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Abstract

A hybrid convolution tree kernel is pro-
posed in this paper to effectively model
syntactic structures for semantic role la-
beling (SRL). The hybrid kernel consists
of two individual convolution kernels: a
Path kernel, which captures predicate-
argument link features, and a Constituent
Structure kernel, which captures the syn-
tactic structure features of arguments.
Evaluation on the datasets of CoNLL-
2005 SRL shared task shows that the
novel hybrid convolution tree kernel out-
performs the previous tree kernels. We
also combine our new hybrid tree ker-
nel based method with the standard rich
flat feature based method. The experi-
mental results show that the combinational
method can get better performance than
each of them individually.

1 Introduction

In the last few years there has been increasing in-
terest in Semantic Role Labeling (SRL). It is cur-
rently a well defined task with a substantial body
of work and comparative evaluation. Given a sen-
tence, the task consists of analyzing the proposi-
tions expressed by some target verbs and some
constituents of the sentence. In particular, for each
target verb (predicate) all the constituents in the
sentence which fill a semantic role (argument) of
the verb have to be recognized.

Figure 1 shows an example of a semantic role
labeling annotation in PropBank (Palmer et al.,
2005). The PropBank defines 6 main arguments,
Arg0 is the Agent, Arg1 is Patient, etc. ArgM-
may indicate adjunct arguments, such as Locative,
Temporal.

Many researchers (Gildea and Jurafsky, 2002;
Pradhan et al., 2005a) use feature-based methods
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Figure 1: Semantic role labeling in a phrase struc-
ture syntactic tree representation

for argument identification and classification in
building SRL systems and participating in eval-
uations, such as Senseval-3 1, CoNLL-2004 and
2005 shared tasks: SRL (Carreras and Màrquez,
2004; Carreras and Màrquez, 2005), where a
flat feature vector is usually used to represent a
predicate-argument structure. However, it’s hard
for this kind of representation method to explicitly
describe syntactic structure information by a vec-
tor of flat features. As an alternative, convolution
tree kernel methods (Collins and Duffy, 2001)
provide an elegant kernel-based solution to im-
plicitly explore tree structure features by directly
computing the similarity between two trees. In
addition, some machine learning algorithms with
dual form, such as Perceptron and Support Vector
Machines (SVM) (Cristianini and Shawe-Taylor,
2000), which do not need know the exact presen-
tation of objects and only need compute their ker-
nel functions during the process of learning and
prediction. They can be well used as learning al-
gorithms in the kernel-based methods. They are
named kernel machines.

In this paper, we decompose the Moschitti
(2004)’s predicate-argument feature (PAF) kernel
into a Path kernel and a Constituent Structure ker-

1http://www.cs.unt.edu/∼rada/senseval/senseval3/
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nel, and then compose them into a hybrid con-
volution tree kernel. Our hybrid kernel method
using Voted Perceptron kernel machine outper-
forms the PAF kernel in the development sets of
CoNLL-2005 SRL shared task. In addition, the fi-
nal composing kernel between hybrid convolution
tree kernel and standard features’ polynomial ker-
nel outperforms each of them individually.

The remainder of the paper is organized as fol-
lows: In Section 2 we review the previous work.
In Section 3 we illustrate the state of the art
feature-based method for SRL. Section 4 discusses
our method. Section 5 shows the experimental re-
sults. We conclude our work in Section 6.

2 Related Work

Automatic semantic role labeling was first intro-
duced by Gildea and Jurafsky (2002). They used
a linear interpolation method and extract features
from a parse tree to identify and classify the con-
stituents in the FrameNet (Baker et al., 1998) with
syntactic parsing results. Here, the basic features
include Phrase Type, Parse Tree Path, Position.
Most of the following works focused on feature
engineering (Xue and Palmer, 2004; Jiang et al.,
2005) and machine learning models (Nielsen and
Pradhan, 2004; Pradhan et al., 2005a). Some
other works paid much attention to the robust SRL
(Pradhan et al., 2005b) and post inference (Pun-
yakanok et al., 2004).

These feature-based methods are considered as
the state of the art method for SRL and achieved
much success. However, as we know, the standard
flat features are less effective to model the syntac-
tic structured information. It is sensitive to small
changes of the syntactic structure features. This
can give rise to a data sparseness problem and pre-
vent the learning algorithms from generalizing un-
seen data well.

As an alternative to the standard feature-based
methods, kernel-based methods have been pro-
posed to implicitly explore features in a high-
dimension space by directly calculating the sim-
ilarity between two objects using kernel function.
In particular, the kernel methods could be effective
in reducing the burden of feature engineering for
structured objects in NLP problems. This is be-
cause a kernel can measure the similarity between
two discrete structured objects directly using the
original representation of the objects instead of ex-
plicitly enumerating their features.

Many kernel functions have been proposed in
machine learning community and have been ap-
plied to NLP study. In particular, Haussler (1999)
and Watkins (1999) proposed the best-known con-
volution kernels for a discrete structure. In the
context of convolution kernels, more and more
kernels for restricted syntaxes or specific do-
mains, such as string kernel for text categoriza-
tion (Lodhi et al., 2002), tree kernel for syntactic
parsing (Collins and Duffy, 2001), kernel for re-
lation extraction (Zelenko et al., 2003; Culotta
and Sorensen, 2004) are proposed and explored
in NLP domain. Of special interest here, Mos-
chitti (2004) proposed Predicate Argument Fea-
ture (PAF) kernel under the framework of convo-
lution tree kernel for SRL. In this paper, we fol-
low the same framework and design a novel hybrid
convolution kernel for SRL.

3 Feature-based methods for SRL

Usually feature-based methods refer to the meth-
ods which use the flat features to represent in-
stances. At present, most of the successful SRL
systems use this method. Their features are usu-
ally extended from Gildea and Jurafsky (2002)’s
work, which uses flat information derived from
a parse tree. According to the literature, we
select the Constituent, Predicate, and Predicate-
Constituent related features shown in Table 1.

Feature Description
Constituent related features

Phrase Type syntactic category of the constituent
Head Word head word of the constituent
Last Word last word of the constituent
First Word first word of the constituent
Named Entity named entity type of the constituent’s head word
POS part of speech of the constituent
Previous Word sequence previous word of the constituent
Next Word sequence next word of the constituent

Predicate related features
Predicate predicate lemma
Voice grammatical voice of the predicate, either active or passive
SubCat Sub-category of the predicate’s parent node
Predicate POS part of speech of the predicate
Suffix suffix of the predicate

Predicate-Constituent related features
Path parse tree path from the predicate to the constituent
Position the relative position of the constituent and the predicate, before or after
Path Length the nodes number on the parse tree path
Partial Path some part on the parse tree path
Clause Layers the clause layers from the constituent to the predicate

Table 1: Standard flat features

However, to find relevant features is, as usual,
a complex task. In addition, according to the de-
scription of the standard features, we can see that
the syntactic features, such as Path, Path Length,
bulk large among all features. On the other hand,
the previous researches (Gildea and Palmer, 2002;
Punyakanok et al., 2005) have also recognized the
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Figure 2: Predicate Argument Feature space

necessity of syntactic parsing for semantic role la-
beling. However, the standard flat features cannot
model the syntactic information well. A predicate-
argument pair has two different Path features even
if their paths differ only for a node in the parse
tree. This data sparseness problem prevents the
learning algorithms from generalizing unseen data
well. In order to address this problem, one method
is to list all sub-structures of the parse tree. How-
ever, both space complexity and time complexity
are too high for the algorithm to be realized.

4 Hybrid Convolution Tree Kernels for
SRL

In this section, we introduce the previous ker-
nel method for SRL in Subsection 4.1, discuss
our method in Subsection 4.2 and compare our
method with previous work in Subsection 4.3.

4.1 Convolution Tree Kernels for SRL

Moschitti (2004) proposed to apply convolution
tree kernels (Collins and Duffy, 2001) to SRL.
He selected portions of syntactic parse trees,
which include salient sub-structures of predicate-
arguments, to define convolution kernels for the
task of predicate argument classification. This por-
tions selection method of syntactic parse trees is
named as predicate-arguments feature (PAF) ker-
nel. Figure 2 illustrates the PAF kernel feature
space of the predicate buy and the argument Arg1
in the circled sub-structure.

The kind of convolution tree kernel is similar to
Collins and Duffy (2001)’s tree kernel except the
sub-structure selection strategy. Moschitti (2004)
only selected the relative portion between a predi-
cate and an argument.

Given a tree portion instance defined above, we
design a convolution tree kernel in a way similar
to the parse tree kernel (Collins and Duffy, 2001).

Firstly, a parse tree T can be represented by a vec-
tor of integer counts of each sub-tree type (regard-
less of its ancestors):

Φ(T ) = (# of sub-trees of type 1, . . . ,
# of sub-trees of type i, . . . ,
# of sub-trees of type n)

This results in a very high dimension since the
number of different subtrees is exponential to the
tree’s size. Thus it is computationally infeasible
to use the feature vector Φ(T ) directly. To solve
this problem, we introduce the tree kernel function
which is able to calculate the dot product between
the above high-dimension vectors efficiently. The
kernel function is defined as following:

K(T1, T2) = 〈Φ(T1), Φ(T2)〉 =
∑

i
φi(T1), φi(T2)

=
∑

n1∈N1

∑
n2∈N2

∑
i
Ii(n1) ∗ Ii(n2)

where N1 and N2 are the sets of all nodes in
trees T1 and T2, respectively, and Ii(n) is the in-
dicator function whose value is 1 if and only if
there is a sub-tree of type i rooted at node n and
0 otherwise. Collins and Duffy (2001) show that
K(T1, T2) is an instance of convolution kernels
over tree structures, which can be computed in
O(|N1| × |N2|) by the following recursive defi-
nitions (Let ∆(n1, n2) =

∑
i Ii(n1) ∗ Ii(n2)):

(1) if the children of n1 and n2 are different then
∆(n1, n2) = 0;

(2) else if their children are the same and they are
leaves, then ∆(n1, n2) = µ;

(3) else ∆(n1, n2) = µ
∏nc(n1)

j=1 (1 +
∆(ch(n1, j), ch(n2, j)))

where nc(n1) is the number of the children of
n1, ch(n, j) is the jth child of node n and µ(0 <
µ < 1) is the decay factor in order to make the
kernel value less variable with respect to the tree
sizes.

4.2 Hybrid Convolution Tree Kernels

In the PAF kernel, the feature spaces are consid-
ered as an integral portion which includes a pred-
icate and one of its arguments. We note that the
PAF feature consists of two kinds of features: one
is the so-called parse tree Path feature and another
one is the so-called Constituent Structure feature.
These two kinds of feature spaces represent dif-
ferent information. The Path feature describes the
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Figure 3: Path and Constituent Structure feature
spaces

linking information between a predicate and its ar-
guments while the Constituent Structure feature
captures the syntactic structure information of an
argument. We believe that it is more reasonable
to capture the two different kinds of features sepa-
rately since they contribute to SRL in different fea-
ture spaces and it is better to give different weights
to fuse them. Therefore, we propose two convo-
lution kernels to capture the two features, respec-
tively and combine them into one hybrid convolu-
tion kernel for SRL. Figure 3 is an example to il-
lustrate the two feature spaces, where the Path fea-
ture space is circled by solid curves and the Con-
stituent Structure feature spaces is circled by dot-
ted curves. We name them Path kernel and Con-
stituent Structure kernel respectively.

Figure 4 illustrates an example of the distinc-
tion between the PAF kernel and our kernel. In
the PAF kernel, the tree structures are equal when
considering constitutes NP and PRP, as shown in
Figure 4(a). However, the two constituents play
different roles in the sentence and should not be
looked as equal. Figure 4(b) shows the comput-
ing example with our kernel. During computing
the hybrid convolution tree kernel, the NP–PRP
substructure is not computed. Therefore, the two
trees are distinguished correctly.

On the other hand, the constituent structure fea-
ture space reserves the most part in the traditional
PAF feature space usually. Then the Constituent
Structure kernel plays the main role in PAF kernel
computation, as shown in Figure 5. Here, believes
is a predicate and A1 is a long sub-sentence. Ac-
cording to our experimental results in Section 5.2,
we can see that the Constituent Structure kernel
does not perform well. Affected by this, the PAF
kernel cannot perform well, either. However, in
our hybrid method, we can adjust the compromise
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(a) PAF Kernel
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(b) Hybrid Convolution Tree Kernel

Figure 4: Comparison between PAF and Hybrid
Convolution Tree Kernels

Figure 5: An example of Semantic Role Labeling

of the Path feature and the Constituent Structure
feature by tuning their weights to get an optimal
result.

Having defined two convolution tree kernels,
the Path kernel Kpath and the Constituent Struc-
ture kernel Kcs, we can define a new kernel to
compose and extend the individual kernels. Ac-
cording to Joachims et al. (2001), the kernel func-
tion set is closed under linear combination. It
means that the following Khybrid is a valid kernel
if Kpath and Kcs are both valid.

Khybrid = λKpath + (1− λ)Kcs (1)

where 0 ≤ λ ≤ 1.
According to the definitions of the Path and the

Constituent Structure kernels, each kernel is ex-
plicit. They can be viewed as a matching of fea-
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tures. Since the features are enumerable on the
given data, the kernels are all valid. Therefore, the
new kernel Khybrid is valid. We name the new ker-
nel hybrid convolution tree kernel, Khybrid.

Since the size of a parse tree is not con-
stant, we normalize K(T1, T2) by dividing it by√

K(T1, T1) ·K(T2, T2)

4.3 Comparison with Previous Work

It would be interesting to investigate the differ-
ences between our method and the feature-based
methods. The basic difference between them lies
in the instance representation (parse tree vs. fea-
ture vector) and the similarity calculation mecha-
nism (kernel function vs. dot-product). The main
difference between them is that they belong to dif-
ferent feature spaces. In the kernel methods, we
implicitly represent a parse tree by a vector of in-
teger counts of each sub-tree type. That is to say,
we consider all the sub-tree types and their occur-
ring frequencies. In this way, on the one hand,
the predicate-argument related features, such as
Path, Position, in the flat feature set are embed-
ded in the Path feature space. Additionally, the
Predicate, Predicate POS features are embedded
in the Path feature space, too. The constituent re-
lated features, such as Phrase Type, Head Word,
Last Word, and POS, are embedded in the Con-
stituent Structure feature space. On the other hand,
the other features in the flat feature set, such as
Named Entity, Previous, and Next Word, Voice,
SubCat, Suffix, are not contained in our hybrid
convolution tree kernel. From the syntactic view-
point, the tree representation in our feature space
is more robust than the Parse Tree Path feature in
the flat feature set since the Path feature is sensi-
tive to small changes of the parse trees and it also
does not maintain the hierarchical information of
a parse tree.

It is also worth comparing our method with
the previous kernels. Our method is similar to
the Moschitti (2004)’s predicate-argument feature
(PAF) kernel. However, we differentiate the Path
feature and the Constituent Structure feature in our
hybrid kernel in order to more effectively capture
the syntactic structure information for SRL. In ad-
dition Moschitti (2004) only study the task of ar-
gument classification while in our experiment, we
report the experimental results on both identifica-
tion and classification.

5 Experiments and Discussion

The aim of our experiments is to verify the effec-
tiveness of our hybrid convolution tree kernel and
and its combination with the standard flat features.

5.1 Experimental Setting

5.1.1 Corpus
We use the benchmark corpus provided by

CoNLL-2005 SRL shared task (Carreras and
Màrquez, 2005) provided corpus as our training,
development, and test sets. The data consist of
sections of the Wall Street Journal (WSJ) part of
the Penn TreeBank (Marcus et al., 1993), with
information on predicate-argument structures ex-
tracted from the PropBank corpus (Palmer et al.,
2005). We followed the standard partition used
in syntactic parsing: sections 02-21 for training,
section 24 for development, and section 23 for
test. In addition, the test set of the shared task
includes three sections of the Brown corpus. Ta-
ble 2 provides counts of sentences, tokens, anno-
tated propositions, and arguments in the four data
sets.

Train Devel tWSJ tBrown
Sentences 39,832 1,346 2,416 426
Tokens 950,028 32,853 56,684 7,159
Propositions 90,750 3,248 5,267 804
Arguments 239,858 8,346 14,077 2,177

Table 2: Counts on the data set

The preprocessing modules used in CONLL-
2005 include an SVM based POS tagger (Giménez
and Màrquez, 2003), Charniak (2000)’s full syn-
tactic parser, and Chieu and Ng (2003)’s Named
Entity recognizer.

5.1.2 Evaluation
The system is evaluated with respect to

precision, recall, and Fβ=1 of the predicted ar-
guments. Precision (p) is the proportion of ar-
guments predicted by a system which are cor-
rect. Recall (r) is the proportion of correct ar-
guments which are predicted by a system. Fβ=1

computes the harmonic mean of precision and
recall, which is the final measure to evaluate the
performances of systems. It is formulated as:
Fβ=1 = 2pr/(p + r). srl-eval.pl2 is the official
program of the CoNLL-2005 SRL shared task to
evaluate a system performance.

2http://www.lsi.upc.edu/∼srlconll/srl-eval.pl
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5.1.3 SRL Strategies
We use constituents as the labeling units to form

the labeled arguments. In order to speed up the
learning process, we use a four-stage learning ar-
chitecture:

Stage 1: To save time, we use a pruning
stage (Xue and Palmer, 2004) to filter out the
constituents that are clearly not semantic ar-
guments to the predicate.

Stage 2: We then identify the candidates derived
from Stage 1 as either arguments or non-
arguments.

Stage 3: A multi-category classifier is used to
classify the constituents that are labeled as ar-
guments in Stage 2 into one of the argument
classes plus NULL.

Stage 4: A rule-based post-processing stage (Liu
et al., 2005) is used to handle some un-
matched arguments with constituents, such as
AM-MOD, AM-NEG.

5.1.4 Classifier
We use the Voted Perceptron (Freund and

Schapire, 1998) algorithm as the kernel machine.
The performance of the Voted Perceptron is close
to, but not as good as, the performance of SVM on
the same problem, while saving computation time
and programming effort significantly. SVM is too
slow to finish our experiments for tuning parame-
ters.

The Voted Perceptron is a binary classifier. In
order to handle multi-classification problems, we
adopt the one vs. others strategy and select the
one with the largest margin as the final output. The
training parameters are chosen using development
data. After 5 iteration numbers, the best perfor-
mance is achieved. In addition, Moschitti (2004)’s
Tree Kernel Tool is used to compute the tree kernel
function.

5.2 Experimental Results
In order to speed up the training process, in the
following experiments, we ONLY use WSJ sec-
tions 02-05 as training data. The same as Mos-
chitti (2004), we also set the µ = 0.4 in the com-
putation of convolution tree kernels.

In order to study the impact of λ in hybrid con-
volution tree kernel in Eq. 1, we only use the hy-
brid kernel between Kpath and Kcs. The perfor-

mance curve on development set changing with λ
is shown in Figure 6.

Figure 6: The performance curve changing with λ

The performance curve shows that when λ =
0.5, the hybrid convolution tree kernel gets the
best performance. Either the Path kernel (λ = 1,
Fβ=1 = 61.26) or the Constituent Structure kernel
(λ = 0, Fβ=1 = 54.91) cannot perform better than
the hybrid one. It suggests that the two individual
kernels are complementary to each other. In ad-
dition, the Path kernel performs much better than
the Constituent Structure kernel. It indicates that
the predicate-constituent related features are more
effective than the constituent features for SRL.

Table 3 compares the performance comparison
among our Hybrid convolution tree kernel, Mos-
chitti (2004)’s PAF kernel, standard flat features
with Linear kernels, and Poly kernel (d = 2). We
can see that our hybrid convolution tree kernel out-
performs the PAF kernel. It empirically demon-
strates that the weight linear combination in our
hybrid kernel is more effective than PAF kernel for
SRL.

However, our hybrid kernel still performs worse
than the standard feature based system. This is
simple because our kernel only use the syntac-
tic structure information while the feature-based
method use a large number of hand-craft diverse
features, from word, POS, syntax and semantics,
NER, etc. The standard features with polynomial
kernel gets the best performance. The reason is
that the arbitrary binary combination among fea-
tures implicated by the polynomial kernel is useful
to SRL. We believe that combining the two meth-
ods can perform better.

In order to make full use of the syntactic
information and the standard flat features, we
present a composite kernel between hybrid kernel
(Khybrid) and standard features with polynomial
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Hybrid PAF Linear Poly
Devel 66.01 64.38 68.71 70.25

Table 3: Performance (Fβ=1) comparison among
various kernels

kernel (Kpoly):

Kcomp = γKhybrid + (1− γ)Kpoly (2)

where 0 ≤ γ ≤ 1.
The performance curve changing with γ in Eq. 2

on development set is shown in Figure 7.

Figure 7: The performance curve changing with γ

We can see that when γ = 0.5, the system
achieves the best performance and Fβ=1 = 70.78.
It’s statistically significant improvement (χ2 test
with p = 0.1) than only using the standard features
with the polynomial kernel (γ = 0, Fβ=1 = 70.25)
and much higher than only using the hybrid con-
volution tree kernel (γ = 1, Fβ=1 = 66.01).
The main reason is that the convolution tree ker-
nel can represent more general syntactic features
than standard flat features, and the standard flat
features include the features that the convolution
tree kernel cannot represent, such as Voice, Sub-
Cat. The two kind features are complementary to
each other.

Finally, we train the composite method using
the above setting (Eq. 2 with when γ = 0.5) on the
entire training set. The final performance is shown
in Table 4.

6 Conclusions and Future Work

In this paper we proposed the hybrid convolu-
tion kernel to model syntactic structure informa-
tion for SRL. Different from the previous convo-
lution tree kernel based methods, our contribution

Precision Recall Fβ=1

Development 80.71% 68.49% 74.10
Test WSJ 82.46% 70.65% 76.10
Test Brown 73.39% 57.01% 64.17

Test WSJ Precision Recall Fβ=1

Overall 82.46% 70.65% 76.10
A0 87.97% 82.49% 85.14
A1 80.51% 71.69% 75.84
A2 75.79% 52.16% 61.79
A3 80.85% 43.93% 56.93
A4 83.56% 59.80% 69.71
A5 100.00% 20.00% 33.33
AM-ADV 66.27% 43.87% 52.79
AM-CAU 68.89% 42.47% 52.54
AM-DIR 56.82% 29.41% 38.76
AM-DIS 79.02% 75.31% 77.12
AM-EXT 73.68% 43.75% 54.90
AM-LOC 72.83% 50.96% 59.97
AM-MNR 68.54% 42.44% 52.42
AM-MOD 98.52% 96.37% 97.43
AM-NEG 97.79% 96.09% 96.93
AM-PNC 49.32% 31.30% 38.30
AM-TMP 82.15% 68.17% 74.51
R-A0 86.28% 87.05% 86.67
R-A1 80.00% 74.36% 77.08
R-A2 100.00% 31.25% 47.62
R-AM-CAU 100.00% 50.00% 66.67
R-AM-EXT 50.00% 100.00% 66.67
R-AM-LOC 92.31% 57.14% 70.59
R-AM-MNR 20.00% 16.67% 18.18
R-AM-TMP 68.75% 63.46% 66.00
V 98.65% 98.65% 98.65

Table 4: Overall results (top) and detailed results
on the WSJ test (bottom).

is that we distinguish between the Path and the
Constituent Structure feature spaces. Evaluation
on the datasets of CoNLL-2005 SRL shared task,
shows that our novel hybrid convolution tree ker-
nel outperforms the PAF kernel method. Although
the hybrid kernel base method is not as good as
the standard rich flat feature based methods, it can
improve the state of the art feature-based methods
by implicating the more generalizing syntactic in-
formation.

Kernel-based methods provide a good frame-
work to use some features which are difficult to
model in the standard flat feature based methods.
For example the semantic similarity of words can
be used in kernels well. We can use general pur-
pose corpus to create clusters of similar words or
use available resources like WordNet. We can also
use the hybrid kernel method into other tasks, such
as relation extraction in the future.
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