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Abstract

In this paper, we compare the per-
formance of a state-of-the-art statistical
parser (Bikel, 2004) in parsing written and
spoken language and in generating sub-
categorization cues from written and spo-
ken language. Although Bikel’s parser
achieves a higher accuracy for parsing
written language, it achieves a higher ac-
curacy when extracting subcategorization
cues from spoken language. Our exper-
iments also show that current technology
for extracting subcategorization frames
initially designed for written texts works
equally well for spoken language. Addi-
tionally, we explore the utility of punctu-
ation in helping parsing and extraction of
subcategorization cues. Our experiments
show that punctuation is of little help in
parsing spoken language and extracting
subcategorization cues from spoken lan-
guage. This indicates that there is no need
to add punctuation in transcribing spoken
corpora simply in order to help parsers.

1 Introduction

Robust statistical syntactic parsers, made possi-
ble by new statistical techniques (Collins, 1999;
Charniak, 2000; Bikel, 2004) and by the avail-
ability of large, hand-annotated training corpora
such as WSJ (Marcus et al., 1993) and Switch-
board (Godefrey et al., 1992), have had a major
impact on the field of natural language process-
ing. There are many ways to make use of parsers’
output. One particular form of data that can be ex-
tracted from parses is information about subcate-
gorization. Subcategorization data comes in two

forms: subcategorization frame (SCF) and sub-
categorization cue (SCC). SCFs differ from SCCs
in that SCFs contain only arguments while SCCs
contain both arguments and adjuncts. Both SCFs
and SCCs have been crucial to NLP tasks. For ex-
ample, SCFs have been used for verb disambigua-
tion and classification (Schulte im Walde, 2000;
Merlo and Stevenson, 2001; Lapata and Brew,
2004; Merlo et al., 2005) and SCCs for semantic
role labeling (Xue and Palmer, 2004; Punyakanok
et al., 2005).

Current technology for automatically acquiring
subcategorization data from corpora usually relies
on statistical parsers to generate SCCs. While
great efforts have been made in parsing written
texts and extracting subcategorization data from
written texts, spoken corpora have received little
attention. This is understandable given that spoken
language poses several challenges that are absent
in written texts, including disfluency, uncertainty
about utterance segmentation and lack of punctu-
ation. Roland and Jurafsky (1998) have suggested
that there are substantial subcategorization differ-
ences between written corpora and spoken cor-
pora. For example, while written corpora show a
much higher percentage of passive structures, spo-
ken corpora usually have a higher percentage of
zero-anaphora constructions. We believe that sub-
categorization data derived from spoken language,
if of acceptable quality, would be of more value to
NLP tasks involving a syntactic analysis of spoken
language. We do not show this here.

The goals of this study are as follows:

1. Test the performance of Bikel’s parser in
parsing written and spoken language.

2. Compare the accuracy level of SCCs gen-
erated from parsed written and spoken lan-
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guage. We hope that such a comparison will
shed some light on the feasibility of acquiring
subcategorization data from spoken language
using the current SCF acquisition technology
initially designed for written language.

3. Apply our SCF extraction system (Li and
Brew, 2005) to spoken and written lan-
guage separately and compare the accuracy
achieved for the acquired SCFs from spoken
and written language.

4. Explore the utility of punctuation1 in pars-
ing and extraction of SCCs. It is gen-
erally recognized that punctuation helps in
parsing written texts. For example, Roark
(2001) finds that removing punctuation from
both training and test data (WSJ) decreases
his parser’s accuracy from 86.4%/86.8%
(LR/LP) to 83.4%/84.1%. However, spo-
ken language does not come with punctua-
tion. Even when punctuation is added in the
process of transcription, its utility in help-
ing parsing is slight. Both Roark (2001)
and Engel et al. (2002) report that removing
punctuation from both training and test data
(Switchboard) results in only 1% decrease in
their parser’s accuracy.

2 Experiment Design

Three models will be investigated for parsing and
extracting SCCs from the parser’s output:

1. punc: leaving punctuation in both training
and test data.

2. no-punc: removing punctuation from both
training and test data.

3. punc-no-punc: removing punctuation from
only the test data.

Following the convention in the parsing com-
munity, for written language, we selected sections
02-21 of WSJ as training data and section 23 as
test data (Collins, 1999). For spoken language, we
designated section 2 and 3 of Switchboard as train-
ing data and files of sw4004 to sw4135 of section 4
as test data (Roark, 2001). Since we are also inter-
ested in extracting SCCs from the parser’s output,

1We use punctuation to refer to sentence-internal punctu-
ation unless otherwise specified.

label clause type desired SCCs
gerundive (NP)-GERUND

S small clause NP-NP, (NP)-ADJP
control (NP)-INF-to
control (NP)-INF-wh-to

SBAR with a complementizer (NP)-S-wh, (NP)-S-that
without a complementizer (NP)-S-that

Table 1: SCCs for different clauses

we eliminated from the two test corpora all sen-
tences that do not contain verbs. Our experiments
proceed in the following three steps:

1. Tag test data using the POS-tagger described
in Ratnaparkhi (1996).

2. Parse the POS-tagged data using Bikel’s
parser.

3. Extract SCCs from the parser’s output. The
extractor we built first locates each verb in the
parser’s output and then identifies the syntac-
tic categories of all its sisters and combines
them into an SCC. However, there are cases
where the extractor has more work to do.

• Finite and Infinite Clauses: In the Penn
Treebank,S andSBAR are used to label
different types of clauses, obscuring too
much detail about the internal structure
of each clause. Our extractor is designed
to identify the internal structure of dif-
ferent types of clause, as shown in Table
1.

• Passive Structures: As noted above,
Roland and Jurafsky (Roland and Juraf-
sky, 1998) have noticed that written lan-
guage tends to have a much higher per-
centage of passive structures than spo-
ken language. Our extractor is also
designed to identify passive structures
from the parser’s output.

3 Experiment Results

3.1 Parsing and SCCs

We used EVALB measures Labeled Recall (LR)
and Labeled Precision (LP) to compare the pars-
ing performance of different models. To compare
the accuracy of SCCs proposed from the parser’s
output, we calculated SCC Recall (SR) and SCC
Precision (SP). SR and SP are defined as follows:

SR =
number of correct cues from the parser’s output

number of cues from treebank parse
(1)
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WSJ
model LR/LP SR/SP
punc 87.92%/88.29% 76.93%/77.70%

no-punc 86.25%/86.91% 76.96%/76.47%
punc-no-punc 82.31%/83.70% 74.62%/74.88%

Switchboard
model LR/LP SR/SP
punc 83.14%/83.80% 79.04%/78.62%

no-punc 82.42%/83.74% 78.81%/78.37%
punc-no-punc 78.62%/80.68% 75.51%/75.02%

Table 2: Results of parsing and extraction of SCCs

SP =
number of correct cues from the parser’s output

number of cues from the parser’s output
(2)

SCC Balanced F-measure=
2 ∗ SR ∗ SP

SR + SP
(3)

The results for parsing WSJ and Switchboard
and extracting SCCs are summarized in Table 2.

The LR/LP figures show the following trends:

1. Roark (2001) showed LR/LP of
86.4%/86.8% for punctuated written
language, 83.4%/84.1% for unpunctuated
written language. We achieve a higher
accuracy in both punctuated and unpunctu-
ated written language, and the decrease if
punctuation is removed is less

2. For spoken language, Roark (2001) showed
LR/LP of 85.2%/85.6% for punctuated spo-
ken language, 84.0%/84.6% for unpunctu-
ated spoken language. We achieve a lower
accuracy in both punctuated and unpunctu-
ated spoken language, and the decrease if
punctuation is removed is less. The trends in
(1) and (2) may be due to parser differences,
or to the removal of sentences lacking verbs.

3. Unsurprisingly, if the test data is unpunctu-
ated, but the models have been trained on
punctuated language, performance decreases
sharply.

In terms of the accuracy of extraction of SCCs,
the results follow a similar pattern. However, the
utility of punctuation turns out to be even smaller.
Removing punctuation from both the training and
test data results in a 0.8% drop in the accuracy of
SCC extraction for written language and a 0.3%
drop for spoken language.

Figure 1 exhibits the relation between the ac-
curacy of parsing and that of extracting SCCs.
If we consider WSJ and Switchboard individu-
ally, there seems to exist a positive correlation be-
tween the accuracy of parsing and that of extract-
ing SCCs. In other words, higher LR/LP indicates

punc no−punc punc−no−punc
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Figure 1: F-measure for parsing and extraction of
SCCs

higher SR/SP. However, Figure 1 also shows that
although the parser achieves a higher F-measure
value for paring WSJ, it achieves a higher F-
measure value for generating SCCs from Switch-
board.

The fact that the parser achieves a higher ac-
curacy of extracting SCCs from Switchboard than
WSJ merits further discussion. Intuitively, it
seems to be true that the shorter an SCC is, the
more likely that the parser is to get it right. This
intuition is confirmed by the data shown in Fig-
ure 2. Figure 2 plots the accuracy level of extract-
ing SCCs by SCC’s length. It is clear from Fig-
ure 2 that as SCCs get longer, the F-measure value
drops progressively for both WSJ and Switch-
board. Again, Roland and Jurafsky (1998) have
suggested that one major subcategorization differ-
ence between written and spoken corpora is that
spoken corpora have a much higher percentage of
the zero-anaphora construction. We then exam-
ined the distribution of SCCs of different length in
WSJ and Switchboard. Figure 3 shows that SCCs
of length 02 account for a much higher percentage
in Switchboard than WSJ, but it is always the other
way around for SCCs of non-zero length. This
observation led us to believe that the better per-
formance that Bikel’s parser achieves in extracting
SCCs from Switchboard may be attributed to the
following two factors:

1. Switchboard has a much higher percentage of
SCCs of length 0.

2. The parser is very accurate in extracting
shorter SCCs.

2Verbs have a length-0 SCC if they are intransitive and
have no modifiers.
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Figure 2: F-measure for SCCs of different length
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Figure 3: Distribution of SCCs by length

3.2 Extraction of Dependents

In order to estimate the effects of SCCs of length
0, we examined the parser’s performance in re-
trieving dependents of verbs. Every constituent
(whether an argument or adjunct) in an SCC gen-
erated by the parser is considered a dependent of
that verb. SCCs of length 0 will be discounted be-
cause verbs that do not take any arguments or ad-
juncts have no dependents3. In addition, this way
of evaluating the extraction of SCCs also matches
the practice in some NLP tasks such as semantic
role labeling (Xue and Palmer, 2004). For the task
of semantic role labeling, the total number of de-
pendents correctly retrieved from the parser’s out-
put affects the accuracy level of the task.

To do this, we calculated the number of depen-
dents shared by between each SCC proposed from
the parser’s output and its corresponding SCC pro-

3We are aware that subjects are typically also consid-
ered dependents, but we did not include subjects in our
experiments

shared-dependents[i.j ] = MAX(
shared-dependents[i-1,j],
shared-dependents[i-1,j-1]+1 if target[i] = source[j],
shared-dependents[i-1,j-1] if target[i] != source[j],
shared-dependents[i,j-1])

Table 3: The algorithm for computing shared de-
pendents

INF #5 1 1 2 3
ADVP #4 1 1 2 2
PP-in #3 1 1 2 2
NP #2 1 1 1 1
NP #1 1 1 1 1

#0 #1 #2 #3 #4
NP S-that PP-in INF

Table 4: An example of computing the number of
shared dependents

posed from Penn Treebank. We based our cal-
culation on a modified version of Minimum Edit
Distance Algorithm. Our algorithm works by cre-
ating a shared-dependents matrix with one col-
umn for each constituent in the target sequence
(SCCs proposed from Penn Treebank) and one
row for each constituent in the source sequence
(SCCs proposed from the parser’s output). Each
cell shared-dependent[i,j] contains the number of
constituents shared between the firsti constituents
of the target sequence and the firstj constituents of
the source sequence. Each cell can then be com-
puted as a simple function of the three possible
paths through the matrix that arrive there. The al-
gorithm is illustrated in Table 3.

Table 4 shows an example of how the algo-
rithm works with NP-S-that-PP-in-INF as the tar-
get sequence and NP-NP-PP-in-ADVP-INF as the
source sequence. The algorithm returns 3 as the
number of dependents shared by two SCCs.

We compared the performance of Bikel’s parser
in retrieving dependents from written and spo-
ken language over all three models using De-
pendency Recall (DR) and Dependency Precision
(DP). These metrics are defined as follows:

DR =
number of correct dependents from parser’s output

number of dependents from treebank parse
(4)

DP =
number of correct dependents from parser’s output

number of dependents from parser’s output
(5)

Dependency F-measure=
2 ∗DR ∗DP

DR + DP
(6)
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Figure 4: F-measure for extracting dependents

The results of Bikel’s parser in retrieving depen-
dents are summarized in Figure 4. Overall, the
parser achieves a better performance for WSJ over
all three models, just the opposite of what have
been observed for SCC extraction. Interestingly,
removing punctuation from both the training and
test data actually slightly improves the F-measure.
This holds true for both WSJ and Switchboard.
This Dependency F-measure differs in detail from
similar measures in Xue and Palmer (2004). For
present purposes all that matters is the relative
value for WSJ and Switchboard.

4 Extraction of SCFs from Spoken
Language

Our experiments indicate that the SCCs generated
by the parser from spoken language are as accurate
as those generated from written texts. Hence, we
would expect that the current technology for ex-
tracting SCFs, initially designed for written texts,
should work equally well for spoken language.
We previously built a system for automatically ex-
tracting SCFs from spoken BNC, and reported ac-
curacy comparable to previous systems that work
with only written texts (Li and Brew, 2005). How-
ever, Korhonen (2002) has shown that a direct
comparison of different systems is very difficult to
interpret because of the variations in the number
of targeted SCFs, test verbs, gold standards and in
the size of the test data. For this reason, we apply
our SCF acquisition system separately to a written
and spoken corpus of similar size from BNC and
compare the accuracy of acquired SCF sets.

4.1 Overview

As noted above, previous studies on automatic ex-
traction of SCFs from corpora usually proceed in

two steps and we adopt this approach.

1. Hypothesis Generation: Identify all SCCs
from the corpus data.

2. Hypothesis Selection: Determine which SCC
is a valid SCF for a particular verb.

4.2 SCF Extraction System

We briefly outline our SCF extraction system
for automatically extracting SCFs from corpora,
which was based on the design proposed in
Briscoe and Carroll (1997).

1. A Statistical Parser: Bikel’s parser is used
to parse input sentences.

2. An SCF Extractor: An extractor is use to
extract SCCs from the parser’s output.

3. An English Lemmatizer: MORPHA (Min-
nen et al., 2000) is used to lemmatize each
verb.

4. An SCF Evaluator: An evaluator is used
to filter out false SCCs based on their like-
lihood.

An SCC generated by the parser and extractor
may be a correct SCC, or it may contain an ad-
junct, or it may simply be wrong due to tagging or
parsing errors. We therefore need an SCF evalua-
tor capable of filtering out false cues. Our evalu-
ator has two parts: the Binomial Hypothesis Test
(Brent, 1993) and a back-off algorithm (Sarkar and
Zeman, 2000).

1. The Binomial Hypothesis Test (BHT): Let
p be the probability that anscfi occurs with
verbj that is not supposed to takescfi. If a
verb occursn times andm of those times it
co-occurs withscfi, then thescfi cues are
false cues is estimated by the summation of
the binomial distribution form ≤ k ≤ n:

P (m+
, n, p) =

n
X

k=m

n!

k!(n− k)!
p

k(1− p)(n−k) (7)

If the value ofP (m+, n, p) is less than or
equal to a small threshold value, then the null
hypothesis thatverbj does not takescfi is ex-
tremely unlikely to be true. Hence,scfi is
very likely to be a valid SCF forverbj. The
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SCCs SCFs
NP-PP-before
NP-S-when NP
NP-PP-at-S-before
NP-PP-to-S-when
NP-PP-to-PP-at NP-PP-to
NP-PP-to-S-because-ADVP

Table 5: SCCs and correct SCFs forintroduce

corpus WC SC
number of verb tokens 115,524 109,678
number of verb types 5,234 4,789
verb types seen more than 10 times 1,102 998
number of acquired SCFs 2,688 1,984
average number of SCFs per verb 2.43 1.99

Table 6: Training data for WC and SC

value of m and n can be directly computed
from the extractor’s output, but the value of
p is not easy to obtain. Following Manning
(1993), we empirically determined the value
of p. It was between 0.005 to 0.4 depend-
ing on the likelihood of an SCC being a valid
SCF.

2. Back-off Algorithm: Many SCCs generated
by the parser and extractor tend to contain
some adjuncts. However, for many SCCs,
one of its subsets is likely to be the correct
SCF. Table 5 shows some SCCs generated by
the extractor and the corresponding SCFs.

The Back-off Algorithm always starts with
the longest SCC for each verb. Assume that
this SCC fails the BHT. The evaluator then
eliminates the last constituent from the re-
jected cue, transfers its frequency to its suc-
cessor and submits the successor to the BHT
again. In this way, frequency can accumulate
and more valid frames survive the BHT.

4.3 Results and Discussion

We evaluated our SCF extraction system on writ-
ten and spoken BNC. We chose one million word
written corpus (WC) and a comparable spoken
corpus (SC) from BNC. Table 6 provides relevant
information on the two corpora. We only keep the
verbs that occur at least 10 times in our training
data.

To compare the performance of our system on
WC and SC, we calculated the type precision, type

gold standard COMLEX Manually Constructed
corpus WC SC WC SC
type precision 93.1% 92.9% 93.1% 92.9%
type recall 49.2% 47.7% 56.5% 57.6%
F-measure 64.4% 63.1% 70.3% 71.1%

Table 7: Type precision and recall and F-measure

recall and F-measure. Type precision is the per-
centage of SCF types that our system proposes
which are correct according some gold standard
and type recall is the percentage of correct SCF
types proposed by our system that are listed in the
gold standard. We used the 14 verbs4 selected
by Briscoe and Carroll (1997) and evaluated our
results of these verbs against the SCF entries in
two gold standards: COMLEX (Grishman et al.,
1994) and a manually constructed SCF set from
the training data. It makes sense to use a manually
constructed SCF set while calculating type preci-
sion and recall because some of the SCFs in a syn-
tax dictionary such as COMLEX might not occur
in the training data at all. We constructed separate
SCF sets for the written and spoken BNC.

The results are summarized in Table 7. As
shown in Table 7, the accuracy achieved for WC
and SC are very comparable: Our system achieves
a slightly better result for WC when using COM-
LEX as the gold standard and for SC when using
manually constructed SCF set as gold standard,
suggesting that it is feasible to apply the current
technology for automatically extracting SCFs to
spoken language.

5 Conclusions and Future Work

5.1 Use of Parser’s Output

In this paper, we have shown that it is not nec-
essarily true that statistical parsers always per-
form worse when dealing with spoken language.
The conventional accuracy metrics for parsing
(LR/LP) should not be taken as the only metrics
in determining the feasibility of applying statisti-
cal parsers to spoken language. It is necessary to
consider what information we want to extract out
of parsers’ output and make use of.

1. Extraction of SCFs from Corpora: This task
takes SCCs generated by the parser and ex-
tractor as input. Our experiments show that

4The 14 verbs used in Briscoe and Carroll (1997) areask,
begin, believe, cause, expect, find, give, help, like, move,pro-
duce, provide, seemandsway. We replacedswaywith show
becauseswayoccurs less than 10 times in our training data.
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the SCCs generated for spoken language are
as accurate as those generated for written lan-
guage. We have also shown that it is feasible
to apply the current SCF extraction technol-
ogy to spoken language.

2. Semantic Role Labeling: This task usually
operates on parsers’ output and the number
of dependents of each verb that are correctly
retrieved by the parser clearly affects the ac-
curacy of the task. Our experiments show
that the parser achieves a much lower accu-
racy in retrieving dependents from the spoken
language than written language. This seems
to suggest that a lower accuracy is likely to
be achieved for a semantic role labeling task
performed on spoken language. We are not
aware that this has yet been tried.

5.2 Punctuation and Speech Transcription
Practice

Both our experiments and Roark’s experiments
show that parsing accuracy measured by LR/LP
experiences a sharper decrease for WSJ than
Switchboard after we removed punctuation from
training and test data. In spoken language, com-
mas are largely used to delimit disfluency ele-
ments. As noted in Engel et al. (2002), statis-
tical parsers usually condition the probability of
a constituent on the types of its neighboring con-
stituents. The way that commas are used in speech
transcription seems to have the effect of increasing
the range of neighboring constituents, thus frag-
menting the data and making it less reliable. On
the other hand, in written texts, commas serve as
more reliable cues for parsers to identify phrasal
and clausal boundaries.

In addition, our experiment demonstrates that
punctuation does not help much with extraction of
SCCs from spoken language. Removing punctu-
ation from both the training and test data results
in rougly a 0.3% decrease in SR/SP. Furthermore,
removing punctuation from both training and test
data actually slightly improves the performance
of Bikel’s parser in retrieving dependents from
spoken language. All these results seem to sug-
gest that adding punctuation in speech transcrip-
tion is of little help to statistical parsers includ-
ing at least three state-of-the-art statistical parsers
(Collins, 1999; Charniak, 2000; Bikel, 2004). As a
result, there may be other good reasons why some-
one who wants to build a Switchboard-like corpus

should choose to provide punctuation, but there is
no need to do so simply in order to help parsers.

However, segmenting utterances into individual
units is necessary because statistical parsers re-
quire sentence boundaries to be clearly delimited.
Current statistical parsers are unable to handle an
input string consisting of two sentences. For ex-
ample, when presented with an input string as in
(1) and (2), if the two sentences are separated by a
period (1), Bikel’s parser wrongly treats the sec-
ond sentence as a sentential complement of the
main verblike in the first sentence. As a result, the
extractor generates an SCC NP-S forlike, which is
incorrect. The parser returns the same parse after
we removed the period (2) and let the parser parse
it again.

(1) I like the long hair. It was back in high
school.

(2) I like the long hair It was back in high school.

Hence, while adding punctuation in transcribing
a Switchboard-like corpus is not of much help to
statistical parsers, segmenting utterances into in-
dividual units is crucial for statistical parsers. In
future work, we plan to develop a system capa-
ble of automatically segmenting speech utterances
into individual units.
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