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Abstract

We present a novel PCFG-based archi-
tecture for robust probabilistic generation
based on wide-coverage LFG approxima-
tions (Cahill et al., 2004) automatically
extracted from treebanks, maximising the
probability of a tree given an f-structure.
We evaluate our approach using string-
based evaluation. We currently achieve
coverage of 95.26%, a BLEU score of
0.7227 and string accuracy of 0.7476 on
the Penn-II WSJ Section 23 sentences of
length≤20.

1 Introduction

Wide coverage grammars automatically extracted
from treebanks are a corner-stone technology
in state-of-the-art probabilistic parsing. They
achieve robustness and coverage at a fraction of
the development cost of hand-crafted grammars. It
is surprising to note that to date, such grammars do
not usually figure in the complementary operation
to parsing – natural language surface realisation.

Research on statistical natural language surface
realisation has taken three broad forms, differ-
ing in where statistical information is applied in
the generation process. Langkilde (2000), for ex-
ample, uses n-gram word statistics to rank alter-
native output strings from symbolic hand-crafted
generators to select paths in parse forest repre-
sentations. Bangalore and Rambow (2000) use
n-gram word sequence statistics in a TAG-based
generation model to rank output strings and ad-
ditional statistical and symbolic resources at in-
termediate generation stages. Ratnaparkhi (2000)
uses maximum entropy models to drive generation
with word bigram or dependency representations
taking into account (unrealised) semantic features.
Valldal and Oepen (2005) present a discriminative
disambiguation model using a hand-crafted HPSG

grammar for generation. Belz (2005) describes
a method for building statistical generation mod-
els using an automatically createdgenerationtree-
bank for weather forecasts. None of these prob-
abilistic approaches to NLG uses a full treebank
grammar to drive generation.

Bangalore et al. (2001) investigate the ef-
fect of training size on performance while using
grammars automatically extracted from the Penn-
II Treebank (Marcus et al., 1994) for generation.
Using an automatically extracted XTAG grammar,
they achieve a string accuracy of 0.749 on their
test set. Nakanishi et al. (2005) present proba-
bilistic models for a chart generator using a HPSG
grammar acquired from the Penn-II Treebank (the
Enju HPSG). They investigate discriminative dis-
ambiguation models following Valldal and Oepen
(2005) and their best model achieves coverage of
90.56% and a BLEU score of 0.7723 on Penn-II
WSJ Section 23 sentences of length≤20.

In this paper we present a novel PCFG-based
architecture for probabilistic generation based on
wide-coverage, robust Lexical Functional Gram-
mar (LFG) approximations automatically ex-
tracted from treebanks (Cahill et al., 2004). In
Section 2 we briefly describe LFG (Kaplan and
Bresnan, 1982). Section 3 presents our genera-
tion architecture. Section 4 presents evaluation re-
sults on the Penn-II WSJ Section 23 test set us-
ing string-based metrics. Section 5 compares our
approach with alternative approaches in the litera-
ture. Section 6 concludes and outlines further re-
search.

2 Lexical Functional Grammar

Lexical Functional Grammar (LFG) (Kaplan and
Bresnan, 1982) is a constraint-based theory of
grammar. It (minimally) posits two levels of repre-
sentation, c(onstituent)-structure and f(unctional)-
structure. C-structure is represented by context-
free phrase-structure trees, and captures surface
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Figure 1: C- and f-structures for the sentenceThey believe John resigned.

grammatical configurations such as word order.
The nodes in the trees are annotated with func-
tional equations (attribute-value structure con-
straints) which are resolved to produce an f-
structure. F-structures are recursive attribute-
value matrices, representing abstract syntactic
functions. F-structures approximate to basic
predicate-argument-adjunct structures or depen-
dency relations. Figure 1 shows the c- and f-
structures for the sentence “They believe John re-
signed”.

3 PCFG-Based Generation for
Treebank-Based LFG Resources

Cahill et al. (2004) present a method to au-
tomatically acquire wide-coverage robust proba-
bilistic LFG approximations1 from treebanks. The
method is based on an automatic f-structure an-
notation algorithm that associates nodes in tree-
bank trees with f-structure equations. For each
tree, the equations are collected and passed on to
a constraint solver which produces an f-structure
for the tree. Cahill et al. (2004) present two
parsing architectures: thepipeline and theinte-
grated parsing architecture. In thepipeline ar-
chitecture, a PCFG (or a history-based lexicalised
generative parser) is extracted from the treebank
and used to parse unseen text into trees, the result-
ing trees are annotated with f-structure equations
by the f-structure annotation algorithm and a con-
straint solver produces an f-structure. In thein-

1The resources are approximations in that (i) they do not
enforce LFG completeness and coherence constraints and (ii)
PCFG-based models can only approximate LFG and similar
constraint-based formalisms (Abney, 1997).

tegrated architecture, first the treebank trees are
automatically annotated with f-structure informa-
tion, f-structure annotated PCFGs with rules of
the form NP(↑OBJ=↓)→DT(↑=↓) NN(↑=↓) are
extracted, syntactic categories followed by equa-
tions are treated as monadic CFG categories dur-
ing grammar extraction and parsing, unseen text is
parsed into trees with f-structure annotations, the
annotations are collected and a constraint solver
produces an f-structure.

The generation architecture presented here
builds on the integrated parsing architecture re-
sources of Cahill et al. (2004). The generation
process takes an f-structure (such as the f-structure
on the right in Figure 1) as input and outputs the
most likely f-structure annotated tree (such as the
tree on the left in Figure 1) given the input f-
structure

argmaxTreeP (Tree|F-Str)

where the probability of a tree given an f-
structure is decomposed as the product of the
probabilities of all f-structure annotated produc-
tions contributing to the tree but where in addi-
tion to conditioning on the LHS of the produc-
tion (as in the integrated parsing architecture of
Cahill et al. (2004)) each production X→ Y is
now also conditioned on the set of f-structure fea-
turesFeatsφ-linked2 to the LHS of the rule. For
an f-structure annotated treeTreeand f-structure
F-Strwith Φ(Tree)=F-Str:3

2φ links LFG’s c-structure to f-structure in terms of many-
to-one functions from tree nodes into f-structure.

3Φ resolves the equations inTreeinto F-Str (if satisfiable)
in terms of the piece-wise functionφ.
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Conditioning F-Structure FeaturesGrammar Rules Probability
{PRED, SUBJ, COMP, TENSE} VP(↑=↓) → VBD(↑=↓) SBAR(↑COMP=↓) 0.4998
{PRED, SUBJ, COMP, TENSE} VP(↑=↓) → VBP(↑=↓) SBAR(↑COMP=↓) 0.0366
{PRED, SUBJ, COMP, TENSE} VP(↑=↓) → VBD(↑=↓) , S(↑COMP=↓) 6.48e-6
{PRED, SUBJ, COMP, TENSE} VP(↑=↓) → VBD(↑=↓) S(↑COMP=↓) 3.88e-6
{PRED, SUBJ, COMP, TENSE} VP(↑=↓) → VBP(↑=↓) , SBARQ(↑COMP=↓) 7.86e-7
{PRED, SUBJ, COMP, TENSE} VP(↑=↓) → VBD(↑=↓) SBARQ(↑COMP=↓) 1.59e-7

Table 1: Example VP Generation rules automatically extracted from Sections 02–21 of the Penn-II
Treebank

P (Tree|F-Str) :=
∏

X → Y in Tree
φ(X) = Feats

P (X → Y |X, Feats) (1)

P (X → Y |X, Feats) =
P (X → Y, X, Feats)

P (X, Feats)
= (2)

P (X → Y, Feats)

P (X, Feats)
≈

#(X → Y, Feats)

#(X → . . . , F eats)
(3)

and where probabilities are estimated using a
simple MLE and rule counts (#) from the auto-
matically f-structure annotated treebank resource
of Cahill et al. (2004). Lexical rules (rules ex-
panding preterminals) are conditioned on the full
set of (atomic) feature-value pairsφ-linked to the
RHS. The intuition for conditioning rules in this
way is that local f-structure components of the in-
put f-structure drive the generation process. This
conditioning effectively turns the f-structure an-
notated PCFGs of Cahill et al. (2004) into prob-
abilistic generation grammars. For example, in
Figure 1 (whereφ-links are represented as ar-
rows), we automatically extract the rule S(↑=↓)→
NP(↑SUBJ=↓) VP(↑=↓) conditioned on the feature
set {PRED,SUBJ,COMP,TENSE}. The probability
of the rule is then calculated by counting the num-
ber of occurrences of that rule (and the associated
set of features), divided by the number of occur-
rences of rules with the same LHS and set of fea-
tures. Table 1 gives example VP rule expansions
with their probabilities when we train a grammar
from Sections 02–21 of the Penn Treebank.

3.1 Chart Generation Algorithm

The generation algorithm is based on chart gen-
eration as first introduced by Kay (1996) with
Viterbi-pruning. The generation grammar is first
converted into Chomsky Normal Form (CNF). We
recursively build a chart-like data structure in a
bottom-up fashion. In contrast to packing of lo-
cally equivalent edges (Carroll and Oepen, 2005),

in our approach if two chart items have equiva-
lent rule left-hand sides and lexical coverage, only
the most probable one is kept. Each grammatical
function-labelled (sub-)f-structure in the overall f-
structure indexes a (sub-)chart. The chart for each
f-structure generates the most probable tree for
that f-structure, given the internal set of condition-
ing f-structure features and its grammatical func-
tion label. At each level, grammatical function in-
dexed charts are initially unordered. Charts are
linearised by generation grammar rules once the
charts themselves have produced the most prob-
able tree for the chart. Our example in Figure 1
generates the following grammatical function in-
dexed, embedded and (at each level of embedding)
unordered (sub-)chart configuration:

SUBJ f :2
COMP f :3

SUBJ f :4TOP f :1

For each local subchart, the following algorithm
is applied:

Add lexical rules
While subchart is Changing

Apply unary productions
Apply binary productions

Propagate compatible rules

3.2 A Worked Example

As an example, we step through the construc-
tion of the COMP-indexed chart at levelf3 of
the f-structure in Figure 1. For lexical rules,
we check the feature set at the sub-f-structure
level and the values of the features. Only fea-
tures associated with lexical material are consid-
ered. TheSUBJ-indexed sub-chartf4 is con-
structed by first adding the rule NNP(↑=↓) →
John(↑PRED=‘John’,↑NUM=pl,↑PERS=3). If more
than one lexical rule corresponds to a particular set
of features and values in the f-structure, we add all
rules with different LHS categories. If two or more
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rules with equal LHS categories match the feature
set, we only add the most probable one.

Unary productions are applied if the RHS of the
unary production matches the LHS of an item al-
ready in the chartand the feature set of the unary
production matches the conditioning feature set of
the local sub-f-structure. In our example, this re-
sults in the rule NP(↑SUBJ=↓) → NNP(↑=↓), con-
ditioned on{NUM, PERS, PRED}, being added to
the sub-chart at levelf4 (the probability associated
with this item is the probability of the rule multi-
plied by the probability of the previous chart item
which combines with the new rule). When a rule
is added to the chart, it is automatically associated
with the yield of the rule, allowing us to propa-
gate chunks of generated material upwards in the
chart. If two items in the chart have the same LHS
(and the same yield independent of word order),
only the item with the highest probability is kept.
This Viterbi-style pruning ensures that processing
is efficient.

At sub-chartf4 there are no binary rules that
can be applied. At this stage, it is not possible
to add any more items to the sub-chart, therefore
we propagate items in the chart that are compat-
ible with the sub-chart indexSUBJ. In our ex-
ample, only the rule NP(↑SUBJ=↓) → NNP(↑=↓)
(which yields the stringJohn) is propagated to the
next level up in the overall chart for consideration
in the next iteration. If the yield of an item be-
ing propagated upwards in the chart is subsumed
by an element already at that level, the subsumed
item is removed. This results in efficiently treat-
ing the well known problem originally described
in Kay (1996), where one unnecessarily retains
sub-optimal strings. For example, generating the
string “The very tall strong athletic man”, one
does not want to keep variations such as “The very
tall man”, or “The athletic man”, if one can gener-
ate the entire string. Our method ensures that only
the most probable tree with the longest yield will
be propagated upwards.

The COMP-indexed chart at levelf3 of the f-
structure is constructed in a similar fashion. First
the lexical rule V(↑=↓) → resigned is added.
Next, conditioning on{PRED, SUBJ, TENSE}, the
unary rule VP(↑=↓) → V(↑=↓) (with yield re-
signed) is added. We combine the new VP(↑=↓)
rule with the NP(↑SUBJ=↓) already present from
the previous iteration to enable us to add the rule
S(↑=↓) → NP(↑SUBJ=↓) VP(↑=↓), conditioned

on {PRED, SUBJ, TENSE}. The yield of this rule
is John resigned. Next, conditioning on the same
feature set, we add the rule SBAR(↑comp=↓) →
S(↑=↓) with yield John resignedto the chart. It is
not possible to add any more new rules, so at this
stage, only the SBAR(↑COMP=↓) rule with yield
John resignedis propagated up to the next level.

The process continues until at the outermost
level of the f-structure, there are no more rules to
be added to the chart. At this stage, we search for
the most probable rule with TOP as its LHS cate-
gory and return the yield of this rule as the output
of the generation process. Generation fails if there
is no rule with LHS TOP at this level in the chart.

3.3 Lexical Smoothing

Currently, the only smoothing in the system ap-
plies at the lexical level. Our backoff uses
the built-in lexical macros4 of the automatic f-
structure annotation algorithm of Cahill et al.
(2004) to identify potential part-of-speech cate-
gories corresponding to a particular set of features.
Following Baayen and Sproat (1996) we assume
that unknown words have a probability distribu-
tion similar to hapax legomena. We add a lexical
rule for each POS tag that corresponds to the f-
structure features at that level to the chart with a
probability computed from the original POS tag
probability distribution multiplied by a very small
constant. This means that lexical rules seen during
training have a much higher probability than lexi-
cal rules added during the smoothing phase. Lexi-
cal smoothing has the advantage of boosting cov-
erage (as shown in Tables 3, 4, 5 and 6 below) but
slightly degrades the quality of the strings gener-
ated. We believe that the tradeoff in terms of qual-
ity is worth the increase in coverage.

Smoothing isnot carried out when there is no
suitablephrasalgrammar rule that applies during
the process of generation. This can lead to the gen-
eration of partial strings, since some f-structure
components may fail to generate a corresponding
string. In such cases, generation outputs the con-
catenation of the strings generated by the remain-
ing components.

4 Experiments

We train our system on WSJ Sections 02–21 of
the Penn-II Treebank and evaluate against the raw

4The lexical macros associate POS tags with sets of fea-
tures, for example the tag NNS (plural noun) is associated
with the features↑PRED=$LEMMA and↑NUM=pl.
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S. length ≤ 20 ≤ 25 ≤ 30 ≤ 40 all
Training 16667 23597 29647 36765 39832
Test 1034 1464 1812 2245 2416

Table 2: Number of training and test sentences per
sentence length

strings from Section 23. We use Section 22 as our
development set. As part of our evaluation, we ex-
periment with sentences of varying length (20, 25,
30, 40, all), both in training and testing. Table 2
gives the number of training and test sentences for
each sentence length. In each case, we use the au-
tomatically generated f-structures from Cahill et
al. (2004) from the original Section 23 treebank
trees as f-structure input to our generation experi-
ments. We automatically mark adjunct and coor-
dination scope in the input f-structure. Notice that
these automatically generated f-structures are not
“perfect”, i.e. they are not guaranteed to be com-
plete and coherent (Kaplan and Bresnan, 1982): a
local f-structure may contain material that is not
supposed to be there (incoherence) and/or may be
missing material that is supposed to be there (in-
completeness). The results presented below show
that our method is robust with respect to the qual-
ity of the f-structure input and will always attempt
to generate partial output rather than fail. We con-
sider this an important property as pristine gen-
eration input cannot always be guaranteed in re-
alistic application scenarios, such as probabilistic
transfer-based machine translation where genera-
tion input may contain a certain amount of noise.

4.1 Pre-Training Treebank Transformations

During the development of the generation system,
we carried out error analysis on our development
set WSJ Section 22 of the Penn-II Treebank. We
identified some initial pre-training transformations
to the treebank that help generation.

Punctuation: Punctuation is not usually en-
coded in f-structure representations. Because our
architecture is completely driven by rules con-
ditioned by f-structure information automatically
extracted from an f-structure annotated treebank,
its placement of punctuation is not principled.
This led to anomalies such as full stops appear-
ing mid sentence and quotation marks appearing
in undesired locations. One partial solution to this
was to reduce the amount of punctuation that the
system trained on. We removed all punctuation

apart from commas and full stops from the train-
ing data. We did not remove any punctuation from
the evaluation test set (Section 23), but our system
will ever only produce commas and full stops. In
the evaluation (Tables 3, 4, 5 and 6) we are pe-
nalised for the missing punctuation. To solve the
problem of full stops appearing mid sentence, we
carry out a punctuation post-processing step on all
generated strings. This removes mid-sentence full
stops and adds missing full stops at the end of gen-
erated sentences prior to evaluation. We are work-
ing on a more appropriate solution allowing the
system to generate all punctuation.

Case: English does not have much case mark-
ing, and for parsing no special treatment was en-
coded. However, when generating, it is very
important that the first person singular pronoun
is I in the nominative case andme in the ac-
cusative. Given the original grammar used in pars-
ing, our generation system was not able to distin-
guish nominative from accusative contexts. The
solution we implemented was to carry out a gram-
mar transformation in a pre-processing step, to au-
tomatically annotate personal pronouns with their
case information. This resulted in phrasal and lex-
ical rules such as NP(↑SUBJ) → PRPˆnom(↑=↓)
and PRPˆnom(↑=↓) → I and greatly improved the
accuracy of the pronouns generated.

4.2 String-Based Evaluation

We evaluate the output of our generation system
against the raw strings of Section 23 using the
Simple String Accuracy and BLEU (Papineni et
al., 2002) evaluation metrics. Simple String Accu-
racy is based on the string edit distance between
the output of the generation system and the gold
standard sentence. BLEU is the weighted average
of n-gram precision against the gold standard sen-
tences. We also measure coverage as the percent-
age of input f-structures that generate a string. For
evaluation, we automatically expand all contracted
words. We only evaluate strings produced by the
system (similar to Nakanishi et al. (2005)).

We conduct a total of four experiments. The
parameters we investigate are lexical smoothing
(Section 3.3) and partial output. Partial output
is a robustness feature for cases where a sub-f-
structure component fails to generate a string and
the system outputs a concatenation of the strings
generated by the remaining components, rather
than fail completely.
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Sentence length of Evaluation Section 23 Sentences of length:
Training Data Metric ≤ 20 ≤ 25 ≤ 30 ≤ 40 all
≤ 20 BLEU 0.6812 0.6601 0.6373 0.6013 0.5793

String Accuracy 0.7274 0.7052 0.6875 0.6572 0.6431
Coverage 96.52 95.83 94.59 93.76 93.92

≤ 25 BLEU 0.6915 0.6800 0.6696 0.6396 0.6233
String Accuracy 0.7262 0.7095 0.6983 0.6731 0.6618
Coverage 96.52 95.83 94.59 93.76 93.92

≤ 30 BLEU 0.6979 0.6881 0.6792 0.6576 0.6445
String Accuracy 0.7317 0.7169 0.7075 0.6853 0.6749
Coverage 97.97 97.95 97.41 97.15 97.31

≤ 40 BLEU 0.7045 0.6951 0.6852 0.6715 0.6605
String Accuracy 0.7349 0.7212 0.7074 0.6881 0.6788
Coverage 98.45 98.36 98.01 97.82 97.93

all BLEU 0.7077 0.6974 0.6859 0.6734 0.6651
String Accuracy 0.7373 0.7221 0.7087 0.6894 0.6808
Coverage 98.65 98.5 98.12 97.95 98.05

Table 3: Generation +partial output +lexical smoothing

Sentence length of Evaluation Section 23 Sentences of length:
Training Data Metric ≤ 20 ≤ 25 ≤ 30 ≤ 40 all
all BLEU 0.6253 0.6097 0.5887 0.5730 0.5590

String Accuracy 0.6886 0.6688 0.6513 0.6317 0.6207
Coverage 91.20 91.19 90.84 90.33 90.11

Table 4: Generation +partial output -lexical smoothing

Varying the length of the sentences included in
the training data (Tables 3 and 5) shows that re-
sults improve (both in terms of coverage and string
quality) as the length of sentence included in the
training data increases.

Tables 3 and 5 give the results for the exper-
iments including lexical smoothing and varying
partial output. Table 3 (+partial, +smoothing)
shows that training on sentences of all lengths and
evaluating all strings (including partial outputs),
our system achieves coverage of 98.05%, a BLEU
score of 0.6651 and string accuracy of 0.6808. Ta-
ble 5 (-partial, +smoothing) shows that coverage
drops to 89.49%, BLEU score increases to 0.6979
and string accuracy to 0.7012, when the system
is trained on sentences of all lengths. Similarly,
for strings≤20, coverage drops from 98.65% to
95.26%, BLEU increases from 0.7077 to 0.7227
and String Accuracy from 0.7373 to 0.7476. In-
cluding partial output increases coverage (by more
than 8.5 percentage points for all sentences) and
hence robustness while slightly decreasing quality.

Tables 3 (+partial, +smoothing) and 4 (+partial,
-smoothing) give results for the experiments in-
cluding partial output but varying lexical smooth-
ing. With no lexical smoothing (Table 4), the
system (trained on all sentence lengths) produces

strings for 90.11% of the input f-structures and
achieves a BLEU score of 0.5590 and string ac-
curacy of 0.6207. Switching off lexical smooth-
ing has a negative effect on all evaluation met-
rics (coverage and quality), because many more
strings produced are now partial (since forPRED

values unseen during training, no lexical entries
are added to the chart).

Comparing Tables 5 (-partial, +smoothing)
and 6 (-partial, -smoothing), where the system
does not produce any partial outputs and lexi-
cal smoothing is varied, shows that training on
all sentence lengths, BLEU score increases from
0.6979 to 0.7147 and string accuracy increases
from 0.7012 to 0.7192. At the same time, cover-
age drops dramatically from 89.49% (Table 5) to
47.60% (Table 6).

Comparing Tables 4 and 6 shows that while par-
tial output almost doubles coverage, this comes
at a price of a severe drop in quality (BLEU
score drops from 0.7147 to 0.5590). On the other
hand, comparing Tables 5 and 6 shows that lexical
smoothing achieves a similar increase in coverage
with only a very slight drop in quality.

5 Discussion

Nakanishi et al. (2005) achieve 90.56% cover-
age and a BLEU score of 0.7723 on Section 23
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Sentence length of Evaluation Section 23 Sentences of length:
Training Data Metric ≤ 20 ≤ 25 ≤ 30 ≤ 40 all
≤ 20 BLEU 0.7326 0.7185 0.7165 0.7082 0.7052

String Accuracy 0.76 0.7428 0.7363 0.722 0.7175
Coverage 85.49 81.56 77.26 71.94 69.08

≤ 25 BLEU 0.7300 0.7235 0.7218 0.7118 0.7077
String Accuracy 0.7517 0.7382 0.7315 0.7172 0.7116
Coverage 89.65 87.77 84.38 80.31 78.56

≤ 30 BLEU 0.7207 0.7125 0.7107 0.6991 0.6946
String Accuracy 0.747 0.7336 0.7275 0.711 0.7045
Coverage 93.23 92.14 89.74 86.59 85.18

≤ 40 BLEU 0.7221 0.7140 0.7106 0.7016 0.6976
String Accuracy 0.746 0.7331 0.7236 0.7072 0.7001
Coverage 94.58 93.85 91.89 89.62 88.33

all BLEU 0.7227 0.7145 0.7095 0.7011 0.6979
String Accuracy 0.7476 0.7331 0.7239 0.7077 0.7012
Coverage 95.26 94.40 92.55 90.69 89.49

Table 5: Generation -partial output +lexical smoothing

Sentence length of Evaluation Section 23 Sentences of length:
Training Data Metric ≤ 20 ≤ 25 ≤ 30 ≤ 40 all
all BLEU 0.7272 0.7237 0.7201 0.7160 0.7147

String Accuracy 0.7547 0.7436 0.7361 0.7237 0.7192
Coverage 61.99 57.38 53.64 47.60 47.60

Table 6: Generation -partial output -lexical smoothing

sentences, restricted to length≤20 for efficiency
reasons. Langkilde-Geary’s (2002) best system
achieves 82.8% coverage, a BLEU score of 0.924
and string accuracy of 0.945 against Section 23
sentences of all lengths. Callaway (2003) achieves
98.7% coverage and a string accuracy of 0.6607
on sentences of all lengths. Our best results for
sentences of length≤ 20 are coverage of 95.26%,
BLEU score of 0.7227 and string accuracy of
0.7476. For all sentence lengths, our best results
are coverage of 89.49%, a BLEU score of 0.6979
and string accuracy of 0.7012.

Using hand-crafted grammar-based genera-
tion systems (Langkilde-Geary, 2002; Callaway,
2003), it is possible to achieve very high results.
However, hand-crafted systems are expensive to
construct and not easily ported to new domains or
other languages. Our methodology, on the other
hand, is based on resources automatically acquired
from treebanks and easily ported to new domains
and languages, simply by retraining on suitable
data. Recent work on the automatic acquisition
of multilingual LFG resources from treebanks for
Chinese, German and Spanish (Burke et al., 2004;
Cahill et al., 2005; O’Donovan et al., 2005) has
shown that given a suitable treebank, it is possi-
ble to automatically acquire high quality LFG re-

sources in a very short space of time. The genera-
tion architecture presented here is easily ported to
those different languages and treebanks.

6 Conclusion and Further Work

We present a new architecture for stochastic LFG
surface realisation using the automatically anno-
tated treebanks and extracted PCFG-based LFG
approximations of Cahill et al. (2004). Our model
maximises the probability of a tree given an f-
structure, supporting a simple and efficient imple-
mentation that scales to wide-coverage treebank-
based resources. An improved model would
maximise the probability of a string given an f-
structure by summing over trees with the same
yield. More research is required to implement
such a model efficiently using packed representa-
tions (Carroll and Oepen, 2005). Simple PCFG-
based models, while effective and computationally
efficient, can only provide approximations to LFG
and similar constraint-based formalisms (Abney,
1997). Research on discriminative disambigua-
tion methods (Valldal and Oepen, 2005; Nakanishi
et al., 2005) is important. Kaplan and Wedekind
(2000) show that for certain linguistically interest-
ing classes of LFG (and PATR etc.) grammars,
generation from f-structures yields a context free
language. Their proof involves the notion of a
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“refinement” grammar where f-structure informa-
tion is compiled into CFG rules. Our probabilis-
tic generation grammars bear a conceptual similar-
ity to Kaplan and Wedekind’s “refinement” gram-
mars. It would be interesting to explore possible
connections between the treebank-based empirical
work presented here and the theoretical constructs
in Kaplan and Wedekind’s proofs.

We presented a full set of generation experi-
ments on varying sentence lengths training on Sec-
tions 02–21 of the Penn Treebank and evaluat-
ing on Section 23 strings. Sentences of length
≤20 achieve coverage of 95.26%, BLEU score
of 0.7227 and string accuracy of 0.7476 against
the raw Section 23 text. Sentences of all lengths
achieve coverage of 89.49%, BLEU score of
0.6979 and string accuracy of 0.7012. Our method
is robust and can cope with noise in the f-structure
input to generation and will attempt to produce
partial output rather than fail.
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