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Abstract

Unification grammars are widely accepted
as an expressive means for describing the
structure of natural languages. In gen-
eral, the recognition problem is undecid-
able for unification grammars. Even with
restricted variants of the formalisnoff-
line parsablegrammars, the problem is
computationally hard. We present two nat-
ural constraints on unification grammars
which limit their expressivity. We first
show thathon-reentrantunification gram-
mars generate exactly the class of context-
free languages. We then relax the con-
straint and show thadne-reentrantunifi-
cation grammars generate exactly the class
of tree-adjoining languages. We thus re-
late the commonly used and linguistically
motivated formalism of unification gram-
mars to more restricted, computationally
tractable classes of languages.

1 Introduction

Unification grammars (UG) (Shieber,

Shuly Wintner
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Unification grammars are Turing equivalent:
determining whether a given string is generated by
a given grammar is as hard as deciding whether
a Turing machine halts on the empty input (John-
son, 1988). Therefore, the recognition problem for
unification grammars is undecidable in the general
case. To ensure its decidability, several constraints
on unification grammars, commonly known as the
off-line parsability (OLP) constraintswere sug-
gested, such that the recognition problem is decid-
able for off-line parsable grammars (Jaeger et al.,
2005). The idea behind all the OLP definitions is
to rule out grammars which license trees in which
unbounded amount of material is generated with-
out expanding the frontier word. This can happen
due to two kinds of rulese-rules (whose bodies
are empty) and unit rules (whose bodies consist
of a single element). However, even for unifica-
tion grammars with no such rules the recognition
problem is NP-hard (Barton et al., 1987).

In order for a grammar formalism to make pre-
dictions about the structure of natural language
its generative capacity must be constrained. It is
now generally accepted that Context-free Gram-

1986; mars (CFGs) lack the generative power needed for

Shieber, 1992; Carpenter, 1992) have originatethis purpose (Savitch et al., 1987), due to natu-
as an extension of context-free grammars, the baal language constructions such as reduplication,
sic idea being to augment the context-free rulesnultiple agreement and crossed agreement. Sev-
with non context-free annotations (feature struc-eral linguistic formalisms have been proposed as
tures) in order to express additional information.capable of modeling these phenomena, including
They can describe phonological, morphologicalLinear Indexed Grammars (LIG) (Gazdar, 1988),
syntactic and semantic properties of languages sHead Grammars (Pollard, 1984), Tree Adjoin-
multaneously and are thus linguistically suitableing Grammars (TAG) (Joshi, 2003) and Combina-
for modeling natural languages. Several formulatory Categorial Grammars (Steedman, 2000). In
tions of unification grammars have been proposeda seminal work, Vijay-Shanker and Weir (1994)
and they are used extensively by computationaprove that all four formalisms are weakly equiv-
linguists to describe the structure of a variety ofalent. They all generate the class wofildly
natural languages. context-sensitive languag@si csL), all members
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of which have recognition algorithms with time terminak, including thestart symbolS, and R</
complexityO(n%) (Vijay-Shanker and Weir, 1993; is a set of productions, assumed to be in a nor-
Satta, 1994}. As a result of the weak equiva- mal form where each rule has either (zero or more)
lence of four independently developed (and lin-non-terminals or a single terminal in its body, and
guistically motivated) extensions of CFG, the classwvhere the start symbol never occurs in the right
McsL is considered to be linguistically meaning- hand side of rules. The set of all such context-free
ful, a natural class of languages for characterizinggrammars is denotedrGs.
natural languages. In a linear indexed grammar (LIG),strings
Several authors tried to approximate unifica-are derived from nonterminals with an associated
tion grammars by means of context-free gram-stack denotedi[l; ...[,], whereA is a nontermi-
mars (Rayner et al., 2001; Kiefer and Krieger,nal, eachi; is a stack symbol, and is the top
2004) and even finite-state grammars (Pereira andf the stack. Since stacks can grow to be of un-
Wright, 1997; Johnson, 1998), but we are notbounded size during a derivation, some way of
aware of any work which relates unification gram-partially specifying unbounded stacks in LIG pro-
mars with the class MsL. The main objective of ductions is needed. We us§/; . ..[, oo] to de-
this work is to define constraints on UGs whichnote the nonterminall associated with any stack
naturally limit their generative capacity. We de-n whose topn symbols ardy,ls...,l,. The set
fine two natural and easily testable syntactic conef all nonterminals inVy, associated with stacks
straints on UGs which ensure that grammars satwhose symbols come froiir, is denoted/y [V'].

isfying them generate the context-free and theyefinition 1. ALinear Indexed Grammais a five
mildly context-sensitive languages, respectlvely{up|egli = (Vn, Vi, Vs, RY. S) whereV, Vyy and
The contribution of this result is twofold: S are as aboveV, is a finite set of indices (stack
o From a theoretical point of view, constraining Symbols) andR" is a finite set of productions in
unification grammars to generate exactly theone of the following two forms:
class McsL results in a grammatical formal-
ism which is, on one hand, powerful enough
for linguists to express linguistic generaliza- e unboundedstack: N;[p; ...p, oco] — « or
tions in, and on the other hand cognitively ad- Nilp1 .. .pn 0] = aNjlqi ... gm 0|0

equate, in the sense that its generative capac-
o ) where N;, N; € VN, p1...Pnsq1--. e Vi,
ity is constrained; o Ny PLe- Dol . - Gm s

n,m > 0anda, 5 € (V; UVN[V]])".

e Practically, such a constraint can provide ef- A crucial characteristic of LIG is that onlgne
ficient recognition algorithms for the limited copy of the stack can be copied tsiagleelement
class of unification grammars. in the body of a rule. If more than one copy were

We define some preliminary notions in section 2allowed, the expressive power would grow beyond
and then show a constrained version of UG whichM CSL.

generates the classsCof context-free languages Definition 2. Given a LIG (VN,V;,VS,R“,S),

in section 3. Section 4 presents the main resulthederivation relation'=-;;’ is defined as follows:
namely a restricted version of UG and a mappindor all ¥;, ¥y € (Vy [V U V;)* andn € V5,

of its grammars to LIG, establishing the proposi-
tion that such grammars generate exactly the class

o fixedstack: N;[p1...pn] — «

o If Ni[pl .. .pn] — c Rli then

McsL. For lack of space, we favor intuitive expla- Uy Ni[p1 ... .pa]¥s = Ura¥y
nation over rigorous proofs; the full details can be '
found in Feinstein (2004). o If Ny[py1...pn 0] — ac R then
2 Preliminary notions Ui N;[p1 ... pan]¥2 = Via Wy
H _ cf _— cf

AhCFG '_S a four tfl:pleq . <‘_/N7Vt’R fn’S> o If Ni[pl o.pp 00] — aNjlq1...qm 0] €
whereV; is a set ofterminak, V is a set ofnon- R then U Nilpr . . . pan] ¥ =0

The termmildly context-sensitivevas coined by Joshi UyaNjlqr ... gmn]| Y2
(1985), in reference to a less formally defined class of lan-— =
guages. Strictly speaking, what we calldéglL here is also 2The definition is based on Vijay-Shanker and Weir
known as the class a@fee-adjoining languages (1994).
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Thelanguagegenerated by7" is L(GY) = {w €  undefined we say that the unificatitails and de-
V¥ | S[] =u w}, where S’ is the reflexive, noteitasALIB = T. Unification is lifted to MRSs:
transitive closure of=;,’. given two MRSso and p, it is possible to unify

Unification grammars are defined ovéea- thei-th element oo with the j-th element ofp.
ture structures(FSs) which are directed, con- This operation, calledinification in contextand
nected, rooted, labeled graphs, usually depicted &€noted(a,4) U (p, j), yields two modified vari-
attribute-value matrice$AVM). A feature struc- ants ofo andp: (o’, o).
ture A can be characterized by its set of paths, In unification grammarsformsare MRSs. A
I14, an assignment of atomic values to the ends oform 04 = (A1,...,A;) immediately derives
some pathsd 4(-), and a reentrancy relationss’  another formop = (By,...,By,) (denoted by
relating paths which lead to the same node. A sesa :1>u op) iff there exists a rule* € R* of
quence of feature structures, where some noddength n that licenses the derivation. The head
may be shared by more than one element, is af " is matched against some elemehtin o4
multi-rooted structurédMRS). using unification in context{o4,4) U (r*,0) =

Definition 3. Unification grammarsare defined (47')- If the unification does not faily is ob-
over a signature consisting of a finite setoms  tained by replacing theth element of, with the
of atoms; a finite seFEATS of features and a fi- body ofr’. The reflexive transitive closure (}é}‘u'
nite setWoRDsof words. Aunification grammar  is denoted by=,,”.

is atupleG" = (R A* L) whereR" is afinite  pefinition 5. Thelanguageof a unification gram-
set of rulgs, eac_h of whl_ch IS an MRS of lengthar v is L(GY) = {w;---w, € WORDS' |
n > 1, L is alexicon, WhIF:h associates with ev- A* 5. (AL,.... A}, whereA; € L(w;) for
ery wordw € WORDSa finite set of feature struc- L<i<n.

tures,L(w), and A® is a feature structure, thetart -

symbol 3 Context-free unification grammars
Definition 4. A unification grammarR", A*, L)

over the SignaturdATOMS, FEATS, WORDS> is We define a constraint on unification grammars
non-reentrant iff for any rule r* € RY, rv is Whichensures that grammars satisfying it generate

non-reentrant. Itimne-reentrantff for every rule  the class @L. The constraint disallowany reen-

r¢ € R*, r¥ includes at most one reentrancy, be-trancies in the rules of the grammar. When rules
tween the head of the rule and some element ¢i'€ non-reentrant, applying a rule implies that an
the body. LetUG,,., UG, be the sets of all non- €xact copy of the body of the rule is inserted

reentrant and one-reentrant unification grammars,into the generated (sentential) form, not affecting
respectively. neighboring elements of the form the rule is ap-

plied to. The only difference between rule appli-
cation in UG,,- and the analog operation inFGs

Informally, a rule is non-reentrant if (on an

AVM view) no reentrancy tags occur in it. When . e
the rule is viewed as a (multi-rooted) graph, it isiS that the former requires unification whereas the

non-reentrant if the in-degree of all nodes is gtatter only calls for identity check. This small dif-
most 1. A rule is one-reentrant if (on an AVM ference does not affect the generative power of the

view) at most one reentrancy tag occurs in it, eX_form_alls_ms, since unification can be pre-compiled
n this simple case.

actly twice: once in the head of the rule and oncé SR
in an element of its body. When the rule is viewed The uivial _d_lrec_tlon IS to map a'CFG to a non-
as a (multi-rooted) graph, it is one-reentrant if the/©€Ntrant unification grammar, since every CFG
in-degree of all nodes is at most 1, with the excep'™’ tr|V|aII)_/, such a grammar_(where termme}l and
tion of one node whose in-degree can be 2, pro[1on—term|nal symbols are wewed_as gtomlc fea-
vided that the only two distinct paths that lead tot_ure structures). For the inverse direction, we de-

this node leave from the roots of the head of thd"€ @ Mapping from UG to CrGs. The non-
rule and an element of the body. terminals of the CFG in the image of the mapping

FSs and MRSs are partially ordered byb- are the set of all feature structures defined in the

sumption denoted C’. The least upper bound source UG.
with respect to subsumption ignification de- Definition 6. Let ug2cfg : UG,,, — CFGS
noted 1. Unification is partial; wherA LU B is  be a mapping of UG,,, to CFGs, such that
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if G* = (R",A%,L) is over the signature the signature to representand simulate LIG sym-

(ATOMS, FEATS, WORDS) then ug2cfgG") =  bols. In particular, FSs will encode lists in the nat-

Vi, Vi, R, 5¢T, where: ural way, hence the featuressAD andTAIL. For
the sake of brevity, we use standard list notation

o Vw={Ai|Ag = A1...A, € R"i > 0}U  when FSs encode lists. LIG symbols are mapped
{A|AeL(a),a € ATOMS} U{A®}. VN is 1o FSs thus:

the set of all the feature structures occurring

in any of the rules or the lexicon 6f*. Definition 8. Let toFs be a mapping of LIG sym-

bols to feature structures, such that:

o SY=A" eV, =WoORDS 1. If ¢t € V; then toFst) = (t)
e R¢/ consists of the following rules: 2.1fN € Vyandp; € Vi,1 < i < n, then
1. LetAg — A;...A, € R*andB € RN IpL, - pul) = (NP1, Pr)
L(b). If forsomei, 1 <i < n, A;UB # The mappingoFsis extended to sequences of
T, thenA; — b e R symbols by settindoFs(«3) = toFs(a)toFs(3).
2. IfAg — A;...A, € R*andAs LAy # Note thattoFsis one to one.
T thenS — A, ... A, € R, When FSs that are images of LIG symbols are
3. Letr¥ = Ay — A;...A, andry = concerned, unification is reduced to identity:

By — Bi...By, wherer},ry € R*. If Lemma 3. Let X;,Xy; € Vy[VS]U V.. If
forsomei, 1 < i < n, A;UBy # T, toFYX;) Ll toFs(X3) # T then toF$X;) =
then the ruleA; — By ...B,, € R/ toFs(X5).

When a feature structure which is represented as
an unbounded list (a list that is not terminated by
elist) is unifiable with an image of a LIG symbol,
the former is a prefix of the latter.

The size ofug2cfd G*) is polynomial in the
size of G*. By inductions on the lengths of the
derivation sequences, we prove the following the

orem:
_ Lemma 4. LetC = (p1,...,py,[i]) be a non-
The(?[rerr: 1. h; G;‘ = (R%A%L) ';G(i[ NON" " reentrant feature structure, where, ...,p, €
reentrant unification grammar an = x
1g2cig G, thenL(G°F) — L(G"). VS,. and letX € V[V ]UV;. ThenCUtoFS X)) #
: T iff toFs(X) = (p1,...,pn, @), for somea €
Corollary 2. Non-reentrant unification grammars V.

are weakly equivalent tGFGs To simulate LIGs with UGs we represent each
symbol in the LIG as a feature structure, encod-
ing the stack of LIG non-terminals as lists. Rules
In this section we show thane-reentrant unifica- that propagate stacks (from mother to daughter)
tion grammarsgenerate exactly the classddL. are simulated by means of reentrancy in the UG.
In such grammars each rule can have at modbefinition 9. Let lig2ug be a mapping dfiGs to
one reentrancy, reflecting the LIG situation whereUG,,., such that ifG"* = (Vy, V;, Vs, R¥, S) and
stacks can be copied to exactly one daughter iy = (R, A%, £) = lig2ug(G") thenG* is over
each rule. the signaturer (definition 7),A® = toFs(S| ), for

all t € Vi, L(t) = {toFg(t)} andR" is defined
by:

e A LIG rule of the formXy — « is mapped to
the unification rule toF&Xy) — toFY«)

4 Mildly context-sensitive UG

4.1 Mapping LIG to UG,

In order to simulate a given LIG with a unification
grammar, a dedicated signature is defined based
on the parameters of the LIG.

Definition 7. Givena LIG(Vy, Vi, Vi, RY, S), let e ALIG rule of the form;[p1, ..., p, o] —

7 be (ATOMS, FEATS, WORDS), whereAToms = a _Nj[q},u-,qm oo] 3 is mapped to the
Vv U Vs U {elist}, FEATS = {HEAD, TAIL }, and unification rule (N;,p1,...,pn,[1]) —
WORDS=V,. toFs(a) (N, q1, - - -, qm,[ 1] ) tOFS(3)

We user throughout this section as the signa- Evidently, lig2ug(G") € UG, for any LIG
ture over which UGs are defined. We use FSs ovef".
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Theorem 5. If G = (Vy,V;, Vi, RY, S1) is a The following lemma indicates an important
LIG andG* = lig2ug(G") thenL(G") = L(G").  property of one-reentrant UGs. Informally, in any
FS that is an element of a sentential form induced
4.2 Mapping UG, to LIG by such grammars, if two paths are long (specif-
We are now interested in the reverse directionically, longer than the maximum height of the
namely mapping UGs to LIG. Of course, sincegrammar), they must have a long common prefix.
UGs are more expressive than LIGs, only a subtemma 6. Let G* = (R A%, L) € UGy, be a
set of the former can be correctly simulated by theone-reentrant unification grammar. Lét be an
latter. The differences between the two formalismslement of a sentential form induced @y. If 7 -
can be summarized along three dimensions: (Fj)-m1, ™ (Fg)-m2 € 114, wherer;, F,, € FEATS,

_ . j # kand|m| < |msl, then|r;| < maxH{(G").
The basic elementsUG manipulates feature

Lemma 6 facilitates a view of all the FSs in-
structures, and rules (and forms) are MRSSHuced by such a grammar as (unboundedly long)
whereas LIG manipulates terminals and y g y lond

. . lists of elements drawn from a finite, predefined
non-terminals with stacks of elements, and . .
set. The set consists of all features iEAFS
rules (and forms) are sequences of such
symbols and all the non-reentrant feature structures whose
' height is limited by the maximal height of the
Rule application In UG a rule is applied byni- unification grammar. Note that even with one-
fication in contexbf the rule and a sentential reentrant UGs, feature structures can be unbound-

form. both of which are MRSs. whereas in €dly deep. What lemma 6 establishes is that if a
LIG. the head of a rule and the selected elef€ature structure induced by a one-reentrant uni-

ment of a sentential form must have the samdication grammar is deep, then it can be repre-
non-terminal symbol and consistent stacks. S€Nted as aingle“core” path which is long, and
all the sub-structures which “hang” from this core

Propagation of information in rules In UG in-  are depth-bounded. We use this property to encode
formation is shared through reentranciessuch feature structures esrds
whereas In LIG, information is propagated by Definition 11. Let ¢ : NRFSS x PATHS —
copying the stack from the head of the rule to(FEATS U NRFsS)* be a mapping such

one element of its body. that if A is a non-reentrant FS and
7 = (Fi,...,F,) € Il4, then the cord
We show that one-reentrant UGs can all be corg (A ) is (Ay,Fy,...,An, Fn,Any1), Where

rectly mapped to LIG. For the rest of this sectionfor | < j < 5, + 1, A; are non-reentrant FSs such
we fix a signatur¢ ATOMS, FEATS, WORDS) OVer  pat-
which UGs are defined. Let RFssbe the set of
all non-reentrant FSs over this signature. o Iy, = {{6) -7 | (P, Fie1,G) - €
One-reentrant UGs induce highly constrained ~— a,i <n,G # Fi} U {e}

(sententla_l) forms: in such forms, there are no 04, (1) = OA((F1, ..., Fi1) - ) (if itis de-
reentrancies whatsoever, neither between distinct fined)
elements nor within a single element. Hence all '
the FSs in forms induced by a one-reentrant UGNe also define lagl(A,w)) = A,i1. The
are non-reentrant. height of a cord is defined agVU(A,x)| =
Definition 10. LetA be a feature structure with no 2X1<i<n+1(|Ai]). For each cord¥(A, r) we re-
: . ) fer to A as thebase feature structur@and tor as
reentrancies. Théeightof A, denotedA|, is the )

. L . the base path Thelength of a cord is the length
length of the longest path ia. This is well-defined

: ._of the base path.

since non-reentrant feature structures are acyclic. _ _ _
LetG" = (R",A®, L) € UGy, be aone-reentrant  1he functionW is one to one: .glven‘[/(A,w),
unification grammar. Thenaximum heightof the ~ POthA andw are uniquely determined.
grammar, maxHiG"), is the height of the high- Lemma 7. Let G* be a one-reentrant unification
est feature structure in the grammar. This is wellgrammar and letA be an element of a sentential
defined since all the feature structures of oneform induced by=". Then there is a path € 114
reentrant grammars are non-reentrant. such thaf ¥ (A, )| < maxH{(G").
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Lemma 7 implies that every non-reentrant FSincludes all feature structures that are both unifi-
(i.e., FSs induced by one-reentrant grammars) caable withC and can be represented as a cord whose
be represented as a height-limited cord. This mapheight is limited by the grammar height and whose
ping resolves the first difference between LIG andbase path ig. We call this set theompatibility set
UG, by providing a representation of thasic el- of C andr and use it to define the set of all possi-
ementsWe use cords as the stack contents of LIGole prefixes of cords whose base FSs are unifiable
non-terminals: cords can be unboundedly longwith C (see definition 13). Crucially, the compat-
but so can LIG stacks; the crucial point is thatibility set of C is finite for any feature structur@
cords are height limited, implying that they can besince the heights and the lengths of the cords are

represented usingfanite number of elements. limited.
We now show how to simulate, in LIG, the uni- pefinition 12. Given a non-reentrant feature
fication in context of a rule and a sentential form.strycture C, a pathm = (Fy,...,F,) € Il¢

The first step is to have exactly one non-terminaknd a natural number, the compatibility set
symbol (in addition to the start symbol); when all1(C, , 1), is defined as the set of all feature struc-

non-terminal symbols are identical, only the con-yres A such thatC U A # T, = € II4, and
tent of the stack has to be taken into account. RehI/(A, )| < h.

call that in order for a LIG rule to be applicable The compatibility set is defined for a feature

to a sentential form, the stack of the rule’s headStructure and a given path (whénis taken to be

must be gprefix of the stack of the selected ele- the grammar height). We now define two similar

ment in the form. The only question is whetherthesets, FH and UH, for a given FS, independently of

two stacks are equal (fixed rule head) or not (un-a path. When rules of a one-reentrant unification

bounded rule head). Since the contents of StaCké'rammar are mapped to LIG rules (definition 14),

are cords, we need a property relating two Cc)rOISI’:H and UH are used to define heads of fixed and
on one hand, with unifiability of their base feature nbounded LIG rules, respectively. A single unifi-

structures, on the other. Lemma 8 establishes suc tion rule is mapped to setof LIG rules, each

a property. Informally, if the base path of one cord ith a different head. The stack of the1 head is

is a prefix of the base path of the other cord and al ome member of the sets FH and UH. Each such
feature structures along the common path of bo”?nember is a prefix of the stack of potential ele-

cords are unifiable, then the base feature structur(?ﬁentS of sentential forms that the LIG rule can be
of both cords are unifiable. The reverse direCtionappIied to

also holds. o
Definition 13. Let C be a non-reentrant feature
Lemma 8. LetA,B € NRFssbe non-reentrant gtrcture andh be a natural number. Then:

fi f r r n PATH h
eature structures and,m € S be paths FH(C.h) = [U(A.7) |7 € TTo A € T(C.m. b))

such thatr; € Ilg, w1 - m € 114, \IJ(A,ﬂ'l . 7T2) = UH(C, k) = {T(A,7) - (F) | T(A, ) € FH(C, ),
<t1, Fi,..., F\7T1|7t\7r1|+17 F\W1|+17 ... 7t|7r1-7r2|+1>1 Oc(m) 1,F € FEATS, val(last(¥(CU A, 7)), (F)) T}
v(B,m) N (s1,F1,. ., Sjmy 41, and This accounts for the second difference between

(Fmy|+1) & I P ThenA LB # T iff

LIG and one-reentrant UG, namehule appli-
forall i, 1 <i<|m|+1,s Ut #T. vle app

cation We now briefly illustrate our account of
The length of a cord of an element of a sen-the last differencepropagation of information in
tential form induced by the grammar cannot berules In UG, information is shared between the
bounded, but the length of any cord representatiorule’s head and a single element in its body. Let
of arule head is limited by the grammar height. Byr* = (Cy, ..., C,) be a reentrant unification rule
lemma 8, unifiability of two feature structures canin which the pathy.., leaving thee-th element of
be reduced to a comparison of two cords representhe body, is reentrant with the patly leaving the
ing them and only the prefix of the longer cord (ashead. This rule is mapped tos&tof LIG rules,
long as the shorter cord) affects the result. Sinceorresponding to the possible rule heads induced
the cord representation of any grammar rule’s heatly the compatibility set o€,. Letr be a member
is limited by the height of the grammar we alwaysof this set, and leX; and X, be the head and the
choose it as the shorter cord in the comparison. e-th element of-, respectively. Reentrancy it is
We now define, for a feature structutgwhich  modeled in the LIG rule by copying the stack from
is a head of a rule) and some paththe set that X, to X.. The major complication is the contents
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of this stack, which varies according to the cord is in R", where X, is defined as follows.

representations ofy andC. and to the reentrant Let 7y be the base path oKy and A be
paths. the base feature structure ofy. Applying

Summing up, in a LIG simulating a one- the ruler® to A, define((A),0) Ll (r*,0) =
reentrant UG, FSs are represented as stacks of ((Po), (Po,...,Pe,...,Pyn)).

symbols. The set of stack symbdls, therefore,

is defined as a set of height bounded non-reentrant
FSs. Also, all the features of the UG are stack
symbols.V; is finite due to the restriction on FSs

(@) If up is not a prefix ofry then X, =
N[W(Pe, pe)]-
(b) If 7y = po - v, v € PATHS then

(no reentrancies and height-boundedness). The set L If Xo = N[U(A,7o)] then X, =
of terminals,V;, is the words of the UG. There N[¥(Pe, e - v)].

are exactly two non-terminal symbols (the start ii. If Xo = N[U(A m),F oo] then
symbol) andV . Xe = N[U(Pq, pie - v), F 0.

The set of rules is divided to four. Treiart By inductions on the lengths of the derivations
rule only applies once in a derivation, simulating we prove that the mapping is correct:
the situation in UGs of a rule whose head is unifi-
Theorem 9. If G* € UG, then L(G") =

able with the start symbolTerminal rulesare a ol
straight-forward implementation of the lexicon in L(ug2lig(G*)).
terms of LIG. Non-reentrant rulesare simulated 5 cgonclusions

in a similar way to how rules of a non-reentrant
UG are simulated by CFG (section 3). The ma-The main contribution of this work is the definition

jor difference is the head of the rulé&,, which of two constraints on unification grammars which
is defined as explained abov@ne-reentrant rules dramatically limit their expressivity. We prove
are simulated similarly to non-reentrant ones, théhat non-reentrant unification grammars generate
only difference being the selected element of theexactly the class of context-free languages; and
rule body,X., which is defined as follows. that one-reentrant unification grammars generate
Definition 14. Let ug2lig be amapping of UG, exactly the class of m?ldly co_ntex'F—s_ensitive Ian_—
to LiGs, such that ifG* = (R*, A%, L) € UGy, guages. We thus obtain two linguistically plausi-

then ug2ligG®) = (V, Vi, Vs, RY, S), where ble constrai_ned formalisms whose computational
Vy = {N,S} (fresh symbols)y; = Worps, Processingis tractable.
V, = FEATSU {A | A € NRFss|A| < This main result is pn_mar_llyaformal grammar
maxH(G")}, andR" is defined as follows: result. However, we maintain that it can be easily
adapted such that its consequences to (practical)
1. S[] — N[¥(A%,¢)] computational linguistics are more evident. The

motivation behind this observation is that reen-

2. For everyw € WORDS such thatl(w) = o
trancy only adds to the expressivity of a gram-

{Co} and for everymy € Il¢,, the rule

N[W(Co, m0)] — wis in RY mar formalism when it is potentiallynbounded
’ ' i.e., when infinitely many feature structures can
3. If (Co,...,C,) € R“ is a non-reentrant be the possible values at the end of the reentrant

rule, then for everyXy € LIGHEAD(Cy) the  paths. It is therefore possible to modestly ex-
rule Xo — N[¥(Cy,e)]... N[¥(Cy,e)] is  tend the class of unification grammars which can
in RY. be shown to generate exactly the class of mildly
u context-sensitive languages, by allowing also a
4. Letr® = (Co,...,Cp) € R¥and(0, ) & guages, Ly alowing

limited form of multiple reentrancies among the
(e, pe), wherel < e < n. Then for every .

elements in a rule (e.g., to handle agreement phe-
X € LIGHEAD(Cp) the rule .

nomena). This can be most useful for grammar

Xo — N[U(Cy,e)]...N[¥(Ce1,¢)] writers, and at the same time adds nothing to the
X, expressivity of the formalism. We leave the formal
N[¥(Cey1,€)] ... N[W(Cp,e)] details of such an extension to future work.

— _ This work can also be extended in other direc-
For a non-reentrant FS,, we define: LIGHEAD(Cy) . Th . f trant UGS to LIG

as{N[n] | n € FH(Co,maxH(G"))} U {N[y o] | 1 & juon_s. e mapping of one-reentrant UGs to

UH(Co, maxH{G*))} is highly verbose, resulting in LIGs with a huge
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number of rules. We believe that it should beAravind K. Joshi. 1985. Tree Adjoining Grammars:
possib|e to Optimize the mappn‘]g such that much How much context SenS|t|V|ty IS reqwred to prOV|de

. a reasonable structural description. In D. Dowty,
smaller grammars are generated. In particular, we |. Karttunen, and A. Zwicky, editordyatural Lan-

are looking into mappings of one-reentrant UGS 10 gyage Parsingpages 206-250. Cambridge Univer-
other McsL formalisms, notably TAG. sity Press, Cambridge, U.K.
The two constraints on unification grammars A avind K. Joshi. 2003. Tree-adjoining grammars. In

(non-reentrant and one-reentrant) are parallel to Rysjan Mitkov, editorThe Oxford handbook of com-
the first two classes of the Weir (1992) hierarchy putational linguistics chapter 26, pages 483-500.
of languages. A possible extension of this work Oxford university Press.

could be a definition of constraints on unificationBernd Kiefer and Hans-Ulrich Krieger. 2004. A
grammars that would generate all the classes of context-free superset approximation of unification-
the hierarchy. Another direction is an extension based grammars. In Harry Bunt, John Carroll, and
of one-reentrant unification grammars, where the ﬁ';%2;@5&%‘2&?&%&%\5l&?&%ﬁigggﬁé
reentrancy does not have to be between the head pplishers.

and one element of the body. Also of interest areF

e . ... Fernando C. N. Pereira and Rebecca N. Wright. 1997.
two-reentrant unification grammars, possibly with

Finite-state approximation of phrase-structure gram-

limited kinds of reentrancies. mars. In Emmanuel Roche and Yves Schabes, edi-
tors, Finite-State Language Processinganguage,
Acknowledgments Speech and Communication, chapter 5, pages 149—
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