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Abstract semi-supervised methods employ the bootstrapping

framework, which only need to pre-define some ini-
This paper presents an unsupervised learn-  tial seeds for any particular relation, and then boot-
ing approach to disambiguate variousrela-  strap from the seeds to acquire the relation. How-
tions between name entities by use of vari-  ever, it is often quite difficult to enumerate all class
ous lexical and syntactic features fromthe  labels in the initial seeds and decide an “optimal”
contexts. It works by calculating eigen- number of them.
vectors of an adjacency graph’s Laplacian Compared with supervised and semi-supervised
to recover a submanifold of data from a  methods, Hasegawa et al. (2004)’s unsupervised ap-
high dimensionality space and then per-  proach for relation extraction can overcome the dif-
forming cluster number estimation on the ficulties on requirement of a large amount of labeled
eigenvectors. Experiment results on ACE  data and enumeration of all class labels. Hasegawa
corpora show that this spectral cluster-  etal. (2004)'s method is to use a hierarchical cluster-
ing based approach outperforms the other  ing method to cluster pairs of named entities accord-
clustering methods. ing to the similarity of context words intervening be-
tween the named entities. However, the drawback of
hierarchical clustering is that it required providing
cluster number by users. Furthermore, clustering is

In this paper, we address the task of relation extra@€rformed in original high dimensional space, which
tion, which is to find relationships between name erfay induce non-convex clusters hard to identified.
tities in a given context. Many methods have been This paper presents a novel application of spec-
proposed to deal with this task, including supervisetfal clustering technigue to unsupervised relation ex-
learning algorithms (Miller et al., 2000; Zelenko ettraction problem. It works by calculating eigenvec-
al., 2002; Culotta and Soresen, 2004; Kambhatl9rs of an adjacency graph'’s Laplacian to recover a
2004; Zhou et al., 2005), semi-supervised learrsubmanifold of data from a high dimensional space,
ing algorithms (Brin, 1998; Agichtein and Gravanoand then performing cluster number estimation on
2000; Zhang, 2004), and unsupervised learning ai transformed space defined by the first few eigen-
gorithm (Hasegawa et al., 2004). vectors. This method may help us find non-convex
Among these methods, supervised learning is usglusters. It also does not need to pre-define the num-
ally more preferred when a large amount of laber of the context clusters or pre-specify the simi-
beled training data is available. However, it idarity threshold for the clusters as Hasegawa et al.
time-consuming and labor-intensive to manually ta§2004)’s method.
a large amount of training data. Semi-supervised The rest of this paper is organized as follows. Sec-
learning methods have been put forward to minition 2 formulates unsupervised relation extraction
mize the corpus annotation requirement. Most aind presents how to apply the spectral clustering

1 Introduction
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technique to resolve the task. Then section 3 reporEntity Type: the entity type of both entities, which
experiments and results. Finally we will give acon-  can be PERSON, ORGANIZATION, FACIL-

clusion about our work in section 4. ITY, LOCATION and GPE.
2 Unsupervised Relation Extraction POS features: Part-Of-Speech tags corresponding
Problem to all words in the two entities and three con-

text windows.
Assume that two occurrences of entity pairs with

similar contexts, are tend to hold the same relatiofhunking features: This category of features are
type. Thus unsupervised relation extraction prob-  €xtracted from the chunklink representation,
lem can be formulated as partitioning collections of ~ Which includes:

entity pairs into clusters according to the similarity
of contexts, with each cluster containing only entity
pairs labeled by the same relation _type. And ther_1, in tag means that the word is outside of any
ga_tch cluster, the most represgntatlye wo_rds are iden- chunk. The “I-XP” tag means that this
tified from thg contexts of entity pairs to induce the word is inside an XP chunk. The “B-XP"
label of relation type. Here, we only focus on the
clustering subtask and do not address the relation
type labeling subtask.

In the next subsections we will describe our pro-
posed method for unsupervised relation extraction,
which includes: 1) Collect the context vectors in
which the entity mention pairs co-occur; 2) Cluster
these Context vectors.

e Chunk tag information of the two enti-
ties and three context windows. The “0”

by default means that the word is at the
beginning of an XP chunk.

¢ Grammatical function of the two entities

and three context windows. The last word
in each chunk is its head, and the function
of the head is the function of the whole
chunk. “NP-SBJ” means a NP chunk as
the subject of the sentence. The other
words in a chunk that are not the head have
“NOFUNC" as their function.

¢ |OB-chains of the heads of the two enti-
ties. So-called IOB-chain, noting the syn-
tactic categories of all the constituents on
the path from the root node to this leaf

2.1 Context Vector and Feature Design

Let X = {x;}}_, be the set of context vectors of oc-
currences of all entity mention pairs, whergepre-
sents the context vector of thxéh occurrence, and

is the total number of occurrences of all entity men-

tion pairs. . . : node of tree.
Each occurrence of entity mention pairs can be
denoted as follows: We combine the above lexical and syntactic fea-
tures with their position information in the context
R — (Cpre, €1, Cia; €2, Cpost) (1) to form the context vector. Before that, we filter out

_ _ low frequency features which appeared only once in
wheree; ande; represents the entity mentions, angpe entire set.

Cpre,Cmia,and Cpe are the contexts before, be-
tween and after the entity mention pairs respectivel2.2 Context Clustering

We extracted features fromy, ez, Cpre, Cmid»  Once the context vectors of entity pairs are prepared,

Cpost 10 CONStruct context vectors, which are coMye come to the second stage of our method: cluster
puted from the parse trees derived from Chamiajqese context vectors automatically.

Parser (Charniak, 1999) and the Chunklink sctipt | recent years, spectral clustering technique has
written by Sabine Buchholz from Tilburg University. raceived more and more attention as a powerful ap-
roach to a range of clustering problems. Among
he efforts on spectral clustering techniques (Weiss,
1999; Kannan et al., 2000; Shi et al., 2000; Ng et al.,

! Software available at http://ilk.uvt.nl/ sabine/chunklink/  2001; Zha et al., 2001), we adopt a modified version

Words: Words in the two entities and three contex
windows.
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related to the given graph, and construct data clus-

Table 1: Context Clustering with Spectral-based Clustering[ : .

technique. ers based on such spectral information.
Input: A set of context vectorX = {z1, 2, ..., Tn}, Thus the starting point of context clustering is to
X e prxd construct araffinity matrix Afrom the data, which

Output: Clustered data and number of clusters; . . . .
2 is ann x n matrix encoding the distances between
1. Construct an affinity matrix byl;; = exp(——4) if i #

7,01 i = 5. Here,s; is the similarity betweees; and the various points. Th_e affinity r_natn).( is then nor-
x; calculated by Cosine similarity measure. and the freBhalized to form a matrix. by conjugating with the

distance parameter” is used to scale the weights;  the diagonal matriX>~!/? which has as entries the
2. Normalize the affinity matrixA to create the matrix, = ..

D—1/2AD~1/2, whereD is a diagonal matrix whosé) square roots of the sum of the rows Af This is tq

element is the sum of’s ith row; take into account the different spread of the various
3. Setg=2 clusters (points belonging to more rarified clusters

4. Computeq eigenvectors of. with greatest eigenvalues. |, . .
Arrange them in a matrix’. will have lower sums of the corresponding row of

5. Perform elongated<-means withg + 1 centers ony, A). It is straightforward to prove thdt is positive

6 il?ittki]a"ziﬂgltphe(lqﬁl)-th ftnean in thde ?rigin_;t hen th definite and has eigenvalues smaller or equal,to
. eq -tn cluster contains any data points, then there . . . .
must be at least an extra cluster; get ¢ + 1 and go with equality holding in at least one case.

back to step 4. Otherwise, algorithm stops and outputs Let K be the true number of clusters present in
clustered data and number of clusters. the dataset. X is known beforehand, the firgt
eigenvectors of will be computed and arranged as

columns in a matrix’”. Each row ofY” corresponds

(Sanguinetti et al,, 2005) of the algorithm by Ng e&o a context vector of entity pair, and the above pro-

al. (2001) because it can provide us model order se- . . L
. - cess can be considered as transforming the original
lection capability.

Sj d t k h lation t context vectors in d-dimensional space to new con-
) |gce we odn(; nO\tNh ow manyl rs T |((j)n ¥pt?§ext vectors in theé<-dimensional space. Therefore,
N advance and do not have any fabeled relatiof o s ofy will cluster upon mutually orthogonal

training exar.nples.at ha_nd, the |_orob_lem of TOd_ oints on theK dimensional sphere,rather than on
order selection arises, i.e. estimating the “opti;

the coordinate axes.
mal” number of clusters. Formally, |6t be the
model order, we need to finkl in Equation:k = 2.4 The Elongated K-means algorithm

qrgmmk{c”tenon(k)}' Here, the criterion is de- 5¢ 4,0 step 5 of Table 1 shows, the result of elon-
fined on the result of specFraI clustering. . gatedK-means algorithm is used to detect whether
Table 1 shows the details of the whole algorithmy,e n mper of clusters selectes less than the true

for context clustering, which contains two main,,mnerf, and allows one to iteratively obtain the
stages: 1) Transformation of Clustering Space (St§Q, mber of clusters.

1-4); 2) Clustering in the transformed space uUsing ~gnsider the case when the number of clusters

Elongated K-means algorithm (Step 5-6). is less than the true cluster numb€mresent in the
dataset. In such situation, taking the figst< K
eigenvectors, we will be selectinggadimensional
We represent each context vector of entity pair assubspace in the clustering space. As the rows of the
node in an undirected graph. Each edige (h the K eigenvectors clustered along mutually orthogo-
graph is assigned a weight that reflects the similarityal vectors, their projections in a lower dimensional
between two context vectorsaandj. Hence, the re- space will cluster along radial directions. Therefore,
lation extraction task for entity pairs can be definethe general picture will be af clusters elongated in
as a partition of the graph so that entity pairs thahe radial direction, with possibly some clusters very
are more similar to each other, e.g. labeled by theear the origin (when the subspace is orthogonal to
same relation type, belong to the same cluster. Assame of the discarded eigenvectors).

relaxation of such NP-hard discrete graph partition- Hence, theK-means algorithm is modified as
ing problem, spectral clustering technique computabe elongatedk -means algorithm to downweight
eigenvalues and eigenvectors of a Laplacian matroistances along radial directions and penalize dis-

2.3 Transformation of Clustering Space
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tances along transversal directions. The elongated
K-means algorithm computes the distance of point
x from the center; as follows:

e If the center is not very near the origial ¢; > € (c is a
parameter to be fixed by the user), the distances are cal-
culated asedist(x, ;) = (z — ;)" M(x — ¢;), where

T T
M= 1(I,— Z';C;i )+ AZ;C; , Ais thesharpnesparam-
eter that controls the eiongation (the smaller, the more
elongated the cluster$)

e If the center is very near the origitf,c; < e, the dis-
tances are measured using the Euclidean distance.

In each iteration of procedure in Table 1, elon-
gated K-means is initialized withy centers corre-
sponding to data points in different clusters and one
center in the origin. The algorithm then will drag the
center in the origin towards one of the clusters not
accounted for. Compute another eigenvector (thus
increasing the dimension of the clustering space to
g + 1) and repeat the procedure. Eventually, when
one reach as many eigenvectors as the number of
clusters present in the data, no points will be as-
signed to the center at the origin, leaving the cluster
empty. This is the signal to terminate the algorithm.

2.5 Anexample

Figure 1 visualized the clustering result of three cir-
cle dataset using K-means and Spectral-based clus-
tering. From Figure 1(b), we can see that K-means
can not separate the non-convex clusters in three cir-
cle dataset successfully since itis prone to local min-
imal. For spectral-based clustering, as the algorithm
described, initially, we took the two eigenvectors of
L with largest eigenvalues, which gave us a two-
dimensional clustering space. Then to ensure that
the two centers are initialized in different clusters,
one center is set as the point that is the farthest from
the origin, while the other is set as the point that
simultaneously farthest the first center and the ori-
gin. Figure 1(c) shows the three elongated clustersin
the 2D clustering space and the corresponding clus-
tering result of dataset is visualized in Figure 1(d),
which exploits manifold structure (cluster structure)

Figure 1: An Example:(a) The Three Circle Datasein data.

(b) The clustering result using K-means; (c) Three

elongated clusters in the 2D clustering space using ° In this paper, thsharpnesparameten is set to 0.2
Spectral clustering: two dominant eigenvectors; (d)

The clustering result using Spectral-based clustering

(02=0.05). (\,0 and+ denote examples in different

clusters)

92



n Iel", wher h entry, ; gives the num-
Table 2:Frequency of Major Relation SubTypes in the acedeney tablel’, where each entry; ; gives the nu

training and devtest corpus. per of the instances that belong to both iké es-
Type [ SubType [ Training  Devtest timated cluster ang-th ground truth class. More-
ROLE | General-Staff 250 132 over, to ensure that any two clusters do not share
Management 77 1 :
Citizen-Of 127 4 the same labels of rela'_uon types, we adopt a per-
Founder 11 5 mutation procedure to find an one-to-one mapping
g;/f\(lnetf part 1411613 ig function 2 from the ground truth classes (relation
lllate-Partner . .
Member 260 145 types) TC to the estimated clust_erlng reSLBI_C.
Client 67 13 There are at mosf’C'| clusters which are assigned
Other 15 ’ relation type tags. And if the number of the esti-
PART | Part-Of 490 103 ted clusters is less than th ber of th d
Subsidiary 85 19 mated clusters is less than the number of the groun
Other 2 1 truth clusters, empty clusters should be added so that
AT Located 975 192 |EC| = |T'C| and the one-to-one mapping can be
Based-In 187 64 . L
Residence 154 54 performed, which can be formulated as the function:
SOC | Other-Professiona] 195 25 Q = argmaxq 2 1 -, whereQ(j) is the in-
Other-Personal 60 10 dex of the estimajtéij cllgjs)f]er associated with;ttie
Parent 68 24 J
Spouse 21 4 class.
Associate 49 7 Given the result of one-to-one mapping, we adopt
Other-Relative 23 10 .
Sibling 7 4 Precision Recall and F-measureto evaluate the
GrandParent 6 1 clustering result.
NEAR | Relative-Location 88 32

3.3 Experimental Design

We perform our unsupervised relation extraction on
the devtest set of ACE corpus and evaluate the al-
3.1 Data Setting gorithm on relation subtype level. Firstly, we ob-

) ) ~ serve the influence of various variables, including
Our proposed unsupervised relation extraction i§jsiance Parameter?, Different Features, Context
evaluated on ACE 2003 corpus, which contains 513,40 size. Secondly, to verify the effectiveness

files from sources including broadcast, NewsWir€y o - method, we further compare it with other two
and newspaper. We only deal with intra'semencﬁnsupervised methods.

explicit relations and assumed that all entities have

been detected beforehand in the EDT sub-task 8t3.1 Choice of Distance Parametes>

ACE. To verify our proposed method, we only col- We simply search oves? and pick the value
lect those pairs of entity mentions which have beethat finds the best aligned set of clusters on the
tagged relation types in the given corpus. Then thgansformed space. Here, the scattering criterion
relation type tags were removed to test the unsupafrace(PVT,lPB) is used to compare the cluster qual-
vised relation disambiguation. During the evaluaity for different value of2 3, which measures the ra-
tion procedure, the relation type tags were used @i® of between-cluster to within-cluster scatter. The
ground truth classes. A break-down of the data bliigher thetrace(P;;' Pg), the higher the cluster

3 Experiments and Results

24 relation subtypes is given in Table 2. quality.
' _ In Table 3 and Table 4, with different settings of
3.2 Evaluation method for clustering result feature set and context window size, we find out the

When assessing the agreement between clustering® trace(Py;! Pg) is trace of a matrix which is the sum of
result and manually annotated relation types (grourit diagonal eIgmentsPW is the within-cluster scatter matrix

as: =Y Xi —m;)(X; —m;)t and P,
truth classes), we would encounter the problem that” * " j=1 2oxiex, Ko _’)( ‘ '71 b
: . is the between-cluster scatter matrix d; = » ._, (m; —
there was no relation type tags for each cluster in our , , i=1 _
. m)(m; — m)*, where m is the total mean vector and; is
clustering results.

~ the mean vector foj*" cluster andX; — m;)" is the matrix
To resolve the problem, we construct a continwranspose of the column vecteK; — m;).
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Table 3:Contribution of Different Features

Features | o cluster number trace value [ Precison Recall F-measure
Words 0.021 15 2.369 41.6% 30.2% 34.9%
+Entity Type 0.016 18 3.198 40.3% 42.5% 41.5%
+POS 0.017 18 3.206 37.8% 46.9% 41.8%
+Chunking Infomation| 0.015 19 3.900 43.5% 49.4% 46.3%

Table 4:Different Context Window Size Setting
Context Window Size] o  cluster number trace value [ Precision Recall F-measure

0 0.016 18 3.576 37.6% 48.1% 42.2%
2 0.015 19 3.900 43.5% 49.4% 46.3%
5 0.020 21 2.225 29.3% 34.7% 31.7%

corresponding value ef? and cluster number which
P 9 Table 5: Performance of our proposed method (Spectral-

maximize therace value in searching for a range of paseq clustering) compared with other unsupervised methods:
values?. ((Hasegawa et al., 2004))'s clustering method and K-means
clustering.

3.3.2 Contribution of Different Features | Precision Recall F-measure
. . . Hasegawa’'s Methodl 38.7% 29.8% 33.7%
As the previous section presented, we incorporate, - cojawa's Method2|  37.9%  36.0%  36.9%

various lexical and syntactic features to extract rela-Kmeans 34.3% 40.2% 36.8%
tion. To measure the contribution of different fea-_Our Proposed Method  43.5% 49.4% 46.3%

tures, we report the performance by gradually in-

creasing the feature set, as Table 3 shows. settings of context window size (0, 2, 5) as Table 4

Table 3 S.hOWS that aI_I of the four categories of feaéhows. From this table we can find that with the con-
tures contribute to the improvement of performanc

more or less. Firstly,the addition of entity type fea-‘f:)ext window size setting, 2, the algorithm achieves
ture is ver lljseful y\’/vhich i rovdé—me;lsgsab the best performance of 43.5%/49.4%/46.3% in
y e P DY precision/Recall/F-measuréNith the context win-
6.6%. Secondly, adding POS features can increage .
F-measurescore but do not imorove vervy much Ow size setting, 5, the performance becomes worse
: . b ery "‘because extending the context too much may include
Thirdly, chunking features also show their great USE- e features. but at the same time. the noise also
fulness with increasin@recision/Recall/F-measure increases ’ '
by 5.7%/2.5%/4.5%. '
We combine all these features to do all other evak 5 4 Comparison with other Unsupervised

uations In our experiments. methods

3.3.3 Setting of Context Window Size In (Hasegawa et al., 2004), they preformed un-

We have mentioned in Section 2 that the contex@upervised relation extraction based on hierarchical
vectors of entity pairs are derived from the contextslustering and they only used word features between
before, between and after the entity mention pairgntity mention pairs to construct context vectors. We
Hence, we have to specify the three context windowieported the clustering results using the same clus-
size first. In this paper, we set the mid-context wintering strategy as Hasegawa et al. (2004) proposed.
dow as everything between the two entity mentiondn Table 5, Hasegawa'’s Method1 means the test used
For the pre- and post- context windows, we couldéhe word feature as Hasegawa et al. (2004) while
have different choices. For example, if we specifyiasegawa’s Method2 means the test used the same
the outer context window size as 2, then it means thégature set as our method. In both tests, we specified
the pre-context (post-context)) includes two wordghe cluster number as the number of ground truth
before (after) the first (second) entity. classes.

For comparison of the effect of the outer context We also approached the relation extraction prob-
of entity mention pairs, we conducted three differenem using the standard clustering technique, K-
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means, where we adopted the same feature set deAs regards the clustering technique, the spectral-
fined in our proposed method to cluster the conbased clustering performs better than direct cluster-
text vectors of entity mention pairs and pre-specifiethg, K-means. Since the spectral-based algorithm
the cluster number as the number of ground truttvorks in a transformed space of low dimension-
classes. ality, data can be easily clustered so that the al-

Table 5 reports the performance of our proposegorithm can be implemented with better efficiency
method comparing with the other two unsupervisednd speed. And the performance using spectral-
methods. Table 5 shows our proposed spectral badealsed clustering can be improved due to the reason
method clearly outperforms the other two unsupethat spectral-based clustering overcomes the draw-
vised methods by 12.5% and 9.5%Hrmeasurae- back of K-means (prone to local minima) and may
spectively. Moreover, the incorporation of varioudind non-convex clusters consistent with human in-
lexical and syntactic features into Hasegawa et aluition.
(2004)'s method2 makes it outperform Hasegawa et Generally, from the point of view of unsu-
al. (2004)’s method1 which only uses word featurepervised resolution for relation extraction, our

] ] approach already achieves best performance of

3.4 Discussion 43.5%/49.4%/46.3% iRrecision/Recall/F-measure
In this paper, we have shown that the modified specompared with other clustering methods.
tral clustering technique, with various lexical and
syntactic features derived from the context of entit#  Conclusion and Future work
pairs, performed well on the unsupervised relatio
extraction problem. Our experiments show that b
the choice of the distance parametér we can esti-

th this paper, we approach unsupervised relation ex-
Yraction problem by using spectral-based clustering
technique with diverse lexical and syntactic features

%terived from context. The advantage of our method

clusters. We notice that the estimated cluster nuni15- that it doesn't need any manually labeled relation

erﬁstances, and pre-definition the number of the con-

in most cases. The reason for this phenomenon MAt clusters. Experiment results on the ACE corpus

be_that some relation type_s can no_t be easily dISt'ré_how that our method achieves better performance
guished using the context information only. For ex

. than other unsupervised methods, i.e.Hasegawa et
ample, the relation subtypes “Located”, “Based-lnt P g

) ) ) o : . al. (2004)’s method and Kmeans-based method.
and “Residence” are difficult to disambiguate even . . )
Currently we combine various lexical and syn-

for human experts to differentiate. ctic features to construct context vectors for clus-

The 'results also ShO.W that various ngmal an(it{:ring. In the future we will further explore other
syntactic features contain useful information for the

task. Especially. althouah we did not concern thsemantic information to assist the relation extrac-
' P Y 9 : : fion problem. Moreover, instead of cosine similar-
dependency tree and full parse tree information

alltsy measure to calculate the distance between con-

other supervised methods (Miller et al., 2000; Cu‘Eext vectors, we will try other distributional similar-

lotta and Soresen, 2004, Kambhatla, 2004; Zhou %t
) ; ) y measures to see whether the performance of re-
al., 2005), the incorporation of simple features, suc|y,. . . o
L . . ., lation extraction can be improved. In addition, if we
as words and chunking information, still can provide . . . :
. . . can find an effective unsupervised way to filter out
complement information for capturing the character-

istics of entity pairs. This perhaps dues to the facl%nrelated entity pairs in advapce, it would make our
that two entit i I i h oth .Rroposed method more practical.

y mentions are close to each other i
most of relations defined in ACE. Another observa-
tion from the result is that extending the outer conReferences
text window of entity mention pairs too much may htein E. and Gravano L. 2000Snowball: Ex
_nOt improve the perfo_rmgnce S'n(_:e the process mé tracting R'elations from Iaré'e Plain-Text Colléctions,
incorporate more noise information and affect the |, proc. of thest* ACM International Conference on
clustering result. Digital Libraries (ACMDL’00).
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