Graph Branch Algorithm: An Optimum Tree Search M ethod for Scored
Dependency Graph with Arc Co-occurrence Constraints

Hideki Hirakawa
Toshiba R&D Center
1 Komukai Toshiba-cho, Saiwai-ku,
Kawasaki 210, JAPAN
hi deki . hi rakawa@ oshi ba. co. | p

Abstract optimum parameters for scoring dependency arcs
obtained by the discriminative learning method.
Various kinds of scored dependency There are various kinds of dependency analy-

graphs are proposed as packed shared data sis methods based on the scored DGs. This pa-
structures in combination with optimum per classifies these methods based on the types
dependency tree search algorithms. This of the DGs and the basic well-formed constraints
paper classifies the scored dependency and explains the features of the DF adopted in
graphs and discusses the specific features PDG(Hirakawa, 2006). This paper proposes the
of the “Dependency Forest” (DF) which is graph branch algorithm which searches the opti-
the packed shared data structure adopted mum dependency tree from a DF based on the
in the “Preference Dependency Grammar”  branch and bound (B&B) method(lbaraki, 1978)
(PDG), and proposes the “Graph Branch  and reports the experiment showing the computa-
Algorithm” for computing the optimum tional amount and behavior of the graph branch
dependency tree from a DF. This paper algorithm. As shown below, the combination of
also reports the experiment showing the the DF and the graph branch algorithm enables the
computational amount and behavior of the  treatment of non-projective dependency analysis

graph branch algorithm. and optimum solution search satisfying the single
valence occupation constraint, which are out of the
1 Introduction scope of most of the DP(dynamic programming)-

_ based parsing methods.
The dependency graph (DG) is a packed shared

data structure which consists of the nodes corre3 Optimum Tree Search in a Scored DG
sponding to the words in a sentence and the arcs

showing dependency relations between the noded:1 Basic Framework

The scored DG has preference scores attached Figure 1 shows the basic framework of the opti-
the arcs and is widely used as a basis of the optimum dependency tree search in a scored DG. In
mum tree search method. For example, the scoregeneral, nodes in a DG correspond to words in
DG is used in Japanese Kakari-uke anafysisthe sentence and the arcs show some kind of de-
to represent all possible kakari-uke(dependencypendency relations between nodes. Each arc has
trees(Ozeki, 1994),(Hirakawa, 2001). (McDon-
ald et al., 2005) proposed a dependency analys
method using a scored DG and some maximur e e e Search o
spanning tree search algorithms. In this methoc constraint A'g°"‘h"‘y‘ S

scores on arcs are computed from a set of featur 2 ﬂ Si s
obtained from the dependency trees based on tl y
Set of Scored Well- Well-formed Dependency

!Kakari-uke relation, widely adopted in Japanese sen tomed Dependency Scored Dependency | Tree with the highest score

Well-formed Optimum Tree

tence analysis, is projective dependency relation withra co Trees Graph (scores;+sytsytsts;)
straint such that the dependent word is located at the &aftth . . .
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a preference score representing plausibility of theC3) Projectivity constraint(PJC): No arc crosses
relation. The well-formed dependency tree con-  another are

straint is a set of well-formed constraints which(C4) Single valence occupation constraint(SVOC):
should be satisfied by all dependency trees repre- No two arcs in a tree occupy the same valence
senting sentence interpretations. ADG and awell-  of a predicate

formed dependency tree constraint prescribe a s&t:l) and (C2), collectively referred to as “cover-
of well-formed dependency trees. The score of g,y constraint’, are basic constraints adopted by
dependency tree is the sum total of arc scores. Thg st all dependency parsers. (C3) is adopted
optimqm tree is a dependency tree with the highes[gy the majority of dependency parsers which are
score in the set of dependency trees. called projective dependency parsers. A projective
dependency parser fails to analyze non-projective
sentences. (C4) is a basic constraint for valency
DGs are classified into some classes based on thgit is not adopted by the majority of dependency
types of nodes and arcs. This paper assumes threarsers.
types of nodes, i.e. word-type, WPP-typand Graph search algorithms, such as the Chu-
concept-typé The types of DGs are called aword Liu-Edmonds maximum spanning tree algorithm
DG, a WPP DG and a concept DG, respectively(Chu and Liu, 1965; Edmonds, 1967), algorithms
DGs are also classified into non-labeled and lapased on the dynamic programming (DP) princi-
beled DGs. There are some types of arc labelple (Ozeki, 1994; Eisner, 1996) and the algorithm
such as syntactic label (ex. “subject’,“object”) based on the B&B method (Hirakawa, 2001), are
and semantic label (ex. “agent”,“target”). Var- used for the optimum tree search in scored DGs.
ious types of DGs are used in existing sys-The applicability of these algorithms is closely re-
tems according to these classifications, such agted to the types of DGs and/or well-formedness
non-label word DG(Lee and Choi, 1997; Eisner,constraints. The Chu-Liu-Edmonds algorithm is
1996; McDonald et al., 2005) syntactic-label very fast ()(n2) for sentence length), but it
word DG (Maruyama, 1990), semantic-label wordworks correctly only on word DGs. DP-based al-
DG(Hirakawa, 2001), non-label WPP DG(Ozeki, gorithms can satisfy (C1)-(C3) and run efficiently,
1994; Katoh and Ehara, 1989), syntactic-labebut seems not to satisfy (C4) as shown in 2.4.
WPP DG(Wang and Harper, 2004), semantic-label (C2)-(C4) can be described as a set of co-
concept DG(Harada and Mizuno, 2001). occurrence constraints between two arcs in a DG.
As described in Section 2.6, the DF can represent
2.3 Well-formedness Constraintsand Graph  (c2)-(C4) and more precise constraints because it
Search Algorithms can handle co-occurrence constraints between two

There can be a variety of well-formedness con-arbitrary arcs in a DG. The graph branch algorithm
straints from very basic and language-independerftescribed in Section 3 can find the optimum tree
constraints to specific and Ianguage-dependenﬁtom the DF.

constraints. This paper focuses on the following
four basic and language-independent constraintg? SVOCand bP

which may be embedded in data structure and/ofOzeki and Zhang, 1999) proposed the minimum
the optimum tree search algorithm. cost partitioning method (MCPM) which is a parti-

tioning computation based on the recurrence equa-
tion where the cost of joining two partitions is
the cost of these partitions plus the cost of com-
bining these partitions. MCPM is a generaliza-
tion of (Ozeki, 1994) and (Katoh and Ehara, 1989)
which compute the optimum dependency tree in a
*WPP is a pair of a word and a part of speech (POS). Thescored DG. MCPM is also a generalization of the

2.2 Dependency Graph

(C1) Coverage constraint: Every input word has
a corresponding node in the tree

(C2) Single role constraint(SRC): No two nodes
in a dependency tree occupy the same input
position

word ‘time” has WPPs such as "time/n” and *time/v" probabilistic CKY algorithm and the Viterbi algo-
One WPP (ex. “time/n”) can be categorized intooneor_____

more concepts semantically (ex. “time/n/petibmie” and ®Another condition for projectivity, i.e. “no arc covers top

“time/n/clock time”). node” is equivalent to the crossing arc constraint if sgecia
“This does not mean that these algorithms can not handleoot node , which is a governor of top node, is introduced at

labeled DGs. the top (or end) of a sentence.
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Figure 2: Optimum tree search satisfying SVOC s2[ | [0l ol [olol [o[ [ [=
rithm®. The minimum cost partition of the whole Figure 3: Scored dependency forest

sentence is calculated very efficiently by the DP> 5 semantic Dependency Graph (SDG)
principle. The optimum partitioning obtained by _ _ _
MCPM constitutes a tree covering the whole sen—The SDG is a semantic-label word DG designed

tence satisfying the SRC and PJC. However, it igor Japanese_ sentence analysis. The optimum tree
not assured that the SVOC is satisfied by MCPM.S‘earCh algorithm searches for the optimum tree

Figure 2 shows a DG for the Japanese phras?—:atiSfying the well-formed constraints (C1)-(C4)

“sha-mo Wakaranai Byouki-no Kanja" encom- in a SDG(Hirakawa, 2001). This method is lack-

passing dependency trees corresponding to “a p 9 Lr\],vtergqj of gtznerallty '(;] thalt.'tl ca\l/r\}r;opt Eandle
tient suffering from a disease that the doctor. ackward dependency and mu tiple ecause
it depends on some linguistic features peculiar to

the doctor”, and so on0.S; -0, represent the op- Japanese. Therefore, this method is inherently in-

timum solutions for the phrases specified by thei'applicable to languages like English that requir'e
brackets computed based on MCPM. For eX(,jm]packward dependency and multiple POS analysis.

ple, 05, gives an optimum tree with a score s The DF described below can be seen as the ex-
(consisting ofugent1 andtarget4) for the phrase tension of the SDG. Since the DF has none of the

“Isha-mo Wakaranai Byouki-no”. The optimum language-dependent premises that the SDG has, it

solution for the whole phrase is eith@rs; + 0.5, is applicable to English and other languages.
or 0OS3 + 0S5 due to MCPM. The former has the 26
highest score0(= 15 + 25) but does not satisfy

the SVOC because it hagent1 andagent5 si- The DF is a packed shared data structure en-
multaneously. The optimum solutions satisfyingcompassing all possible dependency trees for a
the SVOC areV0S, + 0S, and0OS, + NOS, sentence adopted in PDG. The DF consists of a
shown at the bottom of Figure 2.NOS; and ~dependency graph (DG) and a constraint matrix
NOS, are not optimum solutions for their word (CM). Figure 3 shows a DF for the example sen-

coverages. This shows that it is not assured thdence “Time flies like an arrow.” The DG consists

MCPM will obtain the optimum solution satisfy- of nodes and directed arcs. A node represents a
ing the SVOC. WPP and an arc shows the dependency relation

On the contrary, it is assured that the graIOHaetween nodes. An arc has its ID and preference
branch algorithm computes the optimum solu-ScOre. CM is a matrix whose rows and columns
tion(s) satisfying the SVOC because it com-are @ set of arcs in DG and prescribes the co-
putes the optimum solution(s) satisfying any co-occurrence constraint between arcs. Only when
occurrence constraints in the constraint matrix. 1CM(i.)) is O, arc; andarc; are co-occurrable in
is an open problem whether an algorithm base@ne dependency tree.
on the DP framework exists which can handle the The DF is generated by using a phrase structure
SVOC and arbitrary arc co-occurrence constraints?arser in PDG. PDG grammar rule is an extended
B — _ CFG rule, which defines the mapping between

Specifically, MTCM corresponds to probabilistic CKY

and the Viterbi algorithm because it computes both the opti-a sequence of constituents _(the body of a CFG
mum tree score and its structure. rule) and a set of arcs (a partial dependency tree).

doesn’'t know”, “a sick patient who does not know

Dependency Forest (DF)
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The generated CM assures that the parse trees | p, : initial problem Pi : Partial problem.
the parse forest and the dependency trees in th| AP: Active partial problem list.
. 0 : Set of incumbent solutions, z : Incumbent value
DF have mutual correspondence(Hirakawa, 2006) cart: /% S1(initial value setum) &/
. start: /* Initial value Sety *,
CM can represent (C2)-(C4) in 2.3 and more pre-| ap = {p}: z=-1: 0 := [}; .

cise constraints. For example, PDG can generat{ U8 = get-uo (o) /* Upper bound of Py +/

a DF encompassing non-projective dependency °®2hst’ (¢ S2(cearch) &/,

i i ini else{ Pi := select_problem(AP): }
trees by |nt.roducmg the' grammar rgles deflnlng /% Compute the feasible solution FS and the lower */
non-projective constructions. This is called the| /* bound LB (= the score of FS) for Pi. */
. . . . (FS,LB) := get_fs(Pi):
controlled non-projectivity in this paper. Treat- /% 1 no feasible solution found, terminate the problem. */

: ] : : if (FS == no_solution) [ goto terminate_problem; }
ment of non—prOJect|V|ty as described in (Kanahe /* 83 (incumbent value update) : If LB is better than z, */

et al.. 1998: Nivre and Nilsson 2005) is an impor- /% update ir[wumbent solution[ ar}1d incumbent value. */
. . if(B>2) [z :=LB: 0 := {FS}:
tant topic out of the scope of this paper. /* S5 (upper bound test) : */

if(UB < z) { goto terminate_problem; }
. . /% Compute ir_wonsifstent arc pair list IAPL. */
3 TheOptimum Tree Search in DF IAPL := get_iapl (Pi) _ o

/* If lower bound (score of feasible solution) is less #*/
) . ) /* than upper bound, execute graph branch operation. */
This section shows the graph branch algorithm| if@B < UB { BACL := IAPL; goto branch: }
/% Lower bound equals to upper bound => optimum solution %/

based on the B&B principle, which searches for| esirqs == g |

. f 0 := [FS} U 0; /% Add this FS as incumbent solution %/
the optimum well-formed tree in a DF by apply- /% S8 (search more optimun solutions) */

ing problem expansions called graph branching. e yistence of an Incesistent ar pair ¥/

/* (b) existence of a rival arc */

i BACL := _with_alternatives (FS);
3.1 Outlineof B&B Method e z!azcs[};u [.ggtoegp:n;?}
The B&B method(lbaraki, 1978) is a principle else [ goto terminate problen: | |

. . branch: /* S$6(branching operation) */
for solvmg ComPUtatlona”y hard prObIemS such /% Generate child partial problems based on BACL */

as NP-complete problems. The basic strategy if - (hiebiatist = yanbran sich
that the original problem is decomposed into eas- terminate_problem: /% S7(termination of Pi) %/

ier partial-problems (branching) and the original | AP := AP - {Pi}: goto search_top:

problem is solved by solving them. Pruning called | exit: /x $9(stop) »/

. i . e if(z ==-1) { Problem P; has no solution}

a bound operation is applied if it turns out that the| ejse { O s a set of the optimum solutions }
optimum solution to a partial-problem is inferior
to the solution obtained from some other partial- Figure 4: Graph branch algorithm
problem (dominance tegt)or if it turns out that

a partial-problem gives no optimum solutions to(1) Partial-problem

the original problem (maximum value test). Usu- Partial-problemP; in the graph branch algo-
ally, the B&B algorithm is constructed to mini- rithm is a problem searching for all the well-
mize the value of the solution. The graph branchformed optimum trees in a DP F; consisting of
algorithm in this paper is constructed to maximizethe dependency grapBG; and constraint matrix

the score of the solution because the best solutio® M;. P, consists of the following elements.

is the maximum tree in the DF. (a) Dependency grapPG;
_ (b) Constraint matri>xC' M;
3.2 Graph Branch Algorithm (c) Feasible solution valuB;

The graph branch algorithm is obtained by defin- (d) Upper bound valué€’ B;

ing the components of the original B&B skeleton (€) Inconsistent arc pair listAPL;

algorithm, i.e. the partial-problem, the feasible so-The constraint matrix is common to all partial-
lution, the lower bound value, the upper boundproblems, so one” M is shared by all partial-
value, the branch operation, and so on(Ibarakiprob|ems,DGi is represented byrem]..]” which
1978). Figure 4 shows the graph branch algorithnshows a set of arcs to be removed from the whole
which has been extended from the original B&B dependency grapPG. For example, fem/[b, d]”
skeleton algorithm to search for all the optimum represents a partial dependency nghj’ e} in
trees in a DF. The following sections explain thethe caseDG = [a,b,c,d,e]. TAPL; is a list of
B&B components of the graph branch algorithm. inconsistent arc pairs. An inconsistent arc pair
T TThe domine is an arc pair which does not satisfy some co-

"The dominance test is not used in the graph branch algo ’
rithm. occurrence constraint.
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(2) Algorithm for Obtaining Feasible Solution
and L ower Bound Value arg O parent probiam
In the graph branch algorithm, a well-formed

dependency tree in the dependency graph of Remove{ 3G Removesie

the partial-problemP is assigned as the feasible @ ¥
solutionF'S of P8. The score of the feasible solu- arg

tion F'S is assigned as the lower bound valus.

The function for computing these valugs_fs is o/ 2
called a feasible solution/lower bound value func- DG;: Dependency graph DG;: Dependency graph
tion. The details are not shown due to space lim- for child problem P for chidproblem £
itations, butget_f s is realized by the backtrack- Figure 5: Graph branching

based depth-first search algorithm with the opti- _ _ _
mization based on the arc scoreg:_fs assures problem is easier than the parent partial-problem

that the obtained solution satisfies the coverindjecause_the size of the DG of the child partial-
constraint and the arc co-occurrence constrainf"oPIem is less than that of its parent.
The incumbent value (the best score so far) is N Figure 4,get_iapl computes the list of incon-

replaced by the. B at S3 in Figure 4 if needed.  Sistentarc pair§ AP L(Inconsistent Arc Pair List)
for the maximum well-covered arc set Bf. Then

the graph branch functiograph_branch selects
one inconsistent arc pajtrc;, arc;) from IAPL

for branch operation. The selection criteria for
(arc;, arcy) affects the efficiency of the algorithm.

) - “~graph_branch selects the inconsistent arc pair
arc set is defined as a well-covered arc set W'”?:ontaining the highest score arciindC'L(Branch
the highest score. In genera], the maximum WeII'Arc Candidates List). graph_branch calculates
covered arc set does not satisfy the SRC and do fe upper bound value for a child partial-problem

not form a tree. I.n the graph branch algorithm, theoy get_ub and sets it to the child partial-problem.
score of the maximum well-covered arc set of a de-

pendency graply is assigned as the upper bound(5) Selection of Partial-problem

valueU B of the partial-problen?. Upper bound select_problem employs the best bound search

functionget_ub calculated’ B by scanning the arc  strategy, i.e. it selects the partial-problem which

lists sorted by the surface position of the depenhas the maximum bound value among the active
dent nodes of the arcs. partial-problems. It is known that the number of

partial-problems decomposed during computation

(4) Branch Operation is minimized by this strat in th that
Figure 5 shows a branch operation called a> minimized by this strategy In he case hat no

graph branch operation. Child partial-problems ofd ominance tests are applied (Ibaraki, 1978).

(3) Algorithm for Obtaining Upper Bound

Given a set of arcsl which is a subset 0DG,
if the set of dependent nodesf arcs inA satisfies
the covering constraint, the arc sétis called the
well-covered arc set. The maximum well-covered

P are constructed as follows: (6) Computing All Optimum Solutions

(a) Search for an inconsistent arc pairc;, arc;) In order to obtain all optimum solutions, partial-
in the maximum well-covered arc set of the  Problems whose upper bound values are equal to
DG of P. the score of the optimum solution(s) are expanded

(b) Create child partial-problem, P; which at S8 in Figure 4. In the case that at least one
have new DGDG; = DG — {m@} and inconsistent arc pair remains in a partial-problem
DG, = DG — {arc;} respectively. (,e. TAPL#{}), graph branch is performed

based on the inconsistent arc pair. Otherwise,
the obtained optimum solutioR'S is checked if
one of the arcs inF'S has an equal rival arc by
arcs_with_alternatives function. The equal ri-
val arc of arcA is an arc whose position and score

8A feasible solution may not be optimum but is a possibleare equal to those of ard. If an equal rival arc
interpretation of a sentence. Therefore, it can be used as f an arc inF'S exists. a new partial-problem is
approximate output when the search process is aborted. .

The dependent node of an arc is the node located at tgenerated py removing the arcns. S8 assures
source of the arc. that no partial-problem has an upper bound value

Since a solution ta” cannot have botlarc; and
arc; simultaneously due to the co-occurrence con
straint, the optimum solution oP is obtained
from either/bothP; or/and P;. The child partial-
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Po search diagram)S3(incumbent value update)

o lazis2018] updates z and O to new values.  Then,
PEO R e A get_iapl(Py) computes the inconsistent arc pair
T~ list [(2,15), (15,23), (23,18),(2,18)] from the
P, 0:”_"/“”'2'16'23'2;],2’\ maximum well-covered arc sét4,2, 15,23, 18]
p— —— and set it tofl APL. S5(maximum value test)
5 i\ Fstizee PR compares the upper bound vallié? and the fea-
oA (192912125, :A:L{n:om:::"e;(;m8>-<2-18>1 sible solution valud.B. In this casel.B < UB
0: (1421623211 = [1424153118) 0. ([14216,2328] | (no change) holds, soBACL is assigned the value @fAPL.
P, l P, The next ste6(branch operation) executes the
p—— o T4232] graph_branch function. graph_branch selects
T vs cenLazeissdl the arc pair with the highest arc score and performs
fgf{“‘:“f‘;"”] ZB:f(L””) the graph branch operation with the selected arc
04[14.24,1531,181} (no change) 01[14:24,1531.18]} (no change) pair. The following is aBAC'L shown with the
Figure 6: Search diagram arc names and arc scores.
greater than or equal to the score of the optimum [(7.¢2[17], pre15[10]), (prel5[10], sub23[10]),
solutions when the computation stopped. (sub23[10], vpp18[9]), (nc2[17], vpp18[9])]

Scores are shown ip]. The arc pair contain-
ing the highest arc score i, 15) and (2, 18)

This section shows an example of the graph brancRontainingnc2[17]. Here, (2, 15) is selected and

4 Example of Optimum Tree Search

algorithm execution using the DF in Fig.3. partial-problems? (rem|[2]) andP, (rem([15]) are
_ generated.F; is removed from4 P and the new
4.1 Exampleof Graph Branch Algorithm two partial-problems are added P resulting in

The search process of the B&B method can bel” = {F1, »}. Then, based on the best bound
shown as a search diagram constructing a partiagearch strategyj2(search) is tried again.
problem tree representing the parent-child relation 1 updatesz and O becauseP; obtained a
between the partial-problems. Figure 6 is a searcfgasible solution better than that @ obtained
diagram for the example DF showing the searc®y Fo. P and P, are terminated because they
process of the graph branch algorithm. have no feasible solutionP; generates a feasi-
In this figure, boxP; is a partial-problem with ble solution butz and O are not updated. This
its dependency graphem, upper bound value is because the obtained feasible solution is infe-
U B, feasible solution and lower bound val@igz  rior to the incumbent solution i®. The optimum
and inconsistent arc pair li$td PL. Suffixi of P,  solution(<{[14, 24, 15, 31, 18]}) is obtained byP; .
indicates the generation order of partial-problemsThe computation fron, to P, is required to as-
Updating of global variable (incumbent value) sure that the feasible solution &% is optimum.
and O (set of incumbent solutions) is shown un- .
der the box. The value of the left-hand side of the® EXPeriment

arrow is updated to that of right-hand side of therpis section describes some experimental results

arrow during the partial-problem processing. De'showing the computational amount of the graph
tails of the behavior of the algorithm in Figure 4 p.oh algorithm.

are described below.
In Sl(initialize), z, O and AP are set to 5.1 Environment and Performance Metric

—1, {} and{Py} respectively. The DG of%y i ap gyisting sentence analysis sys¥rfealled the
that of the example DF. This is represented byoracle system) is used as a generator of the test
rem = [|. get-ub sets the upper bound value corpus, the preference knowledge source and the

I(_63) of Py tp _UB'h In prgctlce, thl'ls Is calcu correct answers. Experiment data of 125,320 sen-

ated by obtaining the maximum well-covered ACtenced! extracted from English technical docu-

set of Py. In S2(search), select_problem selects

Py andget_fs(Iy) is executed. The feasible so- 10A real-world rule-based machine translation system with
. RN a long development history

lution F'S and its scorel. B are calculated to set

_ 1sentences ending with a period and parsable by the ora-
FS = [14,2,16,23,29], LB = 50 (P, in the cle system.
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Problem #/
Solution #

ments is divided into open data (8605 senter s

and closed data (116,715 sentences). The p 5| | cont oeron A
ence score source, i.e. the WPP frequencies | | T Eovi o /\// \/\
the dependency relation frequencies are obtz

from the closed data. The basic PDG gram : N~

(907 extended CFG rules) is used for gener: 2 NN

the DFs for the open data. 1 W

The expanded problem number (EPN), a
cipal computational amount factor of the B¢
method, is adopted as the base metric. The
lowing three metrics are used in this experiment.

! Words
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 7: EPN-T, EPN-F EPN-F and OSN

_ system for 136 sentences in this sentence set is
(a) EPNin total (EPN-T): The number of the ex- 97 294 with respect to human analysis results.
panded problems which are generated in the

X All optimum trees are computed by the graph
entire search process. P P y grap

branch algorithm described in Section 3.2. Fig-

(b) EPN for the first optimum solution (EPN-F): Y'® 7 shows averages of EPN-T, EPN-L, EPN-F

The number of the expanded problems Whergnd OSN with respect to sentence length. Over-
the first optimum solution is obtained. all averages of EPN-T, EPN-L, EPN-F and OSN

for the test sentences are 3.0, 1.67, 1.43 and 1.15.
(c) EPN for the last optimum solution (EPN-L): The result shows that the average number of prob-

The number of the expanded problems wherléms required is relatively small. The gap betwgen
the last optimum solution is obtained. At this Ave:EPN-T and Ave:EPN-L (3.0-1.67=1.33) is

point, all optimum solutions are obtained. ~ Much greater than the gap between Ave:EPN-L
and Ave:OSN(1.67-1.15=0.52). This means that

Optimum solution number (OSN) for a problem, the major part of the computation is performed
i.e. the number of optimum dependency trees iPnly for checking if the obtained feasible solutions
a given DF, gives the lower bound value for all @re optimum or not.
these metrics because one problem generates atAccording to (Hirakawa, 2001), the experiment
most one solution. The minimum value of OSN on the B&B-based algorithm for the SDG shows
is 1 because every DF has at least one dependentlye overall averages of AVE:EPN-T, AVE:EPN-
tree. As the search process proceeds, the algorithf are 2.91, 1.33 and the average CPU time is
finds the first optimum solution, then the last opti-305.8ms (on EWS). These values are close to
mum solution, and finally terminates the procesghose in the experiment based on the graph branch
by confirming no better solution is left. There- algorithm. Two experiments show a tendency for
fore, the three metrics and OSN have the relatiorthe optimum solution to be obtained in the early
OSN< EPN-F< EPN-L < EPN-T. Average val- stage of the search process. The graph branch al-
ues for these are described as Ave:OSN, Ave:EPNgorithm is expected to obtain the comparable per-
F, Ave:EPN-L and Ave:EPN-T. formance with the SDG search algorithm.

(Hirakawa, 2001) introduced the improved up-
per bound function g’(P) into the B&B-based al-
An evaluation experiment for the open data isgorithm for the SDG and found Ave:EPN-T is re-
performed using a prototype PDG system imple-duced from 2.91 to 1.82. The same technique
mented in Prolog. The sentences containing mores introduced to the graph branch algorithm and
than 22 words are neglected due to the limita-has obtained the reduction of the Ave:EPN-T from
tion of Prolog system resources in the parsing pro3.00 to 2.68.
cess. 4334 sentences out of the remaining 6882 The tendency for the optimum solution to be
test sentences are parsable. Unparsable sentenegfiained in the early stage of the search process
(2584 sentences) are simply neglected in this exsuggests that limiting the number of problems to
periment. The arc precision ratfoof the oracle expand is an effective pruning strategy. Figure
" 2Correct arc ratio with respect to arcs in the output depen 8 shows the ratios of the sentences obtaining the
dency trees (Hirakawa, 2005). whole problem expansion, the first optimum solu-

5.2 Experimental Results
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respectively at the EPN 10. The dotted line shows
the AR for EPN-T of the improved algorithm us- T. Ibaraki. 1978. Branch-and-bounding procedure
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) mization problems.Information and Control, 36,1-
EPN-T from 97.1% to0 99.1% at the EPN 10. How- 57 P
ever, the effect of g’'(P) is quite small for EPN-
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6 Concluding Remarks
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rithm for obtaining the optimum solution for a S. Lee and K. S. Choi. 1997. Reestimation and best-
DF used in PDG. The well-formedness depen- first parsing algorithm for probeblistic dependency
deney tree eonstraints are represented py the con- %g?ﬂ";;géfggfﬁ'gg: Sof4tllq<_a5thh Vorksnop on
straint matrix of the DF, which has flexible and

precise description ability so that controlled non-H. Maruyama. 1990. Constraint dependency grammar
projectivity is available in PDG framework. The ag?e'ts weak generative capacitComputer Soft-
graph branch algorithm assures the search for the '

optimum trees with arbitrary arc co-occurrenceR. McDonald, F. Pereira, K. Ribarov, and J. Hajic.
constraints, including the SVOC which has not 290> N?”'prﬁJeCt.'che depleﬁndeerégy par?wlllgl__lysmg
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