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Abstract
This paper proposes an efficient method NP -~ —~ VP
of sentence retrieval based on syntactic — ~N
structure. Collins proposed Tree Kernel VP\ PP\
to calculate structural similarity. However, / NP NP
structual retrieval based on Tree Kernel -l /. .. N [ .. AN
is not practicable because the size of the ']\'\I/D'F—r';' ..... ﬁ’..--.D.'F—.r ...... ']\'
index table by Tree Kernel becomes im- He  beats a dog with a stick

practical. We propose more efficient al-
gorithms approximating Tree Kernel: Tree
Overlapping and Subpath Set. These algo- S
rithms are more efficient than Tree Kernel
because indexing is possible with practical
computation resources. The results of the
experiments comparing these three algo-
rithms showed that structural retrieval with
Tree Overlapping and Subpath Set were
faster than that with Tree Kernel by 100
times and 1,000 times respectively.

He knows the girl  with a ribbon

1 Introduction

Retrieving similar sentences has attracted mUCFigure 1: Sentences similar in appearance but dif-
attention in recent years, and several methodfer in syntactic structure

have been already proposed. They are useful for

many applications such as information retrieval

and machine translation. Most of the methods ) ) ]

are based on frequencies of surface information Collinseétal. (Collins, 2001a; Collins, 2001b)
such as words and parts of speech. These methoR§°Posed Tree Kernel, a method to calculate a sim-
might work well concerning similarity of topics or ilarity between syntactic structures. Tree Kernel

contents of sentences. Although the surface inford€fines the similarity between two syntactic struc-

mation of two sentences is similar, their syntactict”res as the number of shared subtrees. Retrieving

structures can be completely different (Figure 1)Similar sentences in a huge corpus requires cal-

If a translation system regards these sentences §4/2ting the similarity between a given query and
similar, the translation would fail. This is because®aCch of sentences in the corpus. Building an index

conventional retrieval techniques exploit only sim-taPle in advance could improve retrieval efficiency,
ilarity of surface information such as words angPutindexing with Tree Kernel is impractical due to

parts-of-speech, but not more abstract informatio€ Size of its index table.
such as syntactic structures. In this paper, we propose two efficient algo-
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rithms to calculate similarity of syntactic struc- e Else if the productions at; andn, are the
tures: Tree Overlapping and Subpath Set. These same andi; andns are not pre-terminals,
algorithms are more efficient than Tree Kernel be-

cause it is possible to make an index table in rea- ne(n1) _ .
sonable size. The experiments comparing thes& (71, 72) = H (14 Clch(m, i), ch(ng, i)))
three algorithms showed that Tree Overlapping is i=1 @

100 times faster and Subpath Set is 1,000 timeﬁ/herenc(n) is the number of children of node
faster than Tree Kernel when being used for strucanq ci(n, i) is the'th child node ofn. Equa-

tural retrieval. _ _ tion (2) recursively calculate§ on its child node,
After briefly reviewing Tree Kernel in section 2, 5ng calculating”'s in postorder avoids recalcula-
in what follows, we describe two algorithms in tion. Thus, the time complexity ok ¢ (T}, T3) is

section 3 and 4. Section 5 describes experimen{§ ,,y,), wherem andn are the numbers of nodes
to compare these three algorithms and discussig@ 7, andT, respectively.

on the results. Finally, we conclude the paper and
look at the future direction of our research in sec2.3 Algorithm to retrieve sentences

tion 6. Neither Collins nor Takahashi discussed retrieval

algorithms using Tree Kernel. We use the follow-

2 Tree Kemel ing simple algorithm. First we calculate the simi-

2.1 Definition of similarity larity Kc(T1,T5>) between a query tree and every
; . . tree in the cor and rank them in descending or-
Tree Kernel is proposed by Collie$ al. (Collins, der cI)fKC pus ' Ing

2001a; Collins, 2001b) as a method to calculate

N Tree Kernel exploits all subtrees shared by trees.
similarity between tree structures. Tree Kernel de- P y

: T Therefore, it requires considerable amount of time
fines similarity between two trees as the number

. ) in retrieval because similarity calculation must be
of shared subtrees. Subtr8eof treeT is defined Y

- performed for every pair of trees. To improve re-
as any tree subsumed By and consisting of more . . . .
. . trieval time, an index table can be used in general.
than one node, and all child nodes are included i

any owever, indexing by all subtrees is difficult be-

Tree Kemel is not alw itable b thcause a tree often includes millions of subtrees.
ree Kernel s not aways sutable because e, example, one sentence in Titech Corpus (Noro
desired properties of similarity are different de-

di licati Takahas al et al., 2005) with 22 words and 87 nodes includes
pending on applications. ‘akahasi al. pro- 8,213,574,246 subtrees. The number of subtrees
posed three types of similarity based on Tree Ker

. =~ inat ith’N nodes is bounded above by .
nel (Takahashi, 2002). We use one of the S|m|Iar1nal reewl nodes is bounded above by

ity measures (equation (1)) proposed by Takahashj  Tree Overlapping
etal.
3.1 Definition of similarity

Ko(,Tz) = e e N, C(ni,n2) (1) when putting an arbitrary _nod;el of tree T} on
noden, of treeTs, there might be the same pro-
whereC(n1, ng) is the number of shared subtreesduction rule overlapping iff, and7,. We define

by two trees rooted at nodes andns. Cro(ni,n2) as the number of such overlapping
_ S production rules when; overlapsns (Figure 2).
2.2 Algorithm to calculate similarity We will define Cro(n1,ns) more precisely.

Collins et al. (Collins, 2001a; Collins, 2001b) First we defineL(n,n,) of noden; of T} and
proposed an efficient method to calculate Tre&oden of Th. L(nq,ng) represents a set of pairs
Kernel by usingC'(n1, ny) as follows. of nodes which overlap each other when putting
n1 onngy. For example in Figure 2L(b},b%) =
e If the productions at;; andn, are different  {(bl,0?), (di,d?), (el,€?), (91, 9?), (i}, 57)}.
C(ni,n2) =0 L(ni,n9) is defined as follows. Here; andm;

are nodes of tred;, ch(n,1) is thei'th child of
e If the productions atn; and n, are the poden.

same, anch; andns are pre-terminals, then
C(nl,ng) =1 1. (Tl1,n2) c L(Tl1,n2)
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2. If (m1,m2) € L(ny,na),
(ch(ma,1),ch(ma,1)) € L(ny,ng)

3. If (ch(mq,1),ch(ma,i)) € L(n1,na),
(m1,m2) € L(n1,n2)

4. L(n1,n2) includes only pairs generated by
applying 2. and 3. recursively.

Cro(ni,ns) is defined by using.(ni,ns) as

follows.

Cro(ni,n2)

my € NT(T7)

A ms € NT(Tp)

A (m1,mg) € L(ni,ng)
A PR(ml) = PR(mQ)

= | (m1,m2)

il S

—_— —Q — O

2 1 1
a a, 3) a,

Y 5ol
AL /\

i7idd)ed) dy e, aj
i NV

Feg gdi by

I HIRIVAN

jit i dyoed

|

g3

Cro(b'1,b*1) =2 Cro(g',g*) =1 ‘ s

J

Figure 2: Example of similarity calculation

other node pairs which gives largéfo than2,
Sto(T1,T») becomes.

Table 1: Example of the index table

p I[p]
a—be {al}
b—de {bl,b?}
e—g {ef,ei}
g—i  {gi,91}

whereNT'(T) is a set of nonterminal nodes in tree

T, PR(n) is a production rule rooted at node
Tree Overlapping similarityro (71, 1%) is de-
fined as follows by usin@'ro (n1, n2).

Sro(Ty, Ty) =
ro(Th, T) mENT(TISEZQGNT(Tg)

a—gb {af}
g—3 {4}
3.2 Algorithm

Let us take an example in Figure 3 to explain the
algorithm. Suppose thdl, is a query tree and the
corpus has only two tree$; and7s.

The method to find the most similar tree to a

This formula corresponds to equation (1) of Treegiven query tree is basically the same as Tree Ker-

Kernel.

As an example, we calculatéro (71, 7%) in
Figure 2 (1). Putting} on b? gives Figure 2 (2)
in which two production rules — d e ande — ¢
overlap respectively. Thugjro(bi, b?) becomes
2. While overlapping;i andg? gives Figure 2 (3)
in which only one production rulg — i overlaps.
Thus,Cro(gi, g?) becomed. Since there are no

nel’s (section 2.2). However, unlike Tree Kernel,
Tree Overlapping-based retrieval can be acceler-
ated by indexing the corpus in advance. Thus,
given a tree corpus, we build an index taBlg]
which maps a production rujeto its occurrences.
Occurrences of production rules are represented
by their left-hand side symbols, and are distin-
guished with respect to trees including the rule and

401



bl cf bi ¢l gl bj b} ed] gl b e

0 0 /I\I ‘7 2 2 0 l§0 ‘2§ 0 230
d, e, d, e, iy dy oe; ,dc,‘,!,e,elf' 1] zic!(f,”e’eli:l
|I ‘2 |l {2

g1 g g1 g

l| ‘.2 ll ‘.2

1 Ji 1 Ji

Score: 2 pt. Score: 1 pt.

Figure 3: Example of Tree Overlapping-based retrieval

the position in the treel[p| is defined as follows. end
return (n’,m’)
TeF end
Ipl=<m| Ame NT(T) (5)
A p= PR(m) where parent(n) is the parent node of, and

order(n) is the order of node among its siblings.
where F is the corpus (hergTy,T3}) and the Taple 2 shows example values ff(n, m) gen-
meaning of other symbols is the same as the defirated by overlappin@j, andT; in Figure 3. Note
nition of Cro (equation (3)). that top maps every pair of corresponding nodes
Table 1 shows an example of the index tablan 3 certain overlapping situation to a pair of the
generated fron¥} and7; in Figure 3 (1). In Ta-  ypper-most nodes of that situation. This enables

ble 1, a superscript of a nonterminal symbol iden-s to use the value @bp as an identifier of a situ-
tifies a tree, and a subscript identifies a position inytion of overlap.

the tree.
By using the index table, we calculatgn, m]

with the following algorithm. Table 2: Examples dfop(n, m)

forall (n,m)do C[n,m]:=0end (n,m) _top(n,m)
foreachn in NT'(7}) do (af,a})  (af,aq)
foreachm in I[PR(n)] do (9,61 (af,ad)
(n',m’) := top(n,m) (},cl)  (af,a})
Cln',m/] :==C[n/,m'] +1
end
end Now Cltop(n, m)] = Cro(n, m), therefore the
tree similarity between a query trdg and each
wheretop(n, m) returns the upper-most pair of treeT in the corpusS o (Ty, T)can be calculated
overlapped nodes when nodeand m overlap. by:
The value oftop uniquely identifies a situation of
overlapping two trees. Functigap(n,m)is cal-  Spo(Ty,T) = max C[top(n, m)]
culated by the following algorithm. neNT(To), meNT(T) ©)

function top(n, m);

begin 3.3 Comparison with Tree Kernel

(n',m’) :== (n,m)

while order(n') = order(m’) do
n' := parent(n’)
m’ := parent(m’)

The value ofS7o (71, Tz) roughly corresponds to
the number of production rules included in the
largest sub-tree shared iy andT,. Therefore,

this value represents the size of the subtree shared
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by both trees, like Tree Kernel& ¢, though the foreachT"in I[p] do

definition of the subtree size is different. ST :=S[T]+1
One difference is that Tree Overlapping consid- end

ers shared subtrees even though they are splitbya end

nonshared node as shown in Figure 4. In Figure 4 . .

T, andT, share two subtrees rootedbadndc, but 4.3 Comparison with Tree Kernel

their parent nodes are not identical. While TreeAs well as Tree Overlapping, Subpath Set retrieval

Kernel does not consider the superposition puttingan be accelerated by indexing the corpus. The

nodea onh, Tree Overlapping considers putting Number of indexes is bounded above by« D?
onh and assigns countto th|s Superposition_ wherelL is the maximum number of leaves of trees

(the number of words in a sentence) abds the

Mn a @7 h ® ah maximum depth of syntactic trees. Moreover, con-

c . bAc bb/\cc sidering a subpath as an index term, we can use
VANEVAN VaNEVAN Y VN existing retrieval tools.

d e f g d e f g idd eel ff ggi Subpath Set uses less structural information

than Tree Kernel and Tree Overlapping. It does
not distinguish the order and number of child

nodes. Therefore, the retrieval result tends to be
noisy. However, Subpath Set is faster than Tree
Overlapping, because the algorithm is simpler.

Sro(Th,12) =2

Figure 4: Example of counting two separated
shared subtrees as one

Another, more important, difference isthat Trees  Experiments

Overlapping retrieval can be accelerated by index- . _ _ _

is bounded above by the number of productiorfonducted to compare the performance of struc-

ping and Subpath Set.

4 Subpath Set
5.1 Data

We conducted two experiments using different an-
Subpath Set similarity between two trees is denotated corpora. Titech corpus (Noro et al., 2005)
fined as the number of subpaths shared by theonsists of about 20,000 sentences of Japanese
trees. Given a tree, its subpaths is defined as mewspaper articles (Mainiti Shimbun). Each sen-
set of every path from the root node to leaves anéence has been syntactically annotated by hand.
their partial paths. Due to the limitation of computational resources,
Figure 5 (2) shows all subpathsih and7z in  we used randomly selected 2,483 sentences as a
Figure 5(1). Here we denotes a path as a sequengata collection.
of node names such as (a, b, d). Therefore, Sub- lwanami dictionary (Nishio et al., 1994) is a
path Set similarity o/} and7> becomes 15. Japanese dictionary. We extracted 57,982 sen-
4.2 Algorithm tences from glosses in the dictionary. Ee_lch sen-
tences was analyzed with a morphological an-
Suppos€lp is a query tree]'S is a set of trees in  alyzer, ChaSen (Asahara et al., 1996) and the
the corpus and(T') is a set of subpaths Gf. We  MSLR parser (Shirai et al., 2000) to obtain syntac-
can build an index tablé[p] for each production tic structure candidates. The most probable struc-
rule p as follows. ture with respect to PGLR model (Inui et al., 1996)
was selected from the output of the parser. Since
they were not investigated manually, some sen-

Using the index table, we can calculate the numlences might have been assigned incorrect struc-
ber of shared subpaths By andT', S[T], by the ~tures.

4.1 Definition of similarity

Ipl = {TIT € TS Ape P(T)}  (7)

following algorithm: 52 Method
forall T S[T] :=0; We conducted two experiments Experiment | and
foreachp in P(T},) do Experiment Il with different corpora. The queries
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(1) T1 a T2 a (2) Subpeths of T

/N - = N

b ¢ g b ©  ( @0.0.6 00 ),
d/\ e ! d/\e (@), @b), (b, (be), (69, @), | (@9 (@),
é L (g | (@bd.@@be bed | (agi) Egi)
| | (begd). | (abeg) (begi),
! J \(ab.eg,i) _ y (abegi) )
ST T) =15 Subpaths of T2

Figure 5: Example of subpaths

were extracted from these corpora. The algorithms
described in the preceding sections were imple- _ ' _
mented with Ruby 1.8.2. Table 3 outlines the ex- _Algorithm Experiment| Experiment ||

Table 4: Average retrieval time per query [sec]

periments. TK 529.42 3796.1
TO 6.29 38.3
SS 0.47 51

Table 3: Summary of experiments

Experiment I I )
Target corpus _ Titech Corpus _ Iwanami dict. 100 times faster than that of Tree Kernel, and the

Corpus size 2483 sent. 57 982 sent. retrieval speed of Subpath Set (SS) is about 1,000

No. of queries 100 1,000 times faster than that of Tree Kernel. This re-

CPU Intel Xeon PowerPC G5 sults show we have successfully accelerated the
(2.4GHz) (2.3GHz) retrieval speed.

Memory 2GB 2GB The retrieval time of Tree Overlapping, 6.29

and 38.3 sec./per query, seems be a bit long. How-
ever, we can shorten this time if we tune the im-

5.3 Results and discussion plementation by using a compiler-type language.
. Note that the current implementation uses Ruby,
Since we select a query from the target corpus, _.
. . . . an interpreter-type language.
the query is always ranked in the first place in the i i
retrieval result. In what follows, we exclude the Comparing Tree Overlapping and Subpath Set
with respect to Tree Kernel (see rows “TK/TO”

query tree as an answer from the result. . .
We evaluated the algorithms based on the fol@"d “TK/SS"), the top-ranked trees by Tree Kernel

lowing two factors: average retrieval time (CPU '€ ranked in higher places by Tree Overlapping

time) (Table 4) and the rank of the tree which wasih@n by Subpath Set. This means Tree Overlap-
top-ranked in other algorithm (Table 5). For ex-Ping is better than Subpath Set in approximating
ample, in Experiment | of Table 5, the column ''€€ Kemel.
“>5th” of the row “TO/TK” means that there were  Although the corpus of Experiment Il is 20
73 % of the cases in which the top-ranked tree byimes larger than that of Experiment |, the figures
Tree Kernel (TK) was ranked 5th or above by TreeOf Experiment Ilis better than that of Experiment I
Overlapping (TO). in Table 5. This could be explained as follows.
We consider Tree Kernel (TK) as the baselineln Experiment II, we used sentences from glosses
method because it is a well-known existing simi-in the dictionary, which tend to be formulaic and
larity measure and exploits more information thanshort. Therefore we could find similar sentences
others. Table 4 shows that in both corpora, theeasier than in Experiment I.
retrieval speed of Tree Overlapping (TO) is about To summarize the results, when being used in
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Table 5: The rank of the top-ranked tree by otherStrUCture with Fhe current one. For SUCh. purpose,
: Tree Overlapping and Subpath Set algorithms con-
algorithm [%]

tribute to speed up the retrieval process, thus make
the annotation process more efficient.

However, “similarity” of sentences is affected
TO/TK 340 73.0 820 by semantic aspects as well as structural aspects.
SS/TK 16.0 350 450 The output of the algorithms do not always con-
TK/TO 29.0 41.0 510 form with human’s intuition. For example, the
SS/TO 27.0 49.0 580 two sentences in Figure 6 have very similar struc-
TK/SS 17.0 29.0 370 tures including particles, but they are hardly con-

Experiment |
A/B 0 1std0 >5th > 10th

TO/SS  29.0 58.0 69.0 sidered similar from human’s viewpoint. With this
respect, it is hardly to say which algorithm is su-
Experiment || perior to others.

A/B 0O 1std >5th > 10th As a future work, we need to develop a method
TO/TK 74.6 88.0 92.0 to integrate both content-based and structure-
SS/TK 65.3 78.8 84.1 based similarity measures. To this end, we have
TKITO 71.1 81.0 84.6 to evaluate the algorithms in real application envi-
SS/TO 73.4 86.0 89.8 ronments (e.g. information retrieval and machine
TK/SS 65.5 75.9 79.7 translation) because desired properties of similar-
TO/SS 76.1 87.7 92.0 ity are different depending on applications.
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Query s

—

PP VP
/ Ve
NP PP
\ <\
NP
N N P N P \%
| | | | |

P ADJ

| | |
ik 12 A Bttt o HEON EEUC
(classroom)  (to) (young) (ateaching material company) (of) (man) (SBJ) (came)

" A young man of a teaching material company came to the classroom”

Top- ranked
S

/\

PP VP
/ Ve
NP PP
\ <\
NP
N N P N P \%
| | | | |

P ADJ

| | |
R i AMU- e o MR o EERLU:
(head) (to)  (exploded) (bombshell) (of)  (piece) (SBJ) (hit)

" A piece of the exploded bombshell hit his head"

Figure 6: Example of a retrieved similar sentence
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