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Abstract

We investigate the use of machine learn-
ing in combination with feature engineer-
ing techniques to explore human multi-
modal clarification strategies and the use
of those strategies for dialogue systems.
We learn from data collected in a Wizard-
of-Oz study where different wizards could
decide whether to ask a clarification re-
quest in a multimodal manner or else use
speech alone. We show that there is a
uniform strategy across wizards which is
based on multiple features in the context.
These are generic runtime features which
can be implemented in dialogue systems.
Our prediction models achieve a weighted
f-score of 85.3% (which is a 25.5% im-
provement over a one-rule baseline). To
assess the effects of models, feature dis-
cretisation, and selection, we also conduct
a regression analysis. We then interpret
and discuss the use of the learnt strategy
for dialogue systems. Throughout the in-
vestigation we discuss the issues arising
from using small initial Wizard-of-Oz data
sets, and we show that feature engineer-
ing is an essential step when learning from
such limited data.

1 Introduction

Good clarification strategies in dialogue systems
help to ensure and maintain mutual understand-
ing and thus play a crucial role in robust conversa-
tional interaction. In dialogue application domains
with high interpretation uncertainty, for example
caused by acoustic uncertainties from a speech
recogniser, multimodal generation and input leads
to more robust interaction (Oviatt, 2002) and re-

duced cognitive load (Oviatt et al., 2004). In this
paper we investigate the use of machine learning
(ML) to explore human multimodal clarification
strategies and the use of those strategies to decide,
based on the current dialogue context, when a di-
alogue system’s clarification request (CR) should
be generated in a multimodal manner.

In previous work (Rieser and Moore, 2005)
we showed that for spoken CRs in human-
human communication people follow a context-
dependent clarification strategy which systemati-
cally varies across domains (and even across Ger-
manic languages). In this paper we investigate
whether there exists a context-dependent “intu-
itive” human strategy for multimodal CRs as well.
To test this hypothesis we gathered data in a
Wizard-of-Oz (WOZ) study, where different wiz-
ards could decide when to show a screen output.
From this data we build prediction models, using
supervised learning techniques together with fea-
ture engineering methods, that may explain the un-
derlying process which generated the data. If we
can build a model which predicts the data quite re-
liably, we can show that there is a uniform strategy
that the majority of our wizards followed in certain
contexts.

Figure 1: Methodology and structure

The overall method and corresponding structure
of the paper is as shown in figure 1. We proceed
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as follows. In section 2 we present the WOZ cor-
pus from which we extract a potential context us-
ing “Information State Update” (ISU)-based fea-
tures (Lemon et al., 2005), listed in section 3. We
also address the question how to define a suit-
able “local” context definition for the wizard ac-
tions. We apply the feature engineering methods
described in section 4 to address the questions of
unique thresholds and feature subsets across wiz-
ards. These techniques also help to reduce the
context representation and thus the feature space
used for learning. In section 5 we test different
classifiers upon this reduced context and separate
out the independent contribution of learning al-
gorithms and feature engineering techniques. In
section 6 we discuss and interpret the learnt strat-
egy. Finally we argue for the use of reinforcement
learning to optimise the multimodal clarification
strategy.

2 The WOZ Corpus

The corpus we are using for learning was col-
lected in a multimodal WOZ study of German
task-oriented dialogues for an in-car music player
application, (Kruijff-Korbayov́a et al., 2005) . Us-
ing data from a WOZ study, rather than from real
system interactions, allows us to investigate how
humans clarify. In this study six people played the
role of an intelligent interface to an MP3 player
and were given access to a database of informa-
tion. 24 subjects were given a set of predefined
tasks to perform using an MP3 player with a mul-
timodal interface. In one part of the session the
users also performed a primary driving task, us-
ing a driving simulator. The wizards were able
to speak freely and display the search results or
the playlist on the screen by clicking on vari-
ous pre-computed templates. The users were also
able to speak, as well as make selections on the
screen. The user’s utterances were immediately
transcribed by a typist. The transcribed user’s
speech was then corrupted by deleting a varying
number of words, simulating understanding prob-
lems at the acoustic level. This (sometimes) cor-
rupted transcription was then presented to the hu-
man wizard. Note that this environment introduces
uncertainty on several levels, for example multiple
matches in the database, lexical ambiguities, and
errors on the acoustic level, as described in (Rieser
et al., 2005). Whenever the wizard produced a
CR, the experiment leader invoked a questionnaire
window on a GUI, where the wizard classified

their CR according to the primary source of the
understanding problem, mapping to the categories
defined by (Traum and Dillenbourg, 1996).

2.1 The Data

The corpus gathered with this setup comprises
70 dialogues, 1772 turns and 17076 words. Ex-
ample 1 shows a typical multimodal clarification
sub-dialogue,1 concerning an uncertain reference
(note that “Venus” is an album name, song title,
and an artist name), where the wizard selects a
screen output while asking a CR.

(1) User: Please play “Venus”.
Wizard: Does this list contain the song?

[shows list with 20 DB matches]

User: Yes. It’s number 4.[clicks on item 4]

For each session we gathered logging informa-
tion which consists of e.g., the transcriptions of
the spoken utterances, the wizard’s database query
and the number of results, the screen option cho-
sen by the wizard, classification of CRs, etc. We
transformed the log-files into an XML structure,
consisting of sessions per user, dialogues per task,
and turns.2

2.2 Data analysis:

Of the 774 wizard turns 19.6% were annotated
as CRs, resulting in 152 instances for learning,
where our six wizards contributed about equal
proportions. Aχ2 test on multimodal strategy
(i.e. showing a screen output or not with a CR)
showed significant differences between wizards
(χ2(1) = 34.21, p < .000). On the other hand, a
Kruskal-Wallis test comparing user preference for
the multimodal output showed no significant dif-
ference across wizards (H(5)=10.94, p> .05). 3

Mean performance ratings for the wizards’ multi-
modal behaviour ranged from 1.67 to 3.5 on a five-
point Likert scale. Observing significantly differ-
ent strategies which are not significantly different
in terms of user satisfaction, we conjecture that the
wizards converged on strategies which were ap-
propriate in certaincontexts. To strengthen this

1Translated from German.
2Where a new “turn” begins at the start of each new user

utterance after a wizard utterance, taking the user utterance as
a most basic unit of dialogue progression as defined in (Paek
and Chickering, 2005).

3The Kruskal-Wallis test is the non-parametric equivalent
to a one-way ANOVA. Since the users indicated their satis-
faction on a 5-point likert scale, an ANOVA which assumes
normality would be invalid.
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hypothesis we split the data by wizard and and per-
formed a Kruskal-Wallis test on multimodal be-
haviour per session. Only the two wizards with the
lowest performance score showed no significant
variation across session, whereas the wizards with
the highest scores showed the most varying be-
haviour. These results again indicate a context de-
pendent strategy. In the following we test this hy-
pothesis (that good multimodal clarification strate-
gies are context-dependent) by building a predic-
tion model of the strategy anaveragewizard took
dependent on certain context features.

3 Context/Information-State Features

A state or context in our system is a dialogue in-
formation state as defined in (Lemon et al., 2005).
We divide the types of information represented
in the dialogue information state intolocal fea-
tures(comprising low level and dialogue features),
dialogue history features, and user model fea-
tures. We also defined features reflecting the ap-
plication environment (e.g.driving ). All fea-
tures are automatically extracted from the XML
log-files (and are available at runtime in ISU-
based dialogue systems). From these features we
want to learn whether to generate a screen out-
put (graphic-yes ), or whether to clarify using
speech only (graphic-no ). The case that the
wizard only used screen output for clarification did
not occur.

3.1 Local Features

First, we extracted features present in the “lo-
cal” context of a CR, such as the number
of matches returned from the data base query
(DBmatches ), how many words were deleted
by the corruption algorithm4 (deletion ), what
problem source the wizard indicated in the pop-
up questionnaire (source ), the previous user
speech act (userSpeechAct ), and the delay be-
tween the last wizard utterance and the user’s reply
(delay ). 5

One decision to take for extracting these local
features was how to define the “local” context of
a CR. As shown in table 1, we experimented with
a number of different context definitions. Context
1 defined the local context to be the current turn
only, i.e. the turn containing the CR. Context 2

4Note that this feature is only an approximation of the
ASR confidence score that we would expect in an automated
dialogue system. See (Rieser et al., 2005) for full details.

5We introduced thedelay feature to handle clarifications
concerning contact.

id Context (turns) acc/ wf-
score ma-
jority(%)

acc/ wf-score
Näıve Bayes
(%)

1 only current turn 83.0/54.9 81.0/68.3
2 current and next 71.3/50.4 72.01/68.2
3 current and previous 60.50/59.8 76.0*/75.3
4 previous, current, next 67.8/48.9 76.9*/ 74.8

Table 1: Comparison of context definitions for lo-
cal features (* denotesp < .05)

also considered the current turn and the turn fol-
lowing (and is thus not a “runtime” context). Con-
text 3 considered the current turn and the previous
turn. Context 4 is the maximal definition of a lo-
cal context, namely the previous, current, and next
turn (also not available at runtime).6

To find the context type which provides the rich-
est information to a classifier, we compared the ac-
curacy achieved in a 10-fold cross validation by
a Näıve Bayes classifier (as a standard) on these
data sets against the majority class baseline, us-
ing a paired t-test, we found that that for context
3 and context 4, Näıve Bayes shows a significant
improvement (withp < .05 using Bonferroni cor-
rection). In table 1 we also show the weighted
f-scores since they show that the high accuracy
achieved using the first two contexts is due to over-
prediction. We chose to use context 3, since these
features will be available during system runtime
and the learnt strategy could be implemented in an
actual system.

3.2 Dialogue History Features

The history features account for events in the
whole dialogue so far, i.e. all information gath-
ered before asking the CR, such as the number of
CRs asked (CRhist ), how often the screen output
was already used (screenHist ), the corruption
rate so far (delHist ), the dialogue duration so
far (duration ), and whether the user reacted to
the screen output, either by verbally referencing
(refHist ) , e.g. using expressions such as “It’s
item number 4”, or by clicking (clickHist ) as
in example 1.

3.3 User Model Features

Under “user model features” we consider features
reflecting the wizards’ responsiveness to the be-

6Note that dependent on the context definition a CR
might get annotated differently, since placing the question
and showing the graphic might be asynchronous events.
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haviour and situation of the user. Each session
comprised four dialogues with one wizard. The
user model features average the user’s behaviour
in these dialogues so far, such as how responsive
the user is towards the screen output, i.e. how of-
ten this user clicks (clickUser ) and how fre-
quently s/he uses verbal references (refUser );
how often the wizard had already shown a screen
output (screenUser ) and how many CRs were
already asked (CRuser ); how much the user’s
speech was corrupted on average (delUser ), i.e.
an approximation of how well this user is recog-
nised; and whether this user is currently driving or
not (driving ). This information was available
to the wizard.

LOCAL FEATURES
DBmatches: 20
deletion: 0
source: reference resolution
userSpeechAct: command
delay: 0

HISTORY FEATURES
[CRhist, screenHist, delHist,

refHist, clickHist]=0
duration= 10s

USER MODEL FEATURES
[clickUser,refUser,screenUser,

CRuser]=0
driving= true

Figure 2: Features in the context after the first turn
in example 1.

3.4 Discussion

Note that all these features are generic over
information-seeking dialogues where database re-
sults can be displayed on a screen; except for
driving which only applies to hands-and-eyes-
busy situations. Figure 2 shows a context for ex-
ample 1, assuming that it was the first utterance by
this user.

This potential feature space comprises 18 fea-
tures, many of them taking numeric attributes as
values. Considering our limited data set of 152
training instances we run the risk of severe data
sparsity. Furthermore we want to explore which
features of this potential feature space influenced
the wizards’ multimodal strategy. In the next
two sections we describe feature engineering tech-
niques, namely discretising methods for dimen-
sionality reduction and feature selection methods,
which help to reduce the feature space to a sub-
set which is most predictive of multimodal clarifi-
cation. For our experiments we use implementa-
tions of discretisation and feature selection meth-
ods provided by theWEKA toolkit (Witten and
Frank, 2005).

4 Feature Engineering

4.1 Discretising Numeric Features

Global discretisation methods divide all contin-
uous features into a smaller number of distinct
ranges before learning starts. This has two advan-
tages concerning the quality of our data for ML.
First, discretisation methods take feature distribu-
tions into account and help to avoid sparse data.
Second, most of our features are highly positively
skewed. Some ML methods (such as the standard
extension of the Näıve Bayes classifier to handle
numeric features) assume that numeric attributes
have a normal distribution. We use Proportional
k-Interval (PKI) discretisation as a unsupervised
method, and an entropy-based algorithm (Fayyad
and Irani, 1993) based on the Minimal Description
Length (MDL) principle as a supervised discreti-
sation method.

4.2 Feature Selection

Feature selection refers to the problem of select-
ing an optimum subset of features that are most
predictive of a given outcome. The objective of se-
lection is two-fold: improving the prediction per-
formance of ML models and providing a better un-
derstanding of the underlying concepts that gener-
ated the data. We chose to apply forward selec-
tion for all our experiments given our large fea-
ture set, which might include redundant features.
We use the following feature filtering methods:
correlation-based subset evaluation (CFS) (Hall,
2000) and a decision tree algorithm (rule-based
ML) for selecting features before doing the actual
learning. We also used a wrapper method called
Selective Näıve Bayes, which has been shown to
perform reliably well in practice (Langley and
Sage, 1994). We also apply a correlation-based
ranking technique since subset selection models
inner-feature relations at the expense of saying
less about individual feature performance itself.

4.3 Results for PKI and MDL Discretisation

Feature selection and discretisation influence one-
another, i.e. feature selection performs differently
on PKI or MDL discretised data. MDL discreti-
sation reduces our range of feature values dra-
matically. It fails to discretise 10 of 14 nu-
meric features and bars those features from play-
ing a role in the final decision structure because
the same discretised value will be given to all
instances. However, MDL discretisation cannot
replace proper feature selection methods since
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Table 2: Feature selection on PKI-discretised data (left) and on MDL-discretised data (right)

it doesn’t explicitly account for redundancy be-
tween features, nor for non-numerical features.
For the other 4 features which were discretised
there is a binary split around one (fairly low)
threshold:screenHist (.5), refUser (.375),
screenUser (1.0),CRUser (1.25).

Table 2 shows two figures illustrating the dif-
ferent subsets of features chosen by the feature
selection algorithms on discretised data. From
these four subsets we extracted a fifth, using all
the features which were chosen by at least two
of the feature selection methods, i.e. the features
in the overlapping circle regions shown in figure
2. For both data sets the highest ranking fea-
tures are also the ones contained in the overlapping
regions, which arescreenUser, refUser
andscreenHist . For implementation dialogue
management needs to keep track of whether the
user already saw a screen output in a previous in-
teraction (screenUser ), or in the same dialogue
(screenHist ), and whether this user (verbally)
reacted to the screen output (refUser ).

5 Performance of Different Learners and
Feature Engineering

In this section we evaluate the performance of fea-
ture engineering methods in combination with dif-
ferent ML algorithms (where we treat feature op-
timisation as an integral part of the training pro-
cess). All experiments are carried out using 10-
fold cross-validation. We take an approach similar
to (Daelemans et al., 2003) where parameters of
the classifier are optimised with respect to feature
selection. We use a wide range of different multi-
variate classifiers which reflect our hypothesis that
a decision is based on various features in the con-
text, and compare them against two simple base-
line strategies, reflecting deterministic contextual
behaviour.

5.1 Baselines

The simplest baseline we can consider is to always
predict the majority class in the data, in our case
graphic-no . This yields a 45.6% wf-score.
This baseline reflects a deterministic wizard strat-
egy never showing a screen output.

A more interesting baseline is obtained by us-
ing a 1-rule classifier. It chooses the feature
which produces the minimum error (which is
refUser for the PKI discretised data set, and
screenHist for the MDL set). We use the im-
plementation of a one-rule classifier provided in
the WEKA toolkit. This yields a 59.8% wf-score.
This baseline reflects a deterministic wizard strat-
egy which is based on a single feature only.

5.2 Machine Learners

For learning we experiment with five different
types of supervised classifiers.We chose Naı̈ve
Bayes as a joint (generative) probabilistic model,
using theWEKA implementation of (John and Lan-
gley, 1995)’s classifier; Bayesian Networks as a
graphical generative model, again using theWEKA

implementation; and we chose maxEnt as a dis-
criminative (conditional) model, using the Max-
imum Entropy toolkit (Le, 2003). As a rule in-
duction algorithm we usedJRIP, theWEKA imple-
mentation of (Cohen, 1995)’s Repeated Incremen-
tal Pruning to Produce Error Reduction (RIPPER).
And for decision trees we used the J4.8 classi-
fier (WEKA ’s implementation of the C4.5 system
(Quinlan, 1993)).

5.3 Comparison of Results

We experimented using these different classifiers
on raw data, on MDL and PKI discretised data,
and on discretised data using the different fea-
ture selection algorithms. To compare the clas-
sification outcomes we report on two measures:
accuracy and wf-score, which is the weighted
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Feature transformation/
(acc./ wf-score (%))

1-rule
baseline

Rule
Induction

Decision
Tree

maxEnt Näıve
Bayes

Bayesian
Network

Average

raw data 60.5/59.8 76.3/78.3 79.4/78.6 70.0/75.3 76.0/75.3 79.5/72.0 73.62/73.21
PKI + all features 60.5/ 64.6 67.1/66.4 77.4/76.3 70.7/76.7 77.5/81.6 77.3/82.3 71.75/74.65
PKI+ CFS subset 60.5/64.4 68.7/70.7 79.2/76.9 76.7/79.4 78.2/80.6 77.4/80.7 73.45/75.45
PKI+ rule-based ML 60.5/66.5 72.8/76.1 76.0/73.9 75.3/80.2 80.1/78.3 80.8/79.8 74.25/75.80
PKI+ selective Bayes 60.5/64.4 68.2/65.2 78.4/77.9 79.3/78.1 84.6/85.3 84.5/84.6 75.92/75.92
PKI+ subset overlap 60.5/64.4 70.9/70.7 75.9/76.9 76.7/78.2 84.0/80.6 83.7/80.7 75.28/75.25
MDL + all features 60.5/69.9 79.0/78.8 78.0/78.1 71.3/76.8 74.9/73.3 74.7/73.9 73.07/75.13
MDL + CFS subset 60.5/69.9 80.1/78.2 80.6/78.2 76.0/80.2 75.7/75.8 75.7/75.8 74.77/76.35
MDL + rule-based ML 60.5/75.5 80.4/81.6 78.7/80.2 79.3/78.8 82.7/82.9 82.7/82.9 77.38/80.32
MDL + select. Bayes 60.5/75.5 80.4/81.6 78.7/80.8 79.3/80.1 82.7/82.9 82.7/82.9 77.38/80.63
MDL + overlap 60.5/75.5 80.4/81.6 78.7/80.8 79.3/80.1 82.7/82.9 82.7/82.9 77.38/80.63
average 60.5/68.24 74.9/75.38 78.26/78.06 75.27/78.54 79.91/79.96 80.16/79.86

Table 3: Average accuracy and wf-scores for models in feature engineering experiments .

sum (by class frequency in the data; 39.5%
graphic-yes , 60.5%graphic-no ) of the f-
scores of the individual classes. In table 3 we
see fairly stable high performance for Bayesian
models with MDL feature selection. However, the
best performing model is Naı̈ve Bayes using wrap-
per methods (selective Bayes) for feature selection
and PKI discretisation. This model achieves a wf-
score of 85.3%, which is a 25.5% improvement
over the 1-rule baseline.

We separately explore the models and feature
engineering techniques and their impact on the
prediction accuracy for each trial/cross-validation.
In the following we separate out the independent
contribution of models and features. To assess
the effects of models, feature discretisation and
selection on performance accuracy, we conduct
a hierarchical regression analysis. The models
alone explain 18.1% of the variation in accuracy
(R2 = .181) whereas discretisation methods only
contribute 0.4% and feature selection 1% (R2 =
.195). All parameters, except for discretisation
methods have a significant impact on modelling
accuracy (P < .001), indicating that feature selec-
tion is an essential step for predicting wizard be-
haviour. The coefficients of the regression model
lead us to the following hypotheses which we ex-
plore by comparing the group means for models,
discretisation, and features selection methods. Ap-
plying a Kruskal-Wallis test with Mann-Whitney
tests as a post-hoc procedure (using Bonferroni
correction for multiple comparisons), we obtained
the following results:7

• All ML algorithms are significantly better
than the majority and one-rule baselines. All

7We cannot report full details here. Supplementary
material is available atwww.coli.uni-saarland.de/
˜vrieser/acl06-supplementary.html

except maxEnt are significantly better than
the Rule Induction algorithm. There is no
significant difference in the performance of
Decision Tree, maxEnt, Naı̈ve Bayes, and
Bayesian Network classifiers. Multivariate
models being significantly better than the
two baseline models indicates that we have
a strategy that is based on context features.

• For discretisation methods we found that the
classifiers were performing significantly bet-
ter on MDL discretised data than on PKI or
continuous data. MDL being significantly
better than continuous data indicates that all
wizards behaved as though using thresholds
to make their decisions, and MDL being bet-
ter than PKI supports the hypothesis that de-
cisions were context dependent.

• All feature selection methods (except for
CFS) lead to better performance than using
all of the features. Selective Bayes and rule-
based ML selection performed significantly
better than CFS. Selective Bayes, rule-based
ML, and subset-overlap showed no signifi-
cant differences. These results show that wiz-
ards behaved as though specific features were
important (but they suggest that inner-feature
relations used by CFS are less important).

Discussion of results: These experimental re-
sults show two things. First, the results indi-
cate that we can learn a good prediction model
from our data. We conclude that our six wiz-
ards did not behave arbitrarily, but selected their
strategy according to certain contextual features.
By separating out the individual contributions of
models and feature engineering techniques, we
have shown that wizard behaviour is based on
multiple features. In sum, Decision Tree, max-
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Ent, Näıve Bayes, and Bayesian Network clas-
sifiers on MDL discretised data using Selective
Bayes and Rule-based ML selection achieved
the best results. The best performing feature
subset wasscreenUser,screenHist, and
userSpeechAct . The best performing model
uses the richest feature space including the feature
driving .

Second, the regression analysis shows that us-
ing these feature engineering techniques in combi-
nation with improved ML algorithms is an essen-
tial step for learning good prediction models from
the small data sets which are typically available
from multimodal WOZ studies.

6 Interpretation of the learnt Strategy

For interpreting the learnt strategies we discuss
Rule Induction and Decision Trees since they are
the easiest to interpret (and to implement in stan-
dard rule-based dialogue systems). For both we
explain the results obtained by MDL and selective
Bayes, since this combination leads to the best per-
formance.

Rule induction: Figure 3 shows a reformula-
tion of the rules from which the learned classifier
is constructed. The featurescreenUser plays
a central role. These rules (in combination with
the low thresholds) say that if you have already
shown a screen output to this particular user in
any previous turn (i.e.screenUser > 1 ), then
do so again if the previous user speech act was
a command (i.e.userSpeechAct=command )
or if you have already shown a screen out-
put in a previous turn in this dialogue (i.e.
screenHist>0.5 ). Otherwise don’t show
screen output when asking a clarification.

Decision tree: Figure 4 shows the decision tree
learnt by the classifier J4.8. The five rules
contained in this tree also heavily rely on the
user model as well as the previous screen his-
tory. The rules constructed by the first two nodes
(screenUser, screenHist ) may lead to a
repetitive strategy since the right branch will result
in the same action (graphic-yes ) in all future
actions. The only variation is introduced by the
speech act, collapsing the tree to the same rule set
as in figure 3. Note that this rule-set is based on
domain independent features.

Discussion: Examining the classifications made
by our best performing Bayesian models we found

that the learnt conditional probability distribu-
tions produce similar feature-value mappings to
the rules described above. The strategy learnt
by the classifiers heavily depends on features ob-
tained in previous interactions, i.e. user model fea-
tures. Furthermore these strategies can lead to
repetitive action, i.e. if a screen output was once
shown to this user, and the user has previously
used or referred to the screen, the screen will be
used over and over again.

For learning a strategy which varies in context
but adapts in more subtle ways (e.g. to the user
model), we would need to explore many more
strategies through interactions with users to find
an optimal one. One way to reduce costs for build-
ing such an optimised strategy is to apply Rein-
forcement Learning (RL) with simulated users. In
future work we will begin with the strategy learnt
by supervised learning (which reflects sub-optimal
average wizard behaviour) and optimise it for dif-
ferent user models and reward structures.

Figure 4: Five-rule tree from J4.8 (“inf” =∞)

7 Summary and Future Work

We showed that humans use a context-dependent
strategy for asking multimodal clarification re-
quests by learning such a strategy from WOZ data.
Only the two wizards with the lowest performance
scores showed no significant variation across ses-
sions, leading us to hypothesise that the better wiz-
ards converged on a context-dependent strategy.
We were able to discover a runtime context based
on which all wizards behaved uniformly, using
feature discretisation methods and feature selec-
tion methods on dialogue context features. Based
on these features we were able to predict how
an ‘average’ wizard would behave in that context
with an accuracy of 84.6% (wf-score of 85.3%,
which is a 25.5% improvement over a one rule-
based baseline). We explained the learned strate-
gies and showed that they can be implemented in
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IF screenUser>1 AND (userSpeechAct=command OR screenHist>0.5) THEN graphic=yes
ELSE graphic=no

Figure 3: Reformulation of the rules learnt by JRIP

rule-based dialogue systems based on domain in-
dependent features. We also showed that feature
engineering is essential for achieving significant
performance gains when using large feature spaces
with the small data sets which are typical of di-
alogue WOZ studies. By interpreting the learnt
strategies we found them to be sub-optimal. In
current research, RL is applied to optimise strate-
gies and has been shown to lead to dialogue strate-
gies which are better than those present in the orig-
inal data (Henderson et al., 2005). The next step
towards a RL-based system is to add task-level and
reward-level annotations to calculate reward func-
tions, as discussed in (Rieser et al., 2005). We
furthermore aim to learn more refined clarifica-
tion strategies indicating the problem source and
its severity.
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