Stochastic Language Generation Using WIDL -expressions and its
Application in Machine Translation and Summarization

Radu Soricut
Information Sciences Institute
University of Southern California
4676 Admiralty Way, Suite 1001
Marinadel Rey, CA 90292
radu@si . edu

Abstract

We propose WIDL-expressions as a flex-
ible formalism that facilitates the integra-
tion of a generic sentence realization sys-
tem within end-to-end language process-
ing applications. WIDL-expressions rep-
resent compactly probability distributions
over finite sets of candidate realizations,
and have optimal algorithms for realiza-
tion via interpolation with language model
probability distributions. We show the ef-
fectiveness of a WIDL-based NLG system
in two sentence realization tasks: auto-
matic translation and headline generation.

1 Introduction

The Natural Language Generation (NLG) com-
munity has produced over the years a consid-
erable number of generic sentence realization
systems: Penman (Matthiessen and Bateman,
1991), FUF (Elhadad, 1991), Nitrogen (Knight
and Hatzivassiloglou, 1995), Fergus (Bangalore
and Rambow, 2000), HALogen (Langkilde-Geary,
2002), Amalgam (Corston-Oliver et al., 2002), etc.
However, when it comes to end-to-end, text-to-
text applications — Machine Translation, Summa-
rization, Question Answering — these generic sys-
tems either cannot be employed, or, in instances
where they can be, the results are significantly
below that of state-of-the-art, application-specific
systems (Hajic et al., 2002; Habash, 2003). We
believe two reasons explain this state of affairs.
First, these generic NLG systems use input rep-
resentation languages with complex syntax and se-
mantics. These languages involve deep, semantic-
based subject-verb or verb-object relations (such
as ACTOR, AGENT, PATIENT, etc., for Penman

Daniel Marcu
Information Sciences Institute
University of Southern California
4676 Admiralty Way, Suite 1001
Marinadel Rey, CA 90292
mar cu@ si . edu

and FUF), syntactic relations (such as subj ect ,
obj ect, prenod, etc., for HALogen), or lexi-
cal dependencies (Fergus, Amalgam). Such inputs
cannot be accurately produced by state-of-the-art
analysis components from arbitrary textual input
in the context of text-to-text applications.

Second, most of the recent systems (starting
with Nitrogen) have adopted a hybrid approach
to generation, which has increased their robust-
ness. These hybrid systems use, in a first phase,
symbolic knowledge to (over)generate a large set
of candidate realizations, and, in a second phase,
statistical knowledge about the target language
(such as stochastic language models) to rank the
candidate realizations and find the best scoring
one. The disadvantage of the hybrid approach
— from the perspective of integrating these sys-
tems within end-to-end applications — is that the
two generation phases cannot be tightly coupled.
More precisely, input-driven preferences and tar-
get language—driven preferences cannot be inte-
grated in a true probabilistic model that can be
trained and tuned for maximum performance.

In this paper, we propose WIDL-expressions
(WIDL stands for Weighted Interleave, Disjunc-
tion, and Lock, after the names of the main op-
erators) as a representation formalism that facil-
itates the integration of a generic sentence real-
ization system within end-to-end language appli-
cations. The WIDL formalism, an extension of
the IDL-expressions formalism of Nederhof and
Satta (2004), has several crucial properties that
differentiate it from previously-proposed NLG
representation formalisms. First, it has a sim-
ple syntax (expressions are built using four oper-
ators) and a simple, formal semantics (probability
distributions over finite sets of strings). Second,
it is a compact representation that grows linearly

1105

Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of thag&S11105-1112,

Sydney, July 2006©)2006 Association for Computational Linguistics

in the number of words available for generation
(see Section 2). (In contrast, representations such
as word lattices (Knight and Hatzivassiloglou,
1995) or non-recursive CFGs (Langkilde-Geary,
2002) require exponential space in the number
of words available for generation (Nederhof and
Satta, 2004).) Third, it has good computational
properties, such as optimal algorithms for inter-
section with n-gram language models (Section 3).
Fourth, it is flexible with respect to the amount of
linguistic processing required to produce WIDL-
expressions directly from text (Sections 4 and 5).
Fifth, it allows for a tight integration of input-
specific preferences and target-language prefer-
ences via interpolation of probability distributions
using log-linear models. We show the effec-
tiveness of our proposal by directly employing
a generic WIDL-based generation system in two
end-to-end tasks: machine translation and auto-
matic headline generation.

2 TheWIDL Representation Language

2.1 WIDL-expressions

In this section, we introduce WIDL-expressions, a
formal language used to compactly represent prob-
ability distributions over finite sets of strings.

Given a finite alphabet of symbols X, atomic
WIDL-expressions are of the form a, with a € 3.
For a WIDL-expression w = a, its semantics is
a probability distribution oyiq(w) : Dom, —
[0,1], where Dom,, = {a} and oyiq(w)(a) =
1. Complex WIDL-expressions are created from
other WIDL-expressions, by employing the fol-
lowing four operators, as well as operator distri-
bution functions §; from an alphabet A.

Weighted Digunction. If wq,...,w, are
WIDL-expressions, then w = Vg, (w1, ..,wn),
with dg {1,...,n} — [0,1], specified

such that jcdom(s)d0(k) = 1, is a WIDL-

expression. Its semantics is a probability
distribution owiq(w) : Dom, — [0,1], where
Dom, = i—1 Dom,,, and the probabil-

ity values are induced by &g and owiqi(wi),
1 < i < n. For example, if w = Vg,(a,b),
do = {1 = 0.8, 2 — 0.2}, its semantics is a proba-
bility distribution o;qi(w) over Dom,, = {a, b},
defined by owa(w)(@ = 6&(1) = 08 ad
owiai(w)(b) = §o(2) = 0.2.

Precedence. If wp,w, are WIDL-expressions,
then w = w; - wo is a WIDL-expression. Its

semantics is a probability distribution oyiqi(w) :
Dom, — [0,1], where Dom,, is the set of all
strings that obey the precedence imposed over
the arguments, and the probability values are in-
duced by O’Widl(wl) and O'Widl((UQ). For example, if
w1 = Vy,(a,b), 1 ={1 - 08, 2 - 02}, and wy =
Vs, (c,d), 2 = {1 = 0.6, 2 = 0.4}, then w = wy -
w9 represents a probability distribution o;iq1(w)
over the set Dom, = {ac,ad,bc,bd}, defined
by owiai(w)(ac) = §1(1)d2(1) = 0.48, owiai(w)(ad) =
81(1)82(2) = 0.32, etc.

Weighted Interleave. If wy,...,w, are WIDL-

expressions, then w = ||5, (w1, w2, ..., wy), With
o : SU{other perms}U{shuffles} — [0,1], S C Perm,,,
specified such that ¥,cgom(sp)do(a) = 1, is a

WIDL-expression. Its semantics is a probability
distribution owiq(w) : Dom, — [0,1], where
Dom,, consists of all the possible interleavings of
strings from Dom,,,, 1 < % < n, and the proba-
bility values are induced by §y and owiq (w;). The
distribution function ¢, is defined either explicitly,
over S C Perm,, (the set of all permutations of n
elements), or implicitly, as dy(other perms). Be-
cause the set of argument permutations is a sub-
set of all possible interleavings, do also needs to
specify the probability mass for the strings that
are not argument permutations, do(shuffles). For
example, if w = J5(a - b,c), 6o = {12 —
0.80, other perms uriform 0.15, shuffles urifgrm 0.05}, its
semantics is a probability distribution o yiq1(w),
with domain Dom,, = {abc, cab, acb}, defined
bY owiai(w)(abc) = do(1 2) = 0.80, owiar(w)(cab) =
So(otherperms) —_),15, gryian(w) (ach) = Solhufles) _ g g5,

Lock. If o' is a WIDL-expression, then w =
x (w') is a WIDL-expression. The semantic map-
ping oywiai(w) is the same as oyiq(w'), except
that Dom,, contains strings in which no addi-
tional symbol can be interleaved. For exam-
ple, if w = [5(x(a-b),c), o = {12 —
0.80, other perms — 0.20}, its semantics is a proba-
bility distribution o;q(w), with domain Dom,, =
{cab,abc}, defined by owia(w)(abc) = do(1 2) =
0.80, Tiai(w)(cab) = olethereerms) _ 90

In Figure 1, we show a more complex WIDL-
expression. The probability distribution ¢; associ-
ated with the operator ||5, assigns probability 0.2
to the argument order 213; from a probability
mass of 0.7, it assigns uniformly, for each of the
remaining 3! — 1 = 5 argument permutations, a
permutation probability value of 05—7 = 0.14. The

1106

Ils, (x (turkish - government), Vs, (x (rebels - fighting), x (attacked - rebels)), in - iraq),
81 = {213 — 0.2, other perms "™ 0.7, shuffles " 3™ 0.1}, &, = {1 — 0.65, 2 — 0.35}

Figure 1: An example of a WIDL-expression.

remaining probability mass of 0.1 is left for the
12 shuffles associated with the unlocked expres-
sion in - iraq, for a shuffle probability of %1 =
0.008. The list below enumerates some of the
(string, p(string)) pairs that belong to the proba-
bility distribution defined by our example:
rebels fighting turkish governmentiniraq 0.130
in iraq attacked rebels turkish goverment 0.049
in turkish goverment iraq rebels fighting 0.005
The following result characterizes an important
representation property for WIDL-expressions.

Theorem 1 A WIDL-expression w over 3 and A
using n atomic expressions has space complexity
O(n), if the operator distribution functions of w
have space complexity at most O(n).

For proofs and more details regarding WIDL-
expressions, we refer the interested reader
to (Soricut, 2006). Theorem 1 ensures that high-
complexity hypothesis spaces can be represented
efficiently by WIDL-expressions (Section 5).

2.2 WIDL-graphsand Probabilistic
Finite-State Acceptors

WIDL-graphs. Equivalent at the representation
level with WIDL-expressions, WIDL-graphs al-
low for formulations of algorithms that process
them. For each WIDL-expression w, there exists
an equivalent WIDL-graph G,,. As an example,
we illustrate in Figure 2(a) the WIDL-graph cor-
responding to the WIDL-expression in Figure 1.
WIDL-graphs have an initial vertex v, and a final
vertex v.. Vertices vg, vg, and wvyg With in-going
edges labeled F}l, Fgl, and Fgl, respectively, and
vertices vs, v19, and vog With out-going edges la-
beled —%l, —|§1, and —|§1, respectively, result from
the expansion of the ||5, operator. \ertices vz
and vi3 with in-going edges labeled (j,, (3,, re-
spectively, and vertices v15 and v1g with out-going
edges labeled);, ,)3, , respectively, result from the
expansion of the Vv, operator.

With each WIDL-graph G, we associate a
probability distribution. The domain of this dis-
tribution is the finite collection of strings that can
be generated from the paths of a WIDL-specific

traversal of G, starting from v, and ending in wv..
Each path (and its associated string) has a proba-
bility value induced by the probability distribution
functions associated with the edge labels of G,. A
WIDL-expression w and its corresponding WIDL-
graph G, are said to be equivalent because they
represent the same distribution oiq(w).

WIDL-graphs and Probabilistic FSA. Proba-
bilistic finite-state acceptors (pFSA) are a well-
known formalism for representing probability dis-
tributions (Mohri et al., 2002). For a WIDL-
expression w, we define a mapping, called
UNFOLD, between the WIDL-graph G, and a
PFSA A,. A state s in A, is created for each
set of WIDL-graph vertices that can be reached
simultaneously when traversing the graph. State
s records, in what we call a ||-stack (interleave
stack), the order in which +%,——bordered sub-
graphs are traversed. Consider Figure 2(b), in
which state [vgvovas, {(s,3 2}] (at the bottom) cor-
responds to reaching vertices vg, vg, and wvog (see
the WIDL-graph in Figure 2(a)), by first reach-
ing vertex vy (inside the 3 , -3 —bordered sub-
graph), and then reaching vertex vg (inside the I—QI,
3,~bordered sub-graph).

A transition labeled a between two A, states
s1 and so in A, exists if there exists a vertex v;
in the description of s; and a vertex vy in the de-
scription of s such that there exists a path in G,
between v; and vy, and a is the only X-labeled
transitions in this path. For example, transition
[vovgvas, { (5,3 2}] "25° [voviovas, { (5,3 2}] (Fig-
ure 2(b)) results from unfolding the path vy —

1
V10 regils V11 i) V12)i§ V19 (Figure 2(&)) A tran-
sition labeled & between two A, states s1 and ss in
A, exists if there exists a vertex v; in the descrip-
tion of s; and vertices v,ﬁ, ...,vp in the descrip-

TN
tion of sy, such that v; % vf € G,, 1 < i <m
(see transition [vs,] = [voUsv20, {{s,)6, }]), OF if

there exists vertices vjl-, ..., v} in the description
of s; and vertex vy in the description of so, such

i .
that v’ S v, € Gy, 1 < i < n. The e-transitions

1107

acked:oi rebel s:i

51={ 213 —= 0.2, other perms —= 0.7, shuffles —~ 0.1}
52={ 1~ 0.65, 2— 0.35}

@

3 06%Y%es?

0P
g el
‘ene“s o i
.8 ackedrebe v.y,<0
31
2

S %
[%Y5552] [y Y,044<321

(b)

Figure 2: The WIDL-graph corresponding to the WIDL-expression in Figure 1 is shown in (a). The
probabilistic finite-state acceptor (pFSA) that corresponds to the WIDL-graph is shown in (b).

are responsible for adding and removing, respec-
tively, the (5,)s symbols in the ||-stack. The prob-
abilities associated with A, transitions are com-
puted using the vertex set and the ||-stack of each
A, state, together with the distribution functions
of the Vv and || operators. For a detailed presen-
tation of the UNFOLD relation we refer the reader
to (Soricut, 2006).

3 Stochastic Language Generation from
WIDL -expressions

3.1 Interpolating Probability Distributionsin
alLog-linear Framework

Let us assume a finite set E of strings over a
finite alphabet X, representing the set of possi-
ble sentence realizations. In a log-linear frame-
work, we have a vector of feature functions A =
(hoh1 ...hy), and a vector of parameters A =
(AoA1...Ar). Forany e € E, the interpolated
probability P(e) can be written under a log-linear
model as in Equation 1:

eXP[ErAr/LI:O Amhm (e)]
St exp[Z%Izo)\mhm (e)]

P(e) = 1)
We can formulate the search problem of finding
the most probable realization e under this model
as shown in Equation 2, and therefore we do not
need to be concerned about computing expensive
normalization factors.

arg max P(e) = arg max exp[ZM_ Aphm(e)] (2)

For a given WIDL-expression w over ¥, the set £
is defined by dom(oywiq1(w)), and feature function

hy is taken to be oyiqi(w). Any language model
we want to employ may be added in Equation 2 as
a feature function h;, i > 1.

3.2 Algorithmsfor Intersecting
WIDL -expressions with L anguage
Models

Algorithm WIDL-NGLM-A* (Figure 3) solves
the search problem defined by Equation 2 for a
WIDL-expression w (which provides feature func-
tion ho) and M n-gram language models (which
provide feature functions hi,...,hps). It does
so by incrementally computing UNFOLD for G,
(i.e., on-demand computation of the correspond-
ing pFSA A,,), by keeping track of a set of active
states, called active. The set of newly UNFOLDed
states is called unfold. Using Equation 1 (unnor-
malized), we EVALUATE the current P(e) scores
for the unfold states. Additionally, EVALUATE
uses an admissible heuristic function to compute
future (admissible) scores for the unfold states.

The algorithm PUsHes each state from the cur-
rent unfold into a priority queue ¢, which sorts
the states according to their total score (current +
admissible). In the next iteration, active is a sin-
gleton set containing the state PoPed out from the
top of . The admissible heuristic function we use
is the one defined in (Soricut and Marcu, 2005),
using Equation 1 (unnormalized) for computing
the event costs. Given the existence of the ad-
missible heuristic and the monotonicity property
of the unfolding provided by the priority queue @,
the proof for A* optimality (Russell and Norvig,
1995) guarantees that WIDL-NGLM-A* finds a
path in A,, that provides an optimal solution.

1108

WIDL-NGLM-A*(Gy, h, \)

1 active < {[vs, {}]|}

2 flag+1

3 while flag

4 do unfold < UNFOLD(G,,, active)

5 EVALUATE (unfold, h, \)

6 if active = {[ve, {}]}

7 then flag «+ 0

8 for each state in unfold

do PUSH(Q, state)

active < POP(Q)

9 return active

Figure 3: A* algorithm for interpolating WIDL-
expressions with n-gram language models.

An important property of the
WIDL-NGLM-A* algorithm is that the UNFOLD
relation (and, implicitly, the A, acceptor) is
computed only partially, for those states for
which the total cost is less than the cost of the
optimal path. This results in important savings,
both in space and time, over simply running a
single-source shortest-path algorithm for directed
acyclic graphs (Cormen et al., 2001) over the full
acceptor A,, (Soricut and Marcu, 2005).

4 Headline Generation using
WIDL -expressions

We employ the WIDL formalism (Section 2) and
the WIDL-NGLM-A* algorithm (Section 3) in a
summarization application that aims at producing
both informative and fluent headlines. Our head-
lines are generated in an abstractive, bottom-up
manner, starting from words and phrases. A more
common, extractive approach operates top-down,
by starting from an extracted sentence that is com-
pressed (Dorr et al., 2003) and annotated with ad-
ditional information (Zajic et al., 2004).

Automatic Creation of WIDL-expressions for
Headline Generation. We generate WIDL-
expressions starting from an input document.
First, we extract a weighted list of topic keywords
from the input document using the algorithm of
Zhou and Hovy (2003). This list is enriched
with phrases created from the lexical dependen-
cies the topic keywords have in the input docu-
ment. We associate probability distributions with
these phrases using their frequency (we assume

Keywords {iraq 0.32, syria 0.25, rebels 0.22,
kurdish 0.17, turkish 0.14, attack 0.10}
Phrases
iraq {in iraq 0.4, northern iraq 0.5,iraq and iran 0.1},
syria { into syria 0.6, and syria 0.4 }
rebels { attacked rebels 0.7,rebels fighting 0.3}

J WIDL-expression & trigram interpolation
TURKISH GOVERNMENT ATTACKED REBELS IN IRAQ AND SYRIA

Figure 4: Input and output for our automatic head-
line generation system.

that higher frequency is indicative of increased im-
portance) and their position in the document (we
assume that proximity to the beginning of the doc-
ument is also indicative of importance). In Fig-
ure 4, we present an example of input keywords
and lexical-dependency phrases automatically ex-
tracted from a document describing incidents at
the Turkey-Iraq border.

The algorithm for producing WIDL-
expressions combines the lexical-dependency
phrases for each keyword using a \V operator with
the associated probability values for each phrase
multiplied with the probability value of each
topic keyword. It then combines all the v-headed
expressions into a single WIDL-expression using
a || operator with uniform probability. The WIDL-
expression in Figure 1 is a (scaled-down) example
of the expressions created by this algorithm.
On average, a WIDL-expression created by this
algorithm, using m = 6 keywords and an average
of k = 4 lexical-dependency phrases per keyword,
compactly encodes a candidate set of about 3
million possible realizations. As the specification
of the || 5 operator takes space O(1) for uniform 6,
Theorem 1 guarantees that the space complexity
of these expressions is O(mk).

Finally, we generate headlines from WIDL-
expressions using the WIDL-NGLM-A* algo-
rithm, which interpolates the probability distribu-
tions represented by the WIDL-expressions with
n-gram language model distributions. The output
presented in Figure 4 is the most likely headline
realization produced by our system.

Headline Generation Evaluation. To evaluate
the accuracy of our headline generation system,
we use the documents from the DUC 2003 eval-
uation competition. Half of these documents
are used as development set (283 documents),

1109

ALG | t(uni) #(bi) Len. Rouge; Rouges

Extractive
Leadio | 458 | 114 | 9.9 | 20.8 | 11.1
HedgeTrimmert | 399 | 104 74 | 18.1 9.9
Topiaryt | 576 | 115 | 9.9 | 26.2 | 125

Abstractive
Keywords | 585 | 22 | 9.9 | 26.6 5.5
wene | 311 | 76 | 7.3 | 14.1 7.5
wipL-Aa* | 562 | 126 | 10.0 | 255 | 12.9

Table 1: Headline generation evaluation. We com-
pare extractive algorithms against abstractive al-
gorithms, including our WIDL-based algorithm.

and the other half is used as test set (273 docu-
ments). We automatically measure performance
by comparing the produced headlines against one
reference headline produced by a human using
ROUGE; (Lin, 2004).

For each input document, we train two language
models, using the SRI Language Model Toolkit
(with modified Kneser-Ney smoothing). A gen-
eral trigram language model, trained on 170M
English words from the Wall Street Journal, is
used to model fluency. A document-specific tri-
gram language model, trained on-the-fly for each
input document, accounts for both fluency and
content validity. We also employ a word-count
model (which counts the number of words in a
proposed realization) and a phrase-count model
(which counts the number of phrases in a proposed
realization), which allow us to learn to produce
headlines that have restrictions in the number of
words allowed (10, in our case). The interpolation
weights \ (Equation 2) are trained using discrimi-
native training (Och, 2003) using ROUGE, as the
objective function, on the development set.

The results are presented in Table 1. We com-
pare the performance of several extractive algo-
rithms (which operate on an extracted sentence
to arrive at a headline) against several abstractive
algorithms (which create headlines starting from
scratch). For the extractive algorithms, Lead10
is a baseline which simply proposes as headline
the lead sentence, cut after the first 10 words.
HedgeTrimmer ' is our implementation of the Hedge
Trimer system (Dorr et al., 2003), and Topiary* is
our implementation of the Topiary system (Zajic
et al., 2004). For the abstractive algorithms, Key-
words is a baseline that proposes as headline the
sequence of topic keywords, Webd is the system

THREE GORGES PROJECT IN CHINA HAS WON APPROVAL
WATER IS LINK BETWEEN CLUSTER OF E. COLI CASES

SRI LANKA'S JOINT VENTURE TO EXPAND EXPORTS
OPPOSITION TO EUROPEAN UNION SINGLE CURRENCY EURO
OF INDIA AND BANGLADESH WATER BARRAGE

Figure 5: Headlines generated automatically using
a WIDL-based sentence realization system.

described in (Zhou and Hovy, 2003), and WIDL-
A* is the algorithm described in this paper.

This evaluation shows that our WIDL-based
approach to generation is capable of obtaining
headlines that compare favorably, in both content
and fluency, with extractive, state-of-the-art re-
sults (Zajic et al., 2004), while it outperforms a
previously-proposed abstractive system by a wide
margin (Zhou and Hovy, 2003). Also note that our
evaluation makes these results directly compara-
ble, as they use the same parsing and topic identi-
fication algorithms. In Figure 5, we present a sam-
ple of headlines produced by our system, which
includes both good and not-so-good outputs.

5 Machine Translation using
WIDL -expressions

We also employ our WIDL-based realization en-
gine in a machine translation application that uses
a two-phase generation approach: in a first phase,
WIDL-expressions representing large sets of pos-
sible translations are created from input foreign-
language sentences. In a second phase, we use
our generic, WIDL-based sentence realization en-
gine to intersect WIDL-expressions with an n-
gram language model. In the experiments reported
here, we translate between Chinese (source lan-
guage) and English (target language).

Automatic Creation of WIDL-expressions for
MT. We generate WIDL-expressions from Chi-
nese strings by exploiting a phrase-based trans-
lation table (Koehn et al., 2003). We use an al-
gorithm resembling probabilistic bottom-up pars-
ing to build a WIDL-expression for an input Chi-
nese string: each contiguous span (z,j) over a
Chinese string C; ; is considered a possible “con-
stituent”, and the “non-terminals” associated with
each constituent are the English phrase transla-
tions E’C that correspond in the translation ta-
ble to the Chinese string C; ;. Multiple-word En-
glish phrases, such as w; wy ws, are represented
as WIDL-expressions using the precedence () and

1110

foF B T w5 .

[l5; (Vsy(gunman, x(the - gunmen), gunmen),
V55 (x(have - been), being, x (had - been), were, was),

x (by - police), V5, (kill, killed, killing), .)

61 = {perms """ 1.0}

63 = {1 — 0.130.140.18 0.07,
2 — 0.470.15 0.30 0.46,
3 — 0.140.11 0.18 0.07,
4 - 0.16 0.270.24 0.24,
5 — 0.100.330.10 0.16}

J WIDL-expression & trigram interpol ation
gunman was killed by police .

62 = {1 — 0.350.030.19 0.25,
2 —+0.350.100.32 0.36,

64 = {1 — 0.650.330.250.63,
2 —+ 0.230.500.53 0.26,

Figure 6: A Chinese string is converted into a
WIDL-expression, which provides a translation as
the best scoring hypothesis under the interpolation
with a trigram language model.

lock (x) operators, as x(wj - wp - w3). To limit
the number of possible translations Ef] corre-
sponding to a Chinese span C; j, we use a prob-
abilistic beam b and a histogram beam s to beam
out low probability translation alternatives. At this
point, each C; ; span is “tiled” with likely transla-
tions EZ’“J taken from the translation table.

Tiles that are adjacent are joined together in
a larger tile by a ||s operator, where § =
{perms PPN 11 That is, reordering of
the component tiles are permitted by the ||5 op-
erators (assigned non-zero probability), but the
longer the movement from the original order of
the tiles, the lower the probability. (This distor-
tion model is similar with the one used in (Koehn,
2004).) When multiple tiles are available for the
same span (i, j), they are joined by a V4 opera-
tor, where § is specified by the probability distri-
butions specified in the translation table. Usually,
statistical phrase-based translation tables specify
not only one, but multiple distributions that ac-
count for context preferences. In our experi-
ments, we consider four probability distributions:
p(f|é)7p(é‘f)aplew(f|é)’ and plez(élf)’ where f
and e are Chinese-English phrase translations as
they appear in the translation table. In Figure 6,
we show an example of WIDL-expression created
by this algorithm?,

On average, a WIDL-expression created by this
algorithm, using an average of m = 38 tiles per
sentence (for an average input sentence length of
30 words) and an average of k£ = 9 possible trans-
lations per tile, encodes a candidate set of about
10° possible translations. As the specification
of the || operators takes space O(1), Theorem 1

1English reference: the gunman was shot dead by the police.

3 —0.300.870.490.39}

3 —0.120.160.22 0.11}

guarantees that these WIDL-expressions encode
compactly these huge spaces in O(mk).

In the second phase, we employ our WIDL-
based realization engine to interpolate the distri-
bution probabilities of WIDL-expressions with a
trigram language model. In the notation of Equa-
tion 2, we use four feature functions hy, ..., hg for
the WIDL-expression distributions (one for each
probability distribution encoded); a feature func-
tion hy4 for a trigram language model; a feature
function hy for a word-count model, and a feature
function hg for a phrase-count model.

As acknowledged in the Machine Translation
literature (Germann et al., 2003), full A* search is
not usually possible, due to the large size of the
search spaces. We therefore use an approxima-
tion algorithm, called WIDL-NGLM-A?Z, which
considers for unfolding only the nodes extracted
from the priority queue @ which already unfolded
a path of length greater than or equal to the max-
imum length already unfolded minus & (we used
k = 2 in the experiments reported here).

MT Performance Evaluation. When evaluated
against the state-of-the-art, phrase-based decoder
Pharaoh (Koehn, 2004), using the same experi-
mental conditions — translation table trained on
the FBIS corpus (7.2M Chinese words and 9.2M
English words of parallel text), trigram lan-
guage model trained on 155M words of English
newswire, interpolation weights A (Equation 2)
trained using discriminative training (Och, 2003)
(on the 2002 NIST MT evaluation set), probabilis-
tic beam b set to 0.01, histogram beam s set to 10
— and BLEU (Papineni et al., 2002) as our met-
ric, the WIDL-NGLM-AJ algorithm produces
translations that have a BLEU score of 0.2570,
while Pharaoh translations have a BLEU score of
0.2635. The difference is not statistically signifi-
cant at 95% confidence level.

These results show that the WIDL-based ap-
proach to machine translation is powerful enough
to achieve translation accuracy comparable with
state-of-the-art systems in machine translation.

6 Conclusions

The approach to sentence realization we advocate
in this paper relies on WIDL-expressions, a for-
mal language with convenient theoretical proper-
ties that can accommodate a wide range of gener-
ation scenarios. In the worst case, one can work
with simple bags of words that encode no context

1111

preferences (Soricut and Marcu, 2005). One can
also work with bags of words and phrases that en-
code context preferences, a scenario that applies to
current approaches in statistical machine transla-
tion (Section 5). And one can also encode context
and ordering preferences typically used in summa-
rization (Section 4).

The generation engine we describe enables
a tight coupling of content selection with sen-
tence realization preferences. Its algorithm comes
with theoretical guarantees about its optimality.
Because the requirements for producing WIDL-
expressions are minimal, our WIDL-based genera-
tion engine can be employed, with state-of-the-art
results, in a variety of text-to-text applications.

Acknowledgments This work was partially sup-
ported under the GALE program of the Defense
Advanced Research Projects Agency, Contract
No. HR0011-06-C-0022.

References

Srinivas Bangalore and Owen Rambow. 2000. Using
TAG, a tree model, and a language model for gen-
eration. In Proceedings of the Fifth International
Workshop on Tree-Adjoining Grammars (TAG+).

Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. 2001. Introduction to
Algorithms. The MIT Press and McGraw-Hill.

Simon Corston-Oliver, Michael Gamon, Eric K. Ring-
ger, and Robert Moore. 2002. An overview of
Amalgam: A machine-learned generation module.
In Proceedings of the INLG.

Bonnie Dorr, David Zajic, and Richard Schwartz.
2003. Hedge trimmer: a parse-and-trim approach
to headline generation. In Proceedings of the HLT-
NAACL Text Summarization Workshop, pages 1-8.

Michael Elhadad. 1991. FUF User manual — version
5.0. Technical Report CUCS-038-91, Department
of Computer Science, Columbia University.

Ulrich Germann, Mike Jahr, Kevin Knight, Daniel
Marcu, and Kenji Yamada. 2003. Fast decoding and
optimal decoding for machine translation. Artificial
Intelligence, 154(1-2):127-143.

Nizar Habash. 2003. Matador: A large-scale Spanish-
English GHMT system. In Proceedings of AMTA.

J. Hajic, M. Cmejrek, B. Dorr, Y. Ding, J. Eisner,
D. Gildea, T. Koo, K. Parton, G. Penn, D. Radev,
and O. Rambow. 2002. Natural language genera-
tion in the context of machine translation. Summer
workshop final report, Johns Hopkins University.

K. Knight and V. Hatzivassiloglou. 1995. Two level,
many-path generation. In Proceedings of the ACL.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003.
Statistical phrase based translation. In Proceedings
of the HLT-NAACL, pages 127-133.

Philipp Koehn. 2004. Pharaoh: a beam search decoder
for phrase-based statistical machine transltion mod-
els. In Proceedings of the AMTA, pages 115-124.

I. Langkilde-Geary. 2002. A foundation for general-
purpose natural language generation: sentence re-
alization using probabilistic models of language.
Ph.D. thesis, University of Southern California.

Chin-Yew Lin. 2004. ROUGE: a package for auto-
matic evaluation of summaries. In Proceedings of
the Workshop on Text Summarization Branches Out
(WAS 2004).

Christian Matthiessen and John Bateman. 1991.
Text Generation and Systemic-Functional Linguis-
tic. Pinter Publishers, London.

Mehryar Mobhri, Fernando Pereira, and Michael Ri-
ley. 2002. Weighted finite-state transducers in
speech recognition. Computer Speech and Lan-
guage, 16(1):69-88.

Mark-Jan Nederhof and Giorgio Satta. 2004. IDL-
expressions: a formalism for representing and pars-
ing finite languages in natural language processing.
Journal of Artificial Intelligence Research, pages
287-317.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Proceedings of
the ACL, pages 160—-167.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In In Proceedings
of the ACL, pages 311-318.

Stuart Russell and Peter Norvig. 1995. Artificial Intel-
ligence. A Modern Approach. Prentice Hall.

Radu Soricut and Daniel Marcu. 2005. Towards devel-
oping generation algorithms for text-to-text applica-
tions. In Proceedings of the ACL, pages 66—74.

Radu Soricut. 2006. Natural Language Generation for
Text-to-Text Applications Using an Information-Slim
Representation. Ph.D. thesis, University of South-
ern California.

David Zajic, Bonnie J. Dorr, and Richard Schwartz.
2004. BBN/UMD at DUC-2004: Topiary. In Pro-
ceedings of the NAACL Workshop on Document Un-
derstanding, pages 112—1109.

Liang Zhou and Eduard Hovy. 2003. Headline sum-
marization at ISI. In Proceedings of the NAACL
Workshop on Document Understanding.

1112

