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Abstract

This paper presents a detailed study of
the integration of knowledge from both
dependency parses and hierarchical word
ontologies into a maximum-entropy-based
tagging model that simultaneously labels
words with both syntax and semantics.
Our findings show that information from
both these sources can lead to strong im-
provements in overall system accuracy:
dependency knowledge improved perfor-
mance over all classes of word, and knowl-
edge of the position of a word in an on-
tological hierarchy increased accuracy for
words not seen in the training data. The
resulting tagger offers the highest reported
tagging accuracy on this tagset to date.

1 Introduction

Part-of-speech (POS) tagging has been one of the
fundamental areas of research in natural language
processing for many years. Most of the prior re-
search has focussed on the task of labeling text
with tags that reflect the words’ syntactic role in
the sentence. In parallel to this, the task of word
sense disambiguation (WSD), the process of de-
ciding in which semantic sense the word is being
used, has been actively researched. This paper ad-
dresses a combination of these two fields, that is:
labeling running words with tags that comprise, in
addition to their syntactic function, a broad seman-
tic class that signifies the semantics of the word in
the context of the sentence, but does not neces-
sarily provide information that is sufficiently fine-
grained as to disambiguate its sense. This differs
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from what is commonly meant by WSD in that al-
though each word may have many “senses” (by
senses here, we mean the set of semantic labels
the word may take), these senses are not specific
to the word itself but are drawn from a vocabulary
applicable to the subset of all types in the corpus
that may have the same semantics.

In order to perform this task, we draw on re-
search from several related fields, and exploit pub-
licly available linguistic resources, namely the
WordNet database (Fellbaum, 1998). Our aim is
to simultaneously disambiguate the semantics of
the words being tagged while tagging their POS
syntax. We treat the task as fundamentally a POS
tagging task, with a larger, more ambiguous tag
set. However, as we will show later, the ‘n-gram’
feature set traditionally employed to perform POS
tagging, while basically competent, is not up to
this challenge, and needs to be augmented by fea-
tures specifically targeted at semantic disambigua-
tion.

2 Related Work

Our work is a synthesis of POS tagging and WSD,
and as such, research from both these fields is di-
rectly relevant here.

The basic engine used to perform the tagging
in these experiments is a direct descendent of the
maximum entropy (ME) tagger of (Ratnaparkhi,
1996) which in turn is related to the taggers of
(Kupiec, 1992) and (Merialdo, 1994). The ME
approach is well-suited to this kind of labeling be-
cause it allows the use of a wide variety of features
without the necessity to explicitly model the inter-
actions between them.

The literature on WSD is extensive. For a good
overview we direct the reader to (Nancy and Jean,
1998). Typically, the local context around the
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word to be sense-tagged is used to disambiguate
the sense (Yarowsky, 1993), and it is common for
linguistic resources such as WordNet (Li et al.,
1995; Mihalcea and Moldovan, 1998; Ramakrish-
nan and Prithviraj, 2004), or bilingual data (Li and
Li, 2002) to be employed as well as more long-
range context. An ME-system for WSD that op-
erates on similar principles to our system (Suarez,
2002) was based on an array of local features that
included the words/POS tags/lemmas occurring in
a window of +/-3 words of the word being dis-
ambiguated. (Lamjiri et al., 2004) also developed
an ME-based system that used a very simple set
of features: the article before; the POS before
and after; the preposition before and after, and the
syntactic category before and after the word be-
ing labeled. The features used in both of these
approaches resemble those present in the feature
set of a standard n-gram tagger, such as the one
used as the baseline for the experiments in this pa-
per. The semantic tags we use can be seen as a
form of semantic categorization acting in a similar
manner to the semantic class of a word in the sys-
tem of (Lamjiri et al., 2004). The major difference
is that with a left-to-right beam-search tagger, la-
beled context to the right of the word being labeled
is not available for use in the feature set.

Although POS tag information has been utilized
in WSD techniques (e.g. (Suarez, 2002)), there
has been relatively little work addressing the prob-
lem of assigning a part-of-speech tag to a word
together with its semantics, despite the fact that
the tasks involve a similar process of label disam-
biguation for a word in running text.

3 Experimental Data

The primary corpus used for the experiments pre-
sented in this paper is the ATR General English
Treebank. This consists of 518,080 words (ap-
proximately 20 words per sentence, on average) of
text annotated with a detailed semantic and syntac-
tic tagset.

To understand the nature of the task involved
in the experiments presented in this paper, one
needs some familiarity with the ATR General
English Tagset. For detailed presentations,
see (Black et al., 1996b; Black et al., 1996a;
Black and Finch, 2001). An apercu can be
gained, however, from Figure 1, which shows
two sample sentences from the ATR Treebank
(and originally from a Chinese take–out food

flier), tagged with respect to the ATR General
English Tagset. Each verb, noun, adjective and
adverb in the ATR tagset includes a semantic
label, chosen from 42 noun/adjective/adverb
categories and 29 verb/verbal categories, some
overlap existing between these category sets.
Proper nouns, plus certain adjectives and
certain numerical expressions, are further cat-
egorized via an additional 35 “proper–noun”
categories. These semantic categories are in-
tended for any “Standard–American–English”
text, in any domain. Sample categories include:
“physical.attribute” (nouns/adjectives/adverbs),
“alter” (verbs/verbals), “interpersonal.act”
(nouns/adjectives/adverbs/verbs/verbals),
“orgname” (proper nouns), and “zipcode”
(numericals). They were developed by the ATR
grammarian and then proven and refined via
day–in–day–out tagging for six months at ATR by
two human “treebankers”, then via four months of
tagset–testing–only work at Lancaster University
(UK) by five treebankers, with daily interactions
among treebankers, and between the treebankers
and the ATR grammarian. The semantic catego-
rization is, of course, in addition to an extensive
syntactic classification, involving some 165 basic
syntactic tags.

The test corpus has been designed specifically
to cope with the ambiguity of the tagset. It is pos-
sible to correctly assign any one of a number of
‘allowable’ tags to a word in context. For exam-
ple, the tag of the word battle in the phrase “a
legal battle” could be either NN1PROBLEM or
NN1INTER-ACT, indicating that the semantics is
either a problem, or an inter-personal action. The
test corpus consists of 53,367 words sampled from
the same domains as, and in approximately the
same proportions as the training data, and labeled
with a set of up to 6 allowable tags for each word.
During testing, only if the predicted tag fails to
match any of the allowed tags is it considered an
error.

4 Tagging Model

4.1 ME Model
Our tagging framework is based on a maximum
entropy model of the following form:

p(t, c) = γ
K∏

k=0

α
fk(c,t)
k p0 (1)

where:
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(_( Please_RRCONCESSIVE Mention_VVIVERBAL-ACT this_DD1 coupon_NN1DOCUMENT
when_CSWHEN ordering_VVGINTER-ACT

OR_CCOR ONE_MC1WORD FREE_JJMONEY FANTAIL_NN1ANIMAL SHRIMPS_NN1FOOD

Figure 1: Two ATR Treebank Sentences from a Take–Out Food Flier

- t is tag being predicted;

- c is the context of t;

- γ is a normalization coefficient that ensures:
ΣL

t=0γ
∏K

k=0 α
fk(c,t)
k p0 = 1;

- K is the number of features in the model;

- L is the number of tags in our tag set;

- αk is the weight of feature fk;

- fk are feature functions and fkε{0, 1};

- p0 is the default tagging model (in our case,
the uniform distribution, since all of the in-
formation in the model is specified using ME
constraints).

Our baseline model contains the following fea-
ture predecate set:

w0 t−1 pos0 pref1(w0)
w−1 t−2 pos−1 pref2(w0)
w−2 pos−2 pref3(w0)
w+1 pos+1 suff1(w0)
w+2 pos+2 suff2(w0)

suff3(w0)

where:

- wn is the word at offset n relative to the word
whose tag is being predicted;

- tn is the tag at offset n;

- posn is the syntax-only tag at offset n as-
signed by a syntax-only tagger;

- prefn(w0) is the first n characters of w0;

- suffn(w0) is the last n characters of w0;

This feature set contains a typical selection of
n-gram and basic morphological features. When
the tagger is trained in tested on the UPENN tree-
bank (Marcus et al., 1994), its accuracy (excluding
the posn features) is over 96%, close to the state of
the art on this task. (Black et al., 1996b) adopted
a two-stage approach to prediction, first predicting

syntax, then semantics given the syntax, whereas
in (Black et al., 1998) both syntax and semantics
were predicted together in one step. In using syn-
tactic tags as features, we take a softer approach
to the two-stage process. The tagger has access
to accurate syntactic information; however, it is
not necessarily constrained to accept this choice
of syntax. Rather, it is able to decide both syn-
tax and semantics while taking semantic context
into account. In order to find the most probable
sequence of tags, we tag in a left-to-right manner
using a beam-search algorithm.

4.2 Feature selection
For reasons of practicability, it is not always pos-
sible to use the full set of features in a model: of-
ten it is necessary to control the number of fea-
tures to reduce resource requirements during train-
ing. We use mutual information (MI) to select
the most useful feature predicates (for more de-
tails, see (Rosenfeld, 1996)). It can be viewed as
a means of determining how much information a
given predicate provides when used to predict an
outcome.

That is, we use the following formula to gauge
a feature’s usefulness to the model:

I(f ;T ) =
∑

f∈{0,1}

∑
t∈T

p(f, t)log
p(f, t)

p(f)p(t)
(2)

where:

- t ∈ T is a tag in the tagset;

- f ∈ {0, 1} is the value of any kind of predi-
cate feature.

Using mutual information is not without its
shortcomings. It does not take into account any
of the interactions between features. It is possi-
ble for a feature to be pronounced useful by this
procedure, whereas in fact it is merely giving the
same information as another feature but in differ-
ent form. Nonetheless this technique is invaluable
in practice. It is possible to eliminate features
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which provide little or no benefit to the model,
thus speeding up the training. In some cases it
even allows a model to be trained where it would
not otherwise be possible to train one. For the pur-
poses of our experiments, we use the top 50,000
predicates for each model to form the feature set.

5 External Knowledge Sources

5.1 Lexical Dependencies
Features derived from n-grams of words and tags
in the immediate vicinity of the word being tagged
have underpinned the world of POS tagging for
many years (Kupiec, 1992; Merialdo, 1994; Rat-
naparkhi, 1996), and have proven to be useful fea-
tures in WSD (Yarowsky, 1993). Lower-order
n-grams which are closer to word being tagged
offer the greatest predictive power (Black et al.,
1998). However, in the field of WSD, relational
information extracted from grammatical analysis
of the sentence has been employed to good effect,
and in particular, subject-object relationships be-
tween verbs and nouns have been shown be effec-
tive in disambiguating semantics (Nancy and Jean,
1998). We take the broader view that dependency
relationships in general between any classes of
words may help, and use the ME training process
to weed out the irrelevant relationships. The prin-
ciple is exactly the same as when using a word in
the local context as a feature, except that the word
in this case has a grammatical relationship with the
word being tagged, and can be outside the local
neighborhood of the word being tagged. For both
types of dependency, we encoded the model con-
straints fstl(d) as boolean functions of the form:

fstl(d) =

{
1 if d.s = s ∧ d.t = t ∧ d.l = l
0 otherwise

(3)
where:

- d is a lexical dependency, consisting of a
source word (the word being tagged) d.s, a
target word d.t and a label d.l

- s and t (words), and l (link label) are specific
to the feature

We generated two distinct features for each de-
pendency. The source and target were exchanged
to create these features. This was to allow the
models to capture the bidirectional nature of the
dependencies. For example, when tagging a verb,

the model should be aware of the dependent ob-
ject, and conversely when tagging that object, the
model should have a feature imposing a constraint
arising from the identity of the dependent verb.

5.1.1 Dependencies from the CMU Link
Grammar

We parsed our corpus using the parser detailed
in (Grinberg et al., 1995). The dependencies out-
put by this parser are labeled with the type of de-
pendency (connector) involved. For example, sub-
jects (connector type S) and direct objects of verbs
(O) are explicitly marked by the process (a full list
of connectors is provided in the paper). We used
all of the dependencies output by the parser as fea-
tures in the models.

5.1.2 Dependencies from Phrasal Structure
It is possible to extract lexical dependencies

from a phrase-structure parse. The procedure is
explained in detail in (Collins, 1996). In essence,
each non-terminal node in the parse tree is as-
signed a head word, which is the head of one of
its children denoted the ‘head child’. Dependen-
cies are established between this headword and
the heads of each of the children (except for the
head child). In these experiments we used the
MXPOST tagger (Ratnaparkhi, 1996) combined
with Collins’ parser (Collins, 1996) to assign parse
trees to the corpus. The parser had a 98.9% cover-
age of the sentences in our corpora. Again, all of
the dependencies output by the parser were used
as features in the models.

5.2 Hierarchical Word Ontologies

In this section we consider the effect of features
derived from hierarchical sets of words. The pri-
mary advantage is that we are able to construct
these hierarchies using knowledge from outside
the training corpus of the tagger itself, and thereby
glean knowledge about rare words. In these exper-
iments we use the human annotated word taxon-
omy of hypernyms (IS-A relations) in the Word-
Net database, and an automatically acquired on-
tology made by clustering words in a large corpus
of unannotated text.

We have chosen to use hierarchical schemes for
both the automatic and manually acquired ontolo-
gies because this offers the opportunity to com-
bat data-sparseness issues by allowing features de-
rived from all levels of the hierarchy to be used.
The process of training the model is able to de-
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Figure 2: The WordNet taxonomy for both (WordNet) senses of the word apple

cide the levels of granularity that are most useful
for disambiguation. For the purposes of generat-
ing features for the ME tagger we treat both types
of hierarchy in the same fashion. One of these fea-
tures is illustrated in Figure 5.3. Each predicate
is effectively a question which asks whether the
word (or word being used in a particular sense in
the case of the WordNet hierarchy) is a descendent
of the node to which the predicate applies. These
predicates become more and more general as one
moves up the hierarchy. For example in the hierar-
chy shown in Figure 5.2, looking at the nodes on
the right hand branch, the lowest node represents
the class of apple trees whereas the top node rep-
resents the class of all plants.

We expect these hierarchies to be particularly
useful when tagging out of vocabulary words
(OOV’s). The identity of the word being tagged
is by far the most important feature in our baseline
model. When tagging an OOV this information is
not available to the tagger. The automatic cluster-
ing has been trained on 100 times as much data
as our tagger, and therefore will have information
about words that tagger has not seen during train-
ing. To illustrate this point, suppose that we are
tagging the OOV pomegranate. This word is in the
WordNet database, and is in the same synset as the
‘fruit’ sense of the word apple. It is reasonable to
assume that the model will have learned (from the

many examples of all fruit words) that the predi-
cate representing membership of this fruit synset
should, if true, favor the selection of the correct tag
for fruit words: NN1FOOD. The predicate will be
true for the word pomegranate which will thereby
benefit from the model’s knowledge of how to tag
the other words in its class. Even if this is not so
at this level in the hierarchy, it is likely to be so at
some level of granularity. Precisely which levels
of detail are useful will be learned by the model
during training.

5.2.1 Automatic Clustering of Text
We used the automatic agglomerative mutual-

information-based clustering method of (Ushioda,
1996) to form hierarchical clusters from approx-
imately 50 million words of tokenized, unanno-
tated text drawn from similar domains as the tree-
bank used to train the tagger. Figure 5.2 shows
the position of the word apple within the hierar-
chy of clusters. This example highlights both the
strengths and weaknesses of this approach. One
strength is that the process of clustering proceeds
in a purely objective fashion and associations be-
tween words that may not have been considered
by a human annotator are present. Moreover, the
clustering process considers all types that actually
occur in the corpus, and not just those words that
might appear in a dictionary (we will return to this
later). A major problem with this approach is that
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Figure 3: The dendrogram for the automatically acquired ontology, showing the word apple

the clusters tend to contain a lot of noise. Rare
words can easily find themselves members of clus-
ters to which they do not seem to belong, by virtue
of the fact that there are too few examples of the
word to allow the clustering to work well for these
words. This problem can be mitigated somewhat
by simply increasing the size of the text that is
clustered. However the clustering process is com-
putationally expensive. Another problem is that a
word may only be a member of a single cluster;
thus typically the cluster set assigned to a word
will only be appropriate for that word when used
in its most common sense.

Approximately 93% of running words in the test
corpus, and 95% in the training corpus were cov-
ered by the words in the clusters (when restricted
to verbs, nouns, adjectives and adverbs, these fig-
ures were 94.5% and 95.2% respectively). Ap-
proximately 81% of the words in the vocabulary
from the test corpus were covered, and 71% of the
training corpus vocabulary was covered.

5.2.2 WordNet Taxonomy
For this class of features, we used the hypernym

taxonomy of WordNet (Fellbaum, 1998). Fig-
ure 5.2 shows the WordNet hypernym taxonomy
for the two senses of the word apple that are in
the database. The set of predicates query member-
ship of all levels of the taxonomy for all WordNet
senses of the word being tagged. An example of
one such predicate is shown in the figure.

Only 63% of running words in both the train-
ing and the test corpus were covered by the words
in the clusters. Although this figure appears low,
it can be explained by the fact that WordNet only

contains entries for words that have senses in cer-
tain parts of speech. Some very frequent classes of
words, for example determiners, are not in Word-
Net. The coverage of only nouns, verbs, adjectives
and adverbs in running text is 94.5% for both train-
ing and test sets. Moreover, approximately 84%
of the words in the vocabulary from the test cor-
pus were covered, and 79% on the training cor-
pus. Thus, the effective coverage of WordNet on
the important classes of words is similar to that of
the automatic clustering method.

6 Experimental Results

The results of our experiments are shown in Ta-
ble 1. The task of assigning semantic and syntac-
tic tags is considerably more difficult than simply
assigning syntactic tags due to the inherent ambi-
guity of the tagset. To gauge the level of human
performance on this task, experiments were con-
ducted to determine inter-annotator consistency;
in addition, annotator accuracy was measured on
5,000 words of data. Both the agreement and ac-
curacy were found to be approximately 97%, with
all of the inconsistencies and tagging errors aris-
ing from the semantic component of the tags. 97%
accuracy is therefore an approximate upper bound
for the performance one would expect from an au-
tomatic tagger. As a point of reference for a lower
bound, the overall accuracy of a tagger which uses
only a single feature representing the identity of
the word being tagged is approximately 73%.

The overall baseline accuracy was 82.58% with
only 30.58% of OOV’s being tagged correctly.
Of the two lexical dependency-based approaches,
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the features derived from Collins’ parser were the
most effective, improving accuracy by 0.8% over-
all. To put the magnitude of this gain into perspec-
tive, dropping the features for the identity of the
previous word from the baseline model, only de-
graded performance by 0.2%. The features from
the link grammar parser were handicapped due to
the fact that only 31% of the sentences were able
to be parsed. When the model (Model 3 in Ta-
ble 1) was evaluated on only the parsable portion
on the test set, the accuracy obtained was roughly
comparable to that using the dependencies from
Collins’ parses. To control for the differences be-
tween these parseable sentences and the full test
set, Model 4 was tested on the same 31% of sen-
tence that parsed. Its accuracy was within 0.2% of
the accuracy on the whole test set in all cases. Nei-
ther of the lexical dependency-based approaches
had a particularly strong effect on the performance
on OOV’s. This is in line with our intuition, since
these features rely on the identity of the word be-
ing tagged, and the performance gain we see is
due to the improvement in labeling accuracy of the
context around the OOV.

In contrast to this, for the word-ontology-based
feature sets, one would hope to see a marked im-
provement on OOV’s, since these features were
designed specifically to address this issue. We do
see a strong response to these features in the ac-
curacy of the models. The overall accuracy when
using the automatically acquired ontology is only
0.1% higher than the accuracy using dependencies
from Collins’ parser. However the accuracy on
OOV’s jumps 3.5% to 35.08% compared to just
0.7% for Model 4. Performance for both cluster-
ing techniques was quite similar, with the Word-
Net taxonomical features being slightly more use-
ful, especially for OOV’s. One possible explana-
tion for this is that overall, the coverage of both
techniques is similar, but for rarer words, the MI
clustering can be inconsistent due to lack of data
(for an example, see Figure 5.2: the word news-
stand is a member of a cluster of words that appear
to be commodities), whereas the WordNet clus-
tering remains consistent even for rare words. It
seems reasonable to expect, however, that the au-
tomatic method would do better if trained on more
data. Furthermore, all uses of words can be cov-
ered by automatic clustering, whereas for exam-
ple, the common use of the word apple as a com-
pany name is beyond the scope of WordNet.

In Model 7 we combined the best lexical depen-
dency feature set (Model 4) with the best cluster-
ing feature set (Model 6) to investigate the amount
of information overlap existing between the fea-
ture sets. Models 4 and 6 improved the base-
line performance by 0.8% and 1.3% respectively.
In combination, accuracy was increased by 2.3%,
0.2% more than the sum of the component mod-
els’ gains. This is very encouraging and indicates
that these models provide independent informa-
tion, with virtually all of the benefit from both
models manifesting itself in the combined model.

7 Conclusion

We have described a method for simultaneously
labeling the syntax and semantics of words in run-
ning text. We develop this method starting from
a state-of-the-art maximum entropy POS tagger
which itself outperforms previous attempts to tag
this data (Black et al., 1996b). We augment this
tagging model with two distinct types of knowl-
edge: the identity of dependent words in the sen-
tence, and word class membership information of
the word being tagged. We define the features in
such a manner that the useful lexical dependen-
cies are selected by the model, as is the granu-
larity of the word classes used. Our experimental
results show that large gains in performance are
obtained using each of the techniques. The de-
pendent words boosted overall performance, es-
pecially when tagging verbs. The hierarchical
ontology-based approaches also increased over-
all performance, but with particular emphasis on
OOV’s, the intended target for this feature set.
Moreover, when features from both knowledge
sources were applied in combination, the gains
were cumulative, indicating little overlap.

Visual inspection the output of the tagger on
held-out data suggests there are many remaining
errors arising from special cases that might be bet-
ter handled by models separate from the main tag-
ging model. In particular, numerical expressions
and named entities cause OOV errors that the tech-
niques presented in this paper are unable to handle.
In future work we would like to address these is-
sues, and also evaluate our system when used as a
component of a WSD system, and when integrated
within a machine translation system.
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# Model Accuracy (± c.i.) OOV’s Nouns Verbs Adj/Adv
1 Baseline 82.58± 0.32 30.58 68.47 74.32 70.99
2 + Dependencies (link grammar) 82.74± 0.32 30.92 68.18 74.96 73.02
3 As above (only parsed sentences) 83.59± 0.53 30.92 69.16 77.21 73.52
4 + Dependencies (Collins’ parser) 83.37± 0.31 31.24 69.36 75.78 72.62
5 + Automatically acquired ontology 83.71± 0.31 35.08 71.89 75.83 75.34
6 + WordNet ontology 83.90± 0.31 36.18 72.28 76.29 74.47
7 + Model 4 + Model 6 84.90± 0.31 37.02 72.80 78.36 76.16

Table 1: Tagging accuracy (%), ‘+’ being shorthand for “Baseline +”, ‘c.i.’ denotes the confidence
interval of the mean at a 95% significance level, calculated using bootstrap resampling.
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