences as ranked by the log-likelihood 
reflect the typical immediate contexts of the 
word. Regarding the highest ranked neighbours 
as the profile of the word, it is possible to assign 
similarity scores between two words A and B 
according to how many neighbours they share, 
i.e. to what extent the profiles of A and B 
overlap. This directly induces a graph, which can 
be again clustered by CW.  

This procedure is parametrised by a log-
likelihood threshold and the minimum number of 
left and right neighbours A and B share in order 
to draw an edge between them in the resulting 
graph. For experiments, we chose a minimum 
log-likelihood of 3.84 (corresponding to 
statistical dependence on 5% level), and at least 
four shared neighbours of A and B on each side.  

Only words with a frequency rank higher than 
2,000 are taken into account. Again, we obtain 
several hundred clusters, mostly of open word 
classes. For computing partitioning 2, an 
efficient algorithm like CW is crucial: the graphs 
                                                 
2 This might even be desired, e.g. for English not. 

as used for the experiments consisted of 
52,857/691,241 (English), 85,827/702,349 
(Finnish) and 137,951/1,493,571 (German) 
nodes/edges. 

The procedure to construct the graphs is faster 
than the method used for partitioning 1, as only 
words that share at least one neighbour have to 
be compared and therefore can handle more 
words with reasonable computing time. 

Combination of  partitionings 1 and 2 

Now, we have two partitionings of two different, 
yet overlapping frequency bands. A large portion 
of these 8,000 words in the overlapping region is 
present in both partitionings. Again, we construct 
a graph, containing the clusters of both 
partitionings as nodes; weights of edges are the 
number of common elements, if at least two 
elements are shared. And again, CW is used to 
cluster this graph of clusters. This results in 
fewer clusters than before for the following 
reason: While the granularities of partitionings 1 
and 2 are both high, they capture different 
aspects as they are obtained from different 
sources. Nodes of large clusters (which usually 
consist of open word classes) have many edges 
to the other partitioning’s nodes, which in turn 
connect to yet other clusters of the same word 
class. Eventually, these clusters can be grouped 
into one.  

Clusters that are not included in the graph of 
clusters are treated differently, depending on 
their origin: clusters of partition 1 are added to 
the result, as they are believed to contain 
important closed word class groups. Dropouts 
from partitioning 2 are left out, as they mostly 
consist of small, yet semantically motivated 
word sets. Combining both partitionings in this 
way, we arrive at about 200-500 clusters that will 
be further used as a lexicon for tagging. 

Lexicon construction 

A lexicon is constructed from the merged 
partitionings, which contains one possible tag 
(the cluster ID) per word. To increase text 
coverage, it is possible to include those words 
that dropped out in the distributional step for 
partitioning 1 into the lexicon. It is assumed that 
these words dropped out because of ambiguity. 
From a graph with a lower similarity threshold s 
(here: such that the graph contained 9,500 target 
words), we obtain the neighbourhoods of these 
words one at a time. The tags of those 
neighbours – if known – provide a distribution of 
possible tags for these words.  
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2.3 Constructing the tagger 

Unlike in supervised scenarios, our task is not to 
train a tagger model from a small corpus of 
hand-tagged data, but from our clusters of 
derived syntactic categories and a considerably 
large, yet unlabeled corpus.  

Basic Trigram Model 

We decided to use a simple trigram model 
without re-estimation techniques. Adopting a 
standard POS-tagging framework, we maximize 
the probability of the joint occurrence of tokens 
(ti) and categories (ci) for a sequence of length n: 

∏
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The transition probability P(ci|ci-1,ci-2) is 
estimated from word trigrams in the corpus 
whose elements are all present in our lexicon.  

The last term of the product, namely P(ci|ti), is 
dependent on the lexicon3. If the lexicon does not 
contain (ti), then (ci) only depends on 
neighbouring categories. Words like these are 
called out-of-vocabulary (OOV) words.  

Morphological Extension 

Morphologically motivated add-ons are used e.g. 
in (Clark, 2003) and (Freitag 2004) to guess a 
more appropriate category distribution based on 
a word’s suffix or its capitalization for OOV 
words. Here, we examine the effects of Compact 
Patricia Trie classifiers (CPT) trained on prefixes 
and suffixes.  We use the implementation of 
(Witschel and Biemann, 2005). For OOV words, 
the category-wise product of both classifier’s 
distributions serve as probabilities P(ci|ti): Let 
w=ab=cd be a word, a be the longest common 
prefix of w that can be found in all lexicon 
words, and d be the longest common suffix of w 
that can be found in all lexicon words. Then 
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Table 1: Characteristics of corpora: number of 
sentences, tokens, tagger and tagset size, corpus 
coverage of top 200 and 10,000 words. 

CPTs do not only smoothly serve as a 
substitute lexicon component, they also realize 
capitalization, camel case and suffix endings 
naturally. 

                                                 
3 Although (Charniak et al. 1993) report that using  
P(ti|ci) instead leads to superior results in the 
supervised setting, we use the ‘direct’ lexicon 
probability. Note that our training material size is 
considerably larger than hand-labelled POS corpora. 

3 Evaluation methodology 

We adopt the methodology of (Freitag 2004) and 
measure cluster-conditional tag perplexity PP as 
the average amount of uncertainty to predict the 
tags of a POS-tagged corpus, given the tagging 
with classes from the unsupervised method. Let  

∑−=
x
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be the entropy of a random variable X and  
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be the mutual information between two 
random variables X and Y. Then the cluster-
conditional tag perplexity for a gold-standard 
tagging T and a tagging resulting from clusters C 
is computed as  

)exp()exp( | TCTCT MIIPP −== . 
Minimum PP is 1.0, connoting a perfect 

congruence on gold standard tags.  
In the experiment section we report PP on 

lexicon words and OOV words separately. The 
objective is to minimize the total PP.  

4 Experiments 

4.1 Corpora 

For this study, we chose three corpora: the 
British National Corpus (BNC) for English, a 10 
Million sentences newspaper corpus from 
Projekt Deutscher Wortschatz4 for German, and 
3 million sentences from a Finnish web corpus 
(from the same source). Table 1 summarizes 
some characteristics. 
lang. sent. tok. tagger nr. 

tags 
200 
cov. 

10K 
cov. 

en 6M 100M BNC5 84 55% 90%
fi 3M 43M Connexor6 31 30% 60%
ger 10M 177M (Schmid,1994) 54 49% 78%

 
Since a high coverage is reached with few 

words in English, a strategy that assigns only the 
most frequent words to sensible clusters will take 
us very far here. In the Finnish case, we can 
expect a high OOV rate, hampering performance 

                                                 
4 See http://corpora.informatik.uni-leipzig.de. 
5 Semi-automatic tags as provided by BNC. 
6 Thanks goes to www.connexor.com for an academic 
license; the tags do not include interpunctuation 
marks, which are treated seperately. 
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of strategies that cannot cope well with low 
frequency or unseen words. 

4.2 Baselines 

To put our results in perspective, we computed 
the following baselines on random samples of 
the same 1000 randomly chosen sentences that 
we used for evaluation: 

• 1: the trivial top clustering: all words are in 
the same cluster 

• 200: The most frequent 199 words form 
clusters of their own; all the rest is put into 
one cluster.  

• 400: same as 200, but with 399 most 
frequent words 

Table 2 summarizes the baselines. We give PP 
figures as well as tag-conditional cluster 
perplexity PPG (uncertainty to predict the 
clustering from the gold standard tags, inverse 
direction of PP):  
lang English Finnish German 
base 1 200 400 1 200 400 1 200 400
PP 29 3.6 3.1 20 6.1 5.3 19 3.4 2.9 
PPG 1.0 2.6 3.5 1.0 2.0 2.5 1.0 2.5 3.1 

Table 2: Baselines for various tag set sizes 

4.3 Results 

We measured the quality of the resulting taggers 
for combinations of several substeps:  
• O: Partitioning 1  
• M: the CPT morphology extension  
• T: merging partitioning 1 and 2 
• A: adding ambiguous words to the lexicon 

Figure 2 illustrates the influence of the 
similarity threshold s for O,  OM and OMA for 
German – the other languages showed similar 
results. Varying s influences coverage on the 
10,000 target words. When clustering very few 
words, tagging performance on these words 
reaches a PP as low as 1.25 but the high OOV 
rate impairs the total performance. Clustering too 
many words results in deterioration of results - 
most words end up in one big partition. In the 
medium ranges, higher coverage and lower 
known PP compensate each other, optimal total 
PPs were observed at target coverages 4,000-
8,000. Adding ambiguous words results in a 
worse performance on lexicon words, yet 
improves overall performance, especially for 
high thresholds. 

For all further experiments we fixed the 
threshold in a way that partitioning 1 consisted of 
5,000 words, so only half of the top 10,000 
words are considered unambiguous. At this 

value, we found the best performance averaged 
over all corpora.  

 

 
Fig 2. Influence of threshold s on tagger 

performance: cluster-conditional tag perplexity 
PP as a function of target word coverage.  

 
lang  O OM OMA TM TMA

total 2.66 2.43 2.08 2.27 2.05
lex 1.25 1.51 1.58 1.83
oov 6.74 6.70 5.82 9.89 7.64
oov% 28.07 14.25 14.98 4.62

 
 

EN 

tags 619 345 
total 4.91 3.96 3.79 3.36 3.22
lex 1.60 2.04 1.99 2.29
oov 8.58 7.90 7.05 7.54 6.94
oov% 47.52 36.31 32.01 23.80

 
 

FI 

tags 625 466 
total 2.53 2.18 1.98 1.84 1.79
lex 1.32 1.43 1.51 1.57
oov 3.71 3.12 2.73 2.97 2.57
oov% 31.34 23.60 19.12 13.80

 
 
GER

tags 781 440 
Table 3: results for English, Finnish, German. 

oov% is the fraction of non-lexicon words. 
 
Overall results are presented in table 3. The 

combined strategy TMA reaches the lowest PP 
for all languages. The morphology extension (M) 
always improves the OOV scores. Adding 
ambiguous words (A) hurts the lexicon 
performance, but largely reduces the OOV rate, 
which in turn leads to better overall performance. 
Combining both partitionings (T) does not 
always decrease the total PP a lot, but lowers the 
number of tags significantly. Finnish figures are 
generally worse than for the other languages, 
akin to higher baselines.  

The high OOV perplexities for English in 
experiment TM and TMA can be explained as 
follows: The smaller the OOV rate gets, the more 
likely it is that the corresponding words were 
also OOV in the gold standard tagger. A remedy 
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would be to evaluate on hand-tagged data. 
Differences between languages are most obvious 
when comparing OMA and TM: whereas for 
English it pays off much more to add ambiguous 
words than to merge the two partitionings, it is 
the other way around in the German and Finnish 
experiments.   

To wrap up: all steps undertaken improve the 
performance, yet their influence's strength varies. 
As a flavour of our system's output, consider the 
example in table 4 that has been tagged by our 
English TMA model: as in the introductory 
example, "saw" is disambiguated correctly. 

 
Word cluster ID cluster members (size) 
I 166 I (1) 
saw 2 past tense verbs (3818) 
the 73 a, an, the (3) 
man 1 nouns (17418) 
with 13 prepositions (143) 
a 73 a, an, the (3) 
saw 1 nouns (17418) 
. 116 . ! ? (3) 

Table 4: Tagging example 
 

We compare our results to (Freitag, 2004), as 
most other works use different evaluation 
techniques that are only indirectly measuring 
what we try to optimize here. Unfortunately, 
(Freitag 2004) does not provide a total PP score 
for his 200 tags. He experiments with an hand-
tagged, clean English corpus we did not have 
access to (the Penn Treebank). Freitag reports a 
PP for known words of 1.57 for the top 5,000 
words (91% corpus coverage, baseline 1 at 23.6), 
a PP for unknown words without morphological 
extension of 4.8. Using morphological features 
the unknown PP score is lowered to 4.0. When 
augmenting the lexicon with low frequency 
words via their distributional characteristics, a 
PP as low as 2.9 is obtained for the remaining 
9% of tokens. His methodology, however, does 
not allow for class ambiguity in the lexicon, the 
low number of OOV words is handled by a 
Hidden Markov Model.  

5 Conclusion and further work 

We presented a graph-based approach to 
unsupervised POS tagging. To our knowledge, 
this is the first attempt to leave the decision on 
tag granularity to the tagger. We supported the 
claim of language-independence by validating 
the output of our system against supervised 
systems in three languages.  

The system is not very sensitive to parameter 
changes: the number of feature words, the 
frequency cutoffs, the log-likelihood threshold 
and all other parameters did not change overall 
performance considerably when altered in 
reasonable limits. In this way it was possbile to 
arrive at a one-size-fits-all configuration that 
allows the parameter-free unsupervised tagging 
of large corpora.  

To really judge the benefit of an unsupervised 
tagging system, it should be evaluated in an 
application-based way. Ideally, the application 
should tell us the granularity of our tagger: e.g. 
semantic class learners could greatly benefit 
from the high-granular word sets arising in both 
of our partitionings, which we endeavoured to 
lump into a coarser tagset here.  
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