
Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the ACL, pages 1073–1080,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Improving QA Accuracy by Question Inversion  

John Prager  
IBM T.J. Watson Res. Ctr. 

Yorktown Heights 
N.Y. 10598 

jprager@us.ibm.com 

Pablo Duboue 
IBM T.J. Watson Res. Ctr. 

Yorktown Heights  
N.Y. 10598 

duboue@us.ibm.com 

Jennifer Chu-Carroll 
IBM T.J. Watson Res. Ctr. 

Yorktown Heights  
N.Y. 10598 

jencc@us.ibm.com 
 

Abstract 

This paper demonstrates a conceptually simple 
but effective method of increasing the accuracy 
of QA systems on factoid-style questions.  We 
define the notion of an inverted question, and 
show that by requiring that the answers to the 
original and inverted questions be mutually con-
sistent, incorrect answers get demoted in confi-
dence and correct ones promoted.  Additionally, 
we show that lack of validation can be used to 
assert no-answer (nil) conditions.  We demon-
strate increases of performance on TREC and 
other question-sets, and discuss the kinds of fu-
ture activities that can be particularly beneficial 
to approaches such as ours.  

1 Introduction 

Most QA systems nowadays consist of the following 
standard modules:  QUESTION PROCESSING, to de-
termine the bag of words for a query and the desired 
answer type (the type of the entity that will be of-
fered as a candidate answer); SEARCH, which will 
use the query to extract a set of documents or pas-
sages from a corpus; and ANSWER SELECTION, 
which will analyze the returned documents or pas-
sages for instances of the answer type in the most 
favorable contexts. Each of these components im-
plements a set of heuristics or hypotheses, as de-
vised by their authors (cf. Clarke et al. 2001, Chu-
Carroll et al. 2003). 

 
When we perform failure analysis on questions in-
correctly answered by our system, we find that there 
are broadly speaking two kinds of failure.  There are 
errors (we might call them bugs) on the implementa-
tion of the said heuristics: errors in tagging, parsing, 
named-entity recognition; omissions in synonym 
lists; missing patterns, and just plain programming 
errors.  This class can be characterized by being fix-
able by identifying incorrect code and fixing it, or 
adding more items, either explicitly or through train-
ing.  The other class of errors (what we might call 
unlucky) are at the boundaries of the heuristics; 

situations were the system did not do anything 
“wrong,” in the sense of bug, but circumstances con-
spired against finding the correct answer. 

 
Usually when unlucky errors occur, the system gen-
erates a reasonable query and an appropriate answer 
type, and at least one passage containing the right 
answer is returned.  However, there may be returned 
passages that have a larger number of query terms 
and an incorrect answer of the right type, or the 
query terms might just be physically closer to the 
incorrect answer than to the correct one.  ANSWER 
SELECTION modules typically work either by trying 
to prove the answer is correct (Moldovan & Rus, 
2001) or by giving them a weight produced by 
summing a collection of heuristic features (Radev et 
al., 2000); in the latter case candidates having a lar-
ger number of matching query terms, even if they do 
not exactly match the context in the question, might 
generate a larger score than a correct passage with 
fewer matching terms. 

 
To be sure, unlucky errors are usually bugs when 
considered from the standpoint of a system with a 
more sophisticated heuristic, but any system at any 
point in time will have limits on what it tries to do; 
therefore the distinction is not absolute but is rela-
tive to a heuristic and system. 

 
It has been argued (Prager, 2002) that the success of 
a QA system is proportional to the impedance match 
between the question and the knowledge sources 
available.  We argue here similarly. Moreover, we 
believe that this is true not only in terms of the cor-
rect answer, but the distracters,1 or incorrect answers 
too.  In QA, an unlucky incorrect answer is not usu-
ally predictable in advance; it occurs because of a 
coincidence of terms and syntactic contexts that 
cause it to be preferred over the correct answer.  It 
has no connection with the correct answer and is 
only returned because its enclosing passage so hap-
pens to exist in the same corpus as the correct an-
swer context.  This would lead us to believe that if a 

                                                      
1 We borrow the term from multiple-choice test design. 

1073



different corpus containing the correct answer were 
to be processed, while there would be no guarantee 
that the correct answer would be found, it would be 
unlikely (i.e. very unlucky) if the same incorrect an-
swer as before were returned. 

 
We have demonstrated elsewhere (Prager et al. 
2004b) how using multiple corpora can improve QA 
performance, but in this paper we achieve similar 
goals without using additional corpora. We note that 
factoid questions are usually about relations between 
entities, e.g. “What is the capital of France?”, where 
one of the arguments of the relationship is sought 
and the others given.  We can invert the question by 
substituting the candidate answer back into the ques-
tion, while making one of the given entities the so-
called wh-word, thus “Of what country is Paris the 
capital?”  We hypothesize that asking this question 
(and those formed from other candidate answers) 
will locate a largely different set of passages in the 
corpus than the first time around.  As will be ex-
plained in Section 3, this can be used to decrease the 
confidence in the incorrect answers, and also in-
crease it for the correct answer, so that the latter be-
comes the answer the system ultimately proposes. 
 
This work is part of a continuing program of demon-
strating how meta-heuristics, using what might be 
called “collateral” information, can be used to con-
strain or adjust the results of the primary QA system.   

 
In the next Section we review related work.  In Sec-
tion 3 we describe our algorithm in detail, and in 
Section 4 present evaluation results.  In Section 5 we 
discuss our conclusions and future work. 

2 Related Work 

Logic and inferencing have been a part of Question-
Answering since its earliest days.  The first such 
systems were natural-language interfaces to expert 
systems, e.g., SHRDLU (Winograd, 1972), or to 
databases, e.g., LIFER/LADDER (Hendrix et al. 
1977).  CHAT-80 (Warren & Pereira, 1982), for in-
stance, was a DCG-based NL-query system about 
world geography, entirely in Prolog.  In these 
systems, the NL question is transformed into a se-
mantic form, which is then processed further.  Their 
overall architecture and system operation is very 
different from today’s systems, however, primarily 
in that there was no text corpus to process. 

 
Inferencing is a core requirement of systems that 
participate in the current PASCAL Recognizing 
Textual Entailment (RTE) challenge (see 
http://www.pascal-network.org/Challenges/RTE and 
.../RTE2).   It is also used in at least two of the more 

visible end-to-end QA systems of the present day.  
The LCC system (Moldovan & Rus, 2001) uses a 
Logic Prover to establish the connection between a 
candidate answer passage and the question.  Text 
terms are converted to logical forms, and the ques-
tion is treated as a goal which is “proven”, with real-
world knowledge being provided by Extended 
WordNet.  The IBM system PIQUANT (Chu-
Carroll et al., 2003) used Cyc (Lenat, 1995) in an-
swer verification.  Cyc can in some cases confirm or 
reject candidate answers based on its own store of 
instance information; in other cases, primarily of a 
numerical nature, Cyc can confirm whether candi-
dates are within a reasonable range established for 
their subtype.   

 
At a more abstract level, the use of inversions dis-
cussed in this paper can be viewed as simply an ex-
ample of finding support (or lack of it) for candidate 
answers.  Many current systems (see, e.g. (Clarke et 
al., 2001; Prager et al. 2004b)) employ redundancy 
as a significant feature of operation:  if the same an-
swer appears multiple times in an internal top-n list, 
whether from multiple sources or multiple algo-
rithms/agents, it is given a confidence boost, which 
will affect whether and how it gets returned to the 
end-user. 

 
The work here is a continuation of previous work 
described in (Prager et al. 2004a,b).  In the former 
we demonstrated that for a certain kind of question, 
if the inverted question were given, we could im-
prove the F-measure of accuracy on a question set 
by 75%.  In this paper, by contrast, we do not manu-
ally provide the inverted question, and in the second 
evaluation presented here we do not restrict the 
question type. 

3 Algorithm 

3.1 System Architecture 

A simplified block-diagram of our PIQUANT sys-
tem is shown in Figure 1.  The outer block on the 
left, QS1, is our basic QA system, in which the 
QUESTION PROCESSING (QP), SEARCH (S) and 
ANSWER SELECTION (AS) subcomponents are indi-
cated.  The outer block on the right, QS2, is another 
QA-System that is used to answer the inverted ques-
tions.  In principle QS2 could be QS1 but parameter-
ized differently, or even an entirely different system, 
but we use another instance of QS1, as-is.  The 
block in the middle is our Constraints Module CM, 
which is the subject of this paper.  

 

1074



The Question Processing component of QS2 is not 
used in this context since CM simulates its output by 
modifying the output of QP in QS1, as described in 
Section 3.3. 

3.2 Inverting Questions 

Our open-domain QA system employs a named-
entity recognizer that identifies about a hundred 
types.  Any of these can be answer types, and there 
are corresponding sets of patterns in the QUESTION 
PROCESSING module to determine the answer type 
sought by any question.  When we wish to invert a 
question, we must find an entity in the question 
whose type we recognize; this entity then becomes 
the sought answer for the inverted question.  We call 
this entity the inverted or pivot term. 

 
Thus for the question: 

(1) “What was the capital of Germany in 1985?” 

Germany is identified as a term with a known type 
(COUNTRY).  Then, given the candidate answer 
<CANDANS>, the inverted question becomes  

(2) “Of what country was < CANDANS> the capital 
in 1985?” 

Some questions have more than one invertible term.  
Consider for example:  

(3) “Who was the 33rd president of the U.S.?” 

This question has 3 inversion points: 
(4) “What number president of the U.S. was 

<CANDANS>?” 

(5) “Of what country was <CANDANS> the 33rd 
president?” 

(6) “<CANDANS> was the 33rd what of the U.S.?” 

 
Having more than one possible inversion is in theory 
a benefit, since it gives more opportunity for enforc-
ing consistency, but in our current implementation 
we just pick one for simplicity.  We observe on 
training data that, in general, the smaller the number 
of unique instances of an answer type, the more 
likely it is that the inverted question will be correctly 
answered.  We generated a set NELIST of the most 
frequently-occurring named-entity types in ques-
tions; this list is sorted in order of estimated cardi-
nality. 

 
It might seem that the question inversion process can 
be quite tricky and can generate possibly unnatural 
phrasings, which in turn can be difficult to reparse.  
However, the examples given above were simply 
English renditions of internal inverted structures – as 
we shall see the system does not need to use a natu-
ral language representation of the inverted questions. 

 
Some questions are either not invertible, or, like 
“How did X die?” have an inverted form (“Who died 
of cancer?”) with so many correct answers that we 
know our algorithm is unlikely to benefit us.  How-
ever, as it is constituted it is unlikely to hurt us ei-
ther, and since it is difficult to automatically identify 
such questions, we don’t attempt to intercept them.  
As reported in (Prager et al. 2004a), an estimated 
79% of the questions in TREC question sets can be 
inverted meaningfully.  This places an upper limit 
on the gains to be achieved with our algorithm, but 
is high enough to be worth pursuing. 

Figure 1.  Constraints Architecture.  QS1 and QS2 are (possibly identical) QA systems. 

Answers

Question 
QS1 
QA system 

QP 
 question proc. 

S 
 search 

AS 
answer selection 

QS2 
QA system 

QP 
 question proc. 

S 
 search 

AS 
answer selection 

CM 
constraints 
module 

 

1075



3.3 Inversion Algorithm 

As shown in the previous section, not all questions 
have easily generated inverted forms (even by a hu-
man).  However, we do not need to explicate the 
inverted form in natural language in order to process 
the inverted question. 
 
In our system, a question is processed by the 
QUESTION PROCESSING module, which produces a 
structure called a QFrame, which is used by the sub-
sequent SEARCH and ANSWER SELECTION modules.  
The QFrame contains the list of terms and phrases in 
the question, along with their properties, such as 
POS and NE-type (if it exists), and a list of syntactic 
relationship tuples.  When we have a candidate an-
swer in hand, we do not need to produce the inverted 
English question, but merely the QFrame that would 
have been generated from it.  Figure 1 shows that 
the CONSTRAINTS MODULE takes the QFrame as one 
of its inputs, as shown by the link from QP in QS1 
to CM.  This inverted QFrame can be generated by a 
set of simple transformations, substituting the pivot 
term in the bag of words with a candidate answer 
<CANDANS>, the original answer type with the type 
of the pivot term, and in the relationships the pivot 
term with its type and the original answer type with 
<CANDANS>.  When relationships are evaluated, a 
type token will match any instance of that type.  Fig-
ure 2 shows a simplified view of the original 
QFrame for “What was the capital of Germany in 
1945?”, and Figure 3 shows the corresponding In-
verted QFrame.  COUNTRY is determined to be a 
better type to invert than YEAR, so “Germany” be-
comes the pivot.  In Figure 3, the token 
<CANDANS> might take in turn “Berlin”, “Mos-
cow”, “Prague” etc. 

 
Figure 2. Simplified QFrame 

 
Figure 3. Simplified Inverted QFrame.   

The output of QS2 after processing the inverted 
QFrame is a list of answers to the inverted question, 
which by extension of the nomenclature we call “in-
verted answers.”  If no term in the question has an 
identifiable type, inversion is not possible. 

3.4 Profiting From Inversions 

Broadly speaking, our goal is to keep or re-rank the 
candidate answer hit-list on account of inversion 
results.  Suppose that a question Q is inverted 
around pivot term T, and for each candidate answer 
Ci, a list of “inverted” answers {Cij} is generated as 
described in the previous section.  If T is on one of 
the {Cij}, then we say that Ci is validated.  Valida-
tion is not a guarantee of keeping or improving Ci’s 
position or score, but it helps.  Most cases of failure 
to validate are called refutation; similarly, refutation 
of Ci is not a guarantee of lowering its score or posi-
tion.   

 
It is an open question how to adjust the results of the 
initial candidate answer list in light of the results of 
the inversion.  If the scores associated with candi-
date answers (in both directions) were true prob-
abilities, then a Bayesian approach would be easy to 
develop.  However, they are not in our system.  In 
addition, there are quite a few parameters that de-
scribe the inversion scenario. 

 
Suppose Q generates a list of the top-N candidates 
{Ci}, with scores {Si}.  If this inversion method 
were not to be used, the top candidate on this list, 
C1, would be the emitted answer.  The question gen-
erated by inverting about T and substituting Ci is 
QTi.  The system is fixed to find the top 10 passages 
responsive to QTi, and generates an ordered list Cij 
of candidate answers found in this set. 

 
Each inverted question QTi is run through our sys-
tem, generating inverted answers {Cij}, with scores 
{Sij}, and whether and where the pivot term T shows 
up on this list, represented by a list of positions {Pi}, 
where Pi is defined as: 
 
 Pi  =  j    if Cij = T, for some j 
 Pi  =  -1 otherwise 
 
We added to the candidate list the special answer 
nil, representing “no answer exists in the corpus.” 

 
As described earlier, we had observed from training 
data that failure to validate candidates of certain 
types (such as Person) would not necessarily be a 
real refutation, so we established a set of types 
SOFTREFUTATION which would contain the broadest 
of our types.  At the other end of the spectrum, we 
observed that certain narrow candidate types such as 
UsState would definitely be refuted if validation 
didn’t occur.  These are put in set MUSTCONSTRAIN. 
Our goal was to develop an algorithm for recomput-
ing all the original scores {Si} from some combina-
tion (based on either arithmetic or decision-trees) of 

Keywords: {1945, <CANDANS>, capital} 
AnswerType: COUNTRY 
Relationships: {(COUNTRY, capital), (capital, 

<CANDANS>), (capital, 1945)} 

Keywords: {1945, Germany, capital} 
AnswerType: CAPITAL 
Relationships: {(Germany, capital), (capital, 

CAPITAL), (capital, 1945)} 

1076



{Si} and {Sij} and membership of SOFTREFUTATION 
and MUSTCONSTRAIN.  Reliably learning all those 
weights, along with set membership, was not possi-
ble given only several hundred questions of training 
data.  We therefore focused on a reduced problem. 

 
We observed that when run on TREC question sets, 
the frequency of the rank of our top answer fell off 
rapidly, except with a second mode when the tail 
was accumulated in a single bucket.  Our numbers 
for TRECs 11 and 12 are shown in Table 1. 

 
Top answer rank TREC11 TREC12 

1 170 108 
2 35 32 
3 23 14 
4 7 7
5 14 9

elsewhere 251 244 
% correct 34 26 

Table 1.  Baseline statistics for TREC11-12. 
 

We decided to focus on those questions where we 
got the right answer in second place (for brevity, 
we’ll call these second-place questions).  Given that 
TREC scoring only rewards first-place answers, it 
seemed that with our incremental approach we 
would get most benefit there.  Also, we were keen to 
limit the additional response time incurred by our 
approach.  Since evaluating the top N answers to the 
original question with the Constraints process re-
quires calling the QA system another N times per 
question, we were happy to limit N to 2.  In addition, 
this greatly reduced the number of parameters we 
needed to learn.  
 
For the evaluation, which consisted of determining if 
the resulting top answer was right or wrong, it meant 
ultimately deciding on one of three possible out-
comes:  the original top answer, the original second 
answer, or nil.  We hoped to promote a significant 
number of second-place finishers to top place and 
introduce some nils, with minimal disturbance of 
those already in first place. 
 
We used TREC11 data for training, and established 
a set of thresholds for a decision-tree approach to 
determining the answer, using Weka (Witten & 
Frank, 2005).  We populated sets SOFTREFUTATION 
and MUSTCONSTRAIN by manual inspection.   

 
The result is Algorithm A, where (i ∈ {1,2}) and 
o The Ci are the original candidate answers 
o The ak are learned parameters (k ∈ {1..13}) 
o Vi means the ith answer was validated 

o Pi was the rank of the validating answer to ques-
tion QTi 

o Ai was the score of the validating answer to QTi. 

Algorithm A. Answer re-ranking using con-
straints validation data. 

1. If C1 = nil and V2,    return C2 
2. If V1 and A1 > a1,     return C1 
3. If not V1 and not V2 and  

 type(T) ∈ MUSTCONSTRAIN,  
    return nil 

4. If  not V1 and not V2 and  
 type(T) ∉SOFTREFUTATION, 

if S1 > a2,, return C1 else nil 
5. If not V2,    return C1 
6. If not V1 and V2 and  

A2 > a3 and P2 < a4 and  
S1-S2 < a5 and S2 > a6, return C2 

7. If V1 and V2 and  
(A2 - P2/a7) > (A1 - P1/a7) and  
A1 < a8 and P1 > a9 and  
A2 < a10 and P2 > a11 and  
S1-S2 < a12  and (S2 - P2/a7) > a13,  
    return C2 

8. else return C1 
 

4 Evaluation 

Due to the complexity of the learned algorithm, we 
decided to evaluate in stages.  We first performed an 
evaluation with a fixed question type, to verify that 
the purely arithmetic components of the algorithm 
were performing reasonably.  We then evaluated on 
the entire TREC12 factoid question set. 

4.1 Evaluation 1 

We created a fixed question set of 50 questions of 
the form “What is the capital of X?”, for each state 
in the U.S.  The inverted question “What state is Z 
the capital of?” was correctly generated in each 
case.  We evaluated against two corpora: the 
AQUAINT corpus, of a little over a million news-
wire documents, and the CNS corpus, with about 
37,000 documents from the Center for Nonprolifera-
tion Studies in Monterey, CA.  We expected there to 
be answers to most questions in the former corpus, 
so we hoped there our method would be useful in 
converting 2nd place answers to first place.  The lat-
ter corpus is about WMDs, so we expected there to 
be holes in the state capital coverage2, for which nil 
identification would be useful.3   
                                                      

2 We manually determined that only 23 state capitals were at-
tested to in the CNS corpus, compared with all in AQUAINT. 

3 We added Tbilisi to the answer key for “What is the capi-
tal of Georgia?”, since there was nothing in the question to 
disambiguate Georgia.  

1077



The baseline is our regular search-based QA-System 
without the Constraint process.  In this baseline sys-
tem there was no special processing for nil ques-
tions, other than if the search (which always 
contained some required terms) returned no docu-
ments.  Our results are shown in Table 2. 

 
 AQUAINT 

baseline 
AQUAINT 
w/con-
straints 

CNS 
baseline 

CNS 
w/con-
straints 

Firsts 
(non-nil) 

39/50 43/50 7/23 4/23 

Total 
nils 

0/0 0/0 0/27 16/27 

Total 
firsts 

39/50 43/50 7/50 20/50 

%  
correct 

78 86 14 40 

Table 2.  Evaluation on AQUAINT and CNS 
corpora. 

 
On the AQUAINT corpus, four out of seven 2nd 
place finishers went to first place.  On the CNS cor-
pus 16 out of a possible 26 correct no-answer cases 
were discovered, at a cost of losing three previously 
correct answers.  The percentage correct score in-
creased by a relative 10.3% for AQUAINT and 
186% for CNS.  In both cases, the error rate was 
reduced by about a third. 

4.2 Evaluation 2 

For the second evaluation, we processed the 414 
factoid questions from TREC12.  Of special interest 
here are the questions initially in first and second 
places, and in addition any questions for which nils 
were found. 
 
As seen in Table 1, there were 32 questions which 
originally evaluated in rank 2.  Of these, four ques-
tions were not invertible because they had no terms 
that were annotated with any of our named-entity 
types, e.g. #2285 “How much does it cost for gas-
tric bypass surgery?” 

 
Of the remaining 28 questions, 12 were promoted to 
first place.  In addition, two new nils were found.  
On the down side, four out of 108 previous first 
place answers were lost.  There was of course 
movement in the ranks two and beyond whenever 
nils were introduced in first place, but these do not 
affect the current TREC-QA factoid correctness 
measure, which is whether the top answer is correct 
or not.  These results are summarized in Table 3.  
 
While the overall percentage improvement was 
small, note that only second–place answers were 
candidates for re-ranking, and 43% of these were 

promoted to first place and hence judged correct.  
Only 3.7% of originally correct questions were 
casualties.  To the extent that these percentages are 
stable across other collections, as long as the size of 
the set of second-place answers is at least about 1/10 
of the set of first-place answers, this form of the 
Constraint process can be applied effectively. 

 
 Baseline Constraints 

Firsts (non-nil) 105 113 
nils 3 5 
Total firsts 108 118 
% correct 26.1 28.5 

 
Table 3.  Evaluation on TREC12 Factoids. 

5 Discussion  

The experiments reported here pointed out many 
areas of our system which previous failure analysis 
of the basic QA system had not pinpointed as being 
too problematic, but for which improvement should 
help the Constraints process.  In particular, this work 
brought to light a matter of major significance, term 
equivalence, which we had not previously focused 
on too much (and neither had the QA community as 
a whole).  We will discuss that in Section 5.4. 

 
Quantitatively, the results are very encouraging, but 
it must be said that the number of questions that we 
evaluated were rather small, as a result of the com-
putational expense of the approach. 

 
From Table 1, we conclude that the most mileage is 
to be achieved by our QA-System as a whole by ad-
dressing those questions which did not generate a 
correct answer in the first one or two positions.  We 
have performed previous analyses of our system’s 
failure modes, and have determined that the pas-
sages that are output from the SEARCH component 
contain the correct answer 70-75% of the time.  The 
ANSWER SELECTION module takes these passages 
and proposes a candidate answer list. Since the CON-
STRAINTS MODULE’s operation can be viewed as a 
re-ranking of the output of ANSWER SELECTION, it 
could in principle boost the system’s accuracy up to 
that 70-75% level.  However, this would either re-
quire a massive training set to establish all the pa-
rameters and weights required for all the possible re-
ranking decisions, or a new model of the answer-list 
distribution.    

5.1 Probability-based Scores 

Our ANSWER SELECTION component assigns scores 
to candidate answers on the basis of the number of 
terms and term-term syntactic relationships from the 

1078



original question found in the answer passage 
(where the candidate answer and wh-word(s) in the 
question are identified terms).  The resulting num-
bers are in the range 0-1, but are not true probabili-
ties (e.g. where answers with a score of 0.7 would be 
correct 70% of the time).  While the generated 
scores work well to rank candidates for a given 
question, inter-question comparisons are not gener-
ally meaningful.  This made the learning of a deci-
sion tree (Algorithm A) quite difficult, and we 
expect that when addressed, will give better per-
formance to the Constraints process (and maybe a 
simpler algorithm).  This in turn will make it more 
feasible to re-rank the top 10 (say) original answers, 
instead of the current 2. 

5.2 Better confidences 

Even if no changes to the ranking are produced by 
the Constraints process, then the mere act of valida-
tion (or not) of existing answers can be used to ad-
just confidence scores.  In TREC2002 (Voorhees, 
2003), there was an evaluation of responses accord-
ing to systems’ confidences in their own answers, 
using the Average Precision (AP) metric.  This is an 
important consideration, since it is generally better 
for a system to say “I don’t know” than to give a 
wrong answer.  On the TREC12 questions set, our 
AP score increased 2.1% with Constraints, using the 
algorithm we presented in (Chu-Carroll et al. 2002).    

5.3 More complete NER 

Except in pure pattern-based approaches, e.g. (Brill, 
2002), answer types in QA systems typically corre-
spond to the types identifiable by their named-entity 
recognizer (NER). There is no agreed-upon number 
of classes for an NER system, even approximately.  
It turns out that for best coverage by our 
CONSTRAINTS MODULE, it is advantageous to have a 
relatively large number of types.  It was mentioned 
in Section 4.2 that certain questions were not invert-
ible because no terms in them were of a recogniz-
able type.  Even when questions did have typed 
terms, if the types were very high-level then creating 
a meaningful inverted question was problematic.  
For example, for QA without Constraints it is not 
necessary to know the type of “MTV” in “When 
was MTV started?”, but if it is only known to be a 
Name then the inverted question “What <Name> 
was started in 1980?” could be too general to be ef-
fective. 

5.4 Establishing Term Equivalence 

The somewhat surprising condition that emerged 
from this effort was the need for a much more com-
plete ability than had previously been recognized for 
the system to establish the equivalence of two terms.  
Redundancy has always played a large role in QA 

systems – the more occurrences of a candidate an-
swer in retrieved passages the higher the answer’s 
score is made to be. Consequently, at the very least, 
a string-matching operation is needed for checking 
equivalence, but other techniques are used to vary-
ing degrees. 

 
It has long been known in IR that stemming or lem-
matization is required for successful term matching, 
and in NLP applications such as QA, resources such 
as WordNet (Miller, 1995) are employed for check-
ing synonym and hypernym relationships; Extended 
WordNet (Moldovan & Novischi, 2002) has been 
used to establish lexical chains between terms.  
However, the Constraints work reported here has 
highlighted the need for more extensive equivalence 
testing. 

 
In direct QA, when an ANSWER SELECTION module 
generates two (or more) equivalent correct answers 
to a question (e.g. “Ferdinand Marcos” vs. “Presi-
dent Marcos”; “French” vs. “France”), and fails to 
combine them, it is observed that as long as either 
one is in first place then the question is correct and 
might not attract more attention from developers.  It 
is only when neither is initially in first place, but 
combining the scores of correct candidates boosts 
one to first place that the failure to merge them is 
relevant.  However, in the context of our system, we 
are comparing the pivot term from the original ques-
tion to the answers to the inverted questions, and 
failure here will directly impact validation and hence 
the usefulness of the entire approach. 

 
As a consequence, we have identified the need for a 
component whose sole purpose is to establish the 
equivalence, or generally the kind of relationship, 
between two terms.  It is clear that the processing 
will be very type-dependent – for example, if two 
populations are being compared, then a numerical 
difference of 5% (say) might not be considered a 
difference at all; for “Where” questions, there are 
issues of granularity and physical proximity, and so 
on.  More examples of this problem were given in 
(Prager et al. 2004a).  Moriceau (2006) reports a 
system that addresses part of this problem by trying 
to rationalize different but “similar” answers to the 
user, but does not extend to a general-purpose 
equivalence identifier.   

6 Summary 

We have extended earlier Constraints-based work 
through the method of question inversion.  The ap-
proach uses our QA system recursively, by taking 
candidate answers and attempts to validate them 
through asking the inverted questions. The outcome 

1079



is a re-ranking of the candidate answers, with the 
possible insertion of nil (no answer in corpus) as the 
top answer.   

 
While we believe the approach is general, and can 
work on any question and arbitrary candidate lists, 
due to training limitations we focused on two re-
stricted evaluations.  In the first we used a fixed 
question type, and showed that the error rate was 
reduced by 36% and 30% on two very different cor-
pora.  In the second evaluation we focused on ques-
tions whose direct answers were correct in the 
second position.  43% of these questions were sub-
sequently judged correct, at a cost of only 3.7% of 
originally correct questions.  While in the future we 
would like to extend the Constraints process to the 
entire answer candidate list, we have shown that ap-
plying it only to the top two can be beneficial as 
long as the second-place answers are at least a tenth 
as numerous as first-place answers.  We also showed 
that the application of Constraints can improve the 
system’s confidence in its answers. 

 
We have identified several areas where improve-
ment to our system would make the Constraints 
process more effective, thus getting a double benefit.  
In particular we feel that much more attention 
should be paid to the problem of determining if two 
entities are the same (or “close enough”). 

7 Acknowledgments 

This work was supported in part by the Disruptive 
Technology Office (DTO)’s Advanced Question 
Answering for Intelligence (AQUAINT) Program 
under contract number H98230-04-C-1577.   We 
would like to thank the anonymous reviewers 
for their helpful comments. 

References 

Brill, E., Dumais, S. and Banko M. “An analysis of 
the AskMSR question-answering system.” In Pro-
ceedings of EMNLP 2002. 

Chu-Carroll, J., J. Prager, C. Welty, K. Czuba and 
D. Ferrucci.  “A Multi-Strategy and Multi-Source 
Approach to Question Answering”, Proceedings 
of the 11th TREC, 2003. 

Clarke, C., Cormack, G., Kisman, D. and Lynam, T.  
“Question answering by passage selection 
(Multitext experiments for TREC-9)” in Proceed-
ings of the 9th TREC, pp. 673-683, 2001. 

Hendrix, G., Sacerdoti, E., Sagalowicz, D., Slocum 
J.: Developing a Natural Language Interface to 
Complex Data. VLDB 1977: 292  

Lenat, D. 1995.  "Cyc: A Large-Scale Investment in 
Knowledge Infrastructure." Communications of 
the ACM 38, no. 11. 

Miller, G. “WordNet: A Lexical Database for Eng-
lish”, Communications of the ACM 38(11) pp. 
39-41, 1995. 

Moldovan, D. and Novischi, A, “Lexical Chains for 
Question Answering”, COLING 2002. 

Moldovan, D. and Rus, V., “Logic Form Transfor-
mation of WordNet and its Applicability to Ques-
tion Answering”, Proceedings of the ACL, 2001. 

Moriceau, V. “Numerical Data Integration for Co-
operative Question-Answering”, in EACL Work-
shop on Knowledge and Reasoning for Language 
Processing (KRAQ’06), Trento, Italy, 2006. 

Prager, J.M., Chu-Carroll, J. and Czuba, K. "Ques-
tion Answering using Constraint Satisfaction: 
QA-by-Dossier-with-Constraints", Proc. 42nd 
ACL, pp. 575-582, Barcelona, Spain, 2004(a). 

Prager, J.M., Chu-Carroll, J. and Czuba, K. "A 
Multi-Strategy, Multi-Question Approach to 
Question Answering" in New Directions in Ques-
tion-Answering, Maybury, M. (Ed.), AAAI Press, 
2004(b). 

Prager, J., "A Curriculum-Based Approach to a QA 
Roadmap"' LREC 2002 Workshop on Question 
Answering: Strategy and Resources, Las Palmas, 
May 2002. 

Radev, D., Prager, J. and Samn, V. "Ranking Sus-
pected Answers to Natural Language Questions 
using Predictive Annotation", Proceedings of 
ANLP 2000, pp. 150-157, Seattle, WA. 

Voorhees, E. “Overview of the TREC 2002 Ques-
tion Answering Track”, Proceedings of the 11th 
TREC, Gaithersburg, MD, 2003. 

Warren, D., and F. Pereira "An efficient easily 
adaptable system for interpreting natural language 
queries," Computational Linguistics, 8:3-4, 110-
122, 1982.  

Winograd, T. Procedures as a representation for data 
in a computer program for under-standing natural 
language. Cognitive Psychology, 3(1), 1972. 

Witten, I.H. & Frank, E. Data Mining.  Practical 
Machine Learning Tools and Techniques.  El-
sevier Press, 2005. 

 

1080


