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Abstract

We propose a new hierarchical Bayesian
n-gram model of natural languages. Our
model makes use of a generalization of
the commonly used Dirichlet distributions
called Pitman-Yor processes which pro-
duce power-law distributions more closely
resembling those in natural languages. We
show that an approximation to the hier-
archical Pitman-Yor language model re-
covers the exact formulation of interpo-
lated Kneser-Ney, one of the best smooth-
ing methods fom-gram language models.
Experiments verify that our model gives
cross entropy results superior to interpo-
lated Kneser-Ney and comparable to mod-
ified Kneser-Ney.

I ntroduction

data, and smoothing methods are indispensible for
proper training of.-gram models.

A large number of smoothing methods have
been proposed in the literature (see (Chen and
Goodman, 1998; Goodman, 2001; Rosenfeld,
2000) for good overviews). Most methods take a
rather ad hoc approach, whetegram probabili-
ties for various values of are combined together,
using either interpolation or back-off schemes.
Though some of these methods are intuitively ap-
pealing, the main justification has always been
empirical—better perplexities or error rates on test
data. Though arguably this should be the only
real justification, it only answers the question of
whether a method performs better, nbbw nor
why it performs better. This is unavoidable given
that most of these methods are not based on in-
ternally coherent Bayesian probabilistic models,
which have explicitly declared prior assumptions
and whose merits can be argued in terms of how

Probabilistic language models are used extenelosely these fit in with the known properties of

sively in a variety of linguistic applications, in- natural languages.

Bayesian probabilistic mod-

cluding speech recognition, handwriting recogni-els also have additional advantages—it is rela-
tion, optical character recognition, and machinetively straightforward to improve these models by

translation.

Most language models fall into theincorporating additional knowledge sources and

class ofn-gram models, which approximate the to include them in larger models in a principled

distribution over sentences using the conditionamanner.

Unfortunately the performance of pre-

distribution of each word given a context consist-viously proposed Bayesian language models had
ing of only the previous: — 1 words,

T
P(sentencg~ H P(word; |word; ;. ,)
i=1

(1)

been dismal compared to other smoothing meth-
ods (Nadas, 1984; MacKay and Peto, 1994).

In this paper, we propose a novel language
model based on a hierarchical Bayesian model
(Gelman et al., 1995) where each hidden variable

with n = 3 (trigram models) being typical. Even is distributed according to a Pitman-Yor process, a
for such a modest value afthe number of param- nonparametric generalization of the Dirichlet dis-
eters is still tremendous due to the large vocabutribution that is widely studied in the statistics and
lary size. As a result direct maximum-likelihood probability theory communities (Pitman and Yor,
parameter fitting severely overfits to the training1997; Ishwaran and James, 2001; Pitman, 2002).
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Our model is a direct generalization of the hierar-2 Pitman-Yor Process
chical Dirichlet language model of (MacKay and Pitman-Yor brocesses are examples of nonpara-
Peto, 1994). Inference in our model is however P P P

. .y etric Bayesian models. Here we give a quick de-
not as straightforward and we propose an efficient . . :
) . scription of the Pitman-Yor process in the context
Markov chain Monte Carlo sampling scheme.

of a unigram language model; good tutorials on
Pitman-Yor processes produce power-law dissych models are provided in (Ghahramani, 2005;

tributions that more closely resemble those seefgrgan, 2005). Let be a fixed and finite vocabu-

in natural languages, and it has been argued th@ry of 1V words. For each word) € W' let G(w)

as a result they are more suited to applicationge the (to be estimated) probability of and let

in natural language processing (Goldwater et al.¢; — [G(w)],cy be the vector of word probabili-

2006). We show experimentally that our hierarchi-tieg \We place a Pitman-Yor process prior@n
cal Pitman-Yor language model does indeed pro-

duce results superior to interpolated Kneser-Ney G ~ PY(d,0,Gy) 2
and comparable to modified Kneser-Ney, two of

the currently best performing smoothing methoolsWhere the three parameters are: a discount param-

(Chen and Goodman, 1998). In fact we show aetero <d< 1(’; s_treggth parame'gr> _?l aEd
stronger result—that interpolated Kneser-Ney carf Mean vectolry = [Go(w)lwew- Go(w) is the

be interpreted as a particular approximate infer® Prion probability of wordw: before observing

ence scheme in the hierarchical Pitman-Yor lan®"Y daj[g, we believe WO@ sho_ulq oceur with
guage model. Our interpretation is more usefurorqbab'“ty Go(w). I practice this is usually set
than past interpretations involving marginal Con_unlformly Go(w) = 1/V forall w G.W' Both?
straints (Kneser and Ney, 1995; Chen and Googddd can be understood as controlling the amount
man, 1998) or maximum-entropy models (Good—Of varlablllty aroundGy in different ways. Wh.e.n
man, 2004) as it can recover the exact formulatiof = 0 the Pitman-Yor process reduces to a Dirich-
of interpolated Kneser-Ney, and actually produce et dlstrlb_u t'.o n with parameterityo. .

superior results. (Goldwater et al., 2006) has inde- There 'sn general no known analytic form for
pendently noted the correspondence between tﬁtge_d_ensny oY (d, 9’.G0) when the vocabulary
hierarchical Pitman-Yor language model and in S finite. However this need not deter us as we

terpolated Kneser-Ney, and conjectured improved" i msteac;l wo(rjk \.N'ctih thg S |s:[tr:|bll13t_|;)n ovsr 5€
performance in the hierarchical Pitman-Yor Ian_quencesr,]'ohv;/]or s In ucte tybl ef |man;j or prfc:.-
guage model, which we verify here. cess, which has a nice tractable form and is suffi-
o _ cient for our purpose of language modelling. To
Thus the contributions of this paper are threey)q precise, notice that we can treat béthand
fold: in proposing a langauge model V\{i'[h exceI—G0 as distributions oveF’, where wordw € W
lent performance and the accompanying advang,g probabilityG(w) (respectivelyGo(w)). Let

tages of Bayesian probabilistic models, in Proposy., ., ... be a sequence of words drawn inde-

ing a novel and efficient inference scheme for thependently and identically (i.i.d) fron@. We
model, and in establishing the direct correspongpg)| describe the Pitman-Yor process in terms of
dence.between interpolated Kneser-Ney and thg generative procedure that produegszs, . . . it-
Bayesian approach. eratively with G marginalized out. This can be
We describe the Pitman-Yor process in Secachieved by relating:, z-, ... to a separate se-
tion 2, and propose the hierarchical Pitman-Yorquence of i.i.d. drawg, 4o, ... from the mean
language model in Section 3. In Sections 4 andlistribution Gy as follows. The first worde; is
5 we give a high level description of our samplingassigned the value of the first draw from Gg.
based inference scheme, leaving the details to ket ¢ be the current number of draws frotd,
technical report (Teh, 2006). We also show how(currentlyt = 1), ¢, be the number of words as-
interpolated Kneser-Ney can be interpreted as apsigned the value of draw, (currentlyc; = 1),
proximate inference in the model. We show ex-ande. = 37 _, ¢ be the current number of draws
perimental comparisons to interpolated and modfrom . For each subsequent word 1, we ei-
ified Kneser-Ney, and the hierarchical Dirichletther assign it the value of a previous drgwwith
language model in Section 6 and conclude in Secprobability C’“*fl (incrementcy; setx. 11 «— i),

0+c
tion 7. or we assign it the value of a new draw frai
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Figure 1: First panel: number of unique words as a functiotheinumber of words drawn on a log-log
scale, withd = .5 andf = 1 (bottom), 10 (middle) and100 (top). Second panel: same, with= 10
andd = 0 (bottom),.5 (middle) and.9 (top). Third panel: proportion of words appearing only gras
a function of the number of words drawn, with= .5 andf = 1 (bottom),10 (middle), 100 (top). Last
panel: same, witd = 10 andd = 0 (bottom),.5 (middle) and.9 (top).

with probability % (incrementt; setc; = 1;  from G is often referred to as the Chinese restau-

drawy; ~ Go; setz. 11 «— y1). rant process (Pitman, 2002). The metaphor is as

The above generative procedure produces a s&llows. Consider a sequence of customers (cor-
quence of words drawn i.i.d. frond, with G res_pondlng to the wor_ds draws fro@) visiting a
marginalized out. It is informative to study the Chinese restaurant with an unbounded number of
Pitman-Yor process in terms of the behaviour ittables (corresponding to the draws frdp), each
induces on this sequence of words. Firstly, no-of which can accommodate an unbounded number
tice the rich-gets-richer clustering property: theOf customers. The first customer sits at the first ta-

more words have been assigned to a draw frorRle, and each subsequent customer either joins an
G, the more likely subsequent words will be as-already occupied table (assign the word to the cor-
signed to the draw. Secondly, the more we draW€SPonding draw frondxo), or sits at a new table
from Gy, the more likely a new word will be as- (@ssign the word to a new draw frofi).

signed to a new draw frond7g. These two ef- ) ) )

fects together produce a power-law distribution3 Hierarchical Pitman-Yor Language

where many unique words are observed, most of Models

them rarely. In particular, for a vocabulary of un-
bounded size and faf > 0, the number of unique
words scales a®(#T%) whereT is the total num-
ber of words. Forl = 0, we have a Dirichlet dis-
tribution and the number of uniqgue words grows
more slowly atO (6 log T').

We describe an-gram language model based on a
hierarchical extension of the Pitman-Yor process.
An n-gram language model defines probabilities
over the current word given various contexts con-
sisting of up ton — 1 words. Given a contex,

let Gy (w) be the probability of the current word
Figure 1 demonstrates the power-law behaviougaking on valuew. We use a Pitman-Yor process

of the Pitman-Yor process and how this dependgs the prior foiG, |Gy (w)]wew, in particular,
ond andd. In the first two panels we show the

average number of unique words among 10 se- Gu ~ PY(dju). b)) Criu) A3)
quences ofl" words drawn fromG, as a func-

tion of T', for various values ot andd. We  \yherer(u) is the suffix ofu consisting of all but
see that) controls the overall number of unique ipe earliest word. The strength and discount pa-
words, whiled controls the asymptotic growth of 5 meters are functions of the lengtk of the con-
the number of unique words. In the last two Pan-text while the mean vector i€ r(w), the vector
els, we show the proportion of words appearingyf probabilities of the current word given all but
only once among the unique words; this gives afpe earliest word in the context. Since we do not
indication of the proportion of words that occur ynow G either, We recursively place a prior
rarely. We see that the asymptotic behaviour deg,er G r(w Using (3), but now with parameters
pends ond but not ond, with largerd’s producing Ol (w)|» djm(w) @NA MEAN VECIOE (1 () iNStEd.
more rare words. This is repeated until we get t6'y, the vector
This procedure for generating words drawnof probabilities over the current word given the
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empty contexf). Finally we place a prior ofi7y: words yu1, Yu2, - - - drawn i.i.d. from the parent
distribution G (). We usel to index draws from
Gy ~ PY(do, b0, Go) (4) G, andk to index the draws fronGi.;(,). Define
tuwe = 1 if yui takes on valuev, andt g, = 0
otherwise. Each word,; is assigned to one of
the drawsyy from G (). If yur takes on value
w definecy,,r as the number of words,,; drawn
from G, assigned tay,;, otherwise lety,; = 0.
Einally we denote marginal counts by dots. For

where@) is the global mean vector, given a uni-
form value ofGy(w) = 1/V for all w € W. Fi-
nally, we place a uniform prior on the discount pa-
rameters and &amma(1, 1) prior on the strength
parameters. The total number of parameters in th
model is2n. : .
o . examplec,.; is the number of:,;’'s assigned the
The structure of the prior is that of a suffix tree P Cut . ul g .
¢ denthn. wher h nod T nds t nvalue of yuk, Ccuw. IS the number ofry’s with
oradep S ere each node corresponads oa'co valuew, andt,.. is the current number of draws
text consisting of up ta — 1 words, and each child .
corresponds to adding a different word to the be Yur: from Gy Notice that we have the follow-
- . . _~ing relationships among t 'S andtyy.:
ginning of the context. This choice of the prior g P g thes, e

structure expresses our belief that words appearing tuw. = 0 if cyw. = 0;

earlier in a context have (a priori) the least impor- 1< tyw. < Caw. if Caw. > 0 Q)
tance in modelling the probability of the current a -

word, which is why they are dropped first at suc- Cow = Y tww (6)

cessively higher levels of the model. u’im(u’)=u

Pseudo-code for drawing words using the hier-
archical Chinese restaurant process is given as a
recursive functionrDrawWord(u), while pseudo-

We describe a generative procedure analogousode for computing the probability that the next
to the Chinese restaurant process of Section ®ord drawn from G, will be w is given in
for drawing words from the hierarchical Pitman- WordProb(u,w). The counts are initialized at all
Yor language model with al(z,’s marginalized cywir = tuwk = 0.
out. This gives us an alternative representation of :
IS gv . P Function DrawWord(u):

the hierarchical Pitman-Yor language model thaﬁ?
) - . . eturns a new word drawn from G,.
is amenable to efficient inference using Markov : .

) : If u =0, returnw € W with probability Go(w).
chain Monte Carlo sampling and easy computa- . o .
. L - Else with probabilities proportional to:
tion of the predictive probabilities for test words. d - assian the new word t
The correspondence between interpolated Kneser- “awk ~ ¢lultuwk- 85SI9 Duk-

. . . Incrementc,,i; returnw.
Ney and the hierarchical Pitman-Yor language .
) A . Oju| + djy|tu-: @ssign the new word to a new
model is also apparent in this representation.
. sl . draWyuknew from Gﬂ(u) .
Again we may treat eacly, as a distribution
. o Let w < DrawWord(w(u));
over the current word. The basic observation is sels N 1 return
that sinceG,, is Pitman-Yor process distributed, ke = Cawkne = v
we can draw words from it using the Chinese Function WordProb(u,w):
restaurant process given in Section 2. Further, thReturns the probability that the next word after
only operation we need of its parent distribution context u will be w.
Gr(u) Is to draw words from it too. Sinc€&'z,)  If u =0, returnGo(w). Else return
is itself distributed according to a Pitman-Yor pro-
. Cuw»id‘u‘tuw< 9‘u‘+d‘u‘tu“

cess, we can use another Chinese restaurant pro=g, e, 1 ~ 63 Teu. WordProb(r(u),w).
cess to draw words from that. This is recursively
applied until we need draws from the global mean Notice the self-reinforcing property of the hi-
distribution G, which is easy since it is just uni- erarchical Pitman-Yor language model: the more
form. We refer to this as the hierarchical Chinesea wordw has been drawn in context, the more

4 Hierarchical Chinese Restaurant
Processes

restaurant process. likely will we draw w again in context. In fact
Let us introduce some notations. For each conword w will be reinforced for other contexts that
text u we have a sequence of wordg,, zw2,... share a common suffix with, with the probabil-

drawn i.i.d. from G, and another sequence of ity of drawing w increasing as the length of the
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common suffix increases. This is becausavill ~ where the first probability on the right is the pre-

be more likely under the context of the commondictive probability under a particular setting of

suffix as well. seating arrangementsand parameter®, and the
The hierarchical Chinese restaurant process igverall predictive probability is obtained by aver-

equivalent to the hierarchical Pitman-Yor languageaging this with respect to the posterior oveand

model insofar as the distribution induced on words® (second probability on right). We approximate

drawn from them are exactly equal. However, thethe integral with sample$S®), @V} drawn

probability vectorsG,,’s have been marginalized from p(S, ®|D):

out in the procedure, replaced instead by the as- s

S|gnmen.ts pf v_vordgul to draWSyuk from the p(w|u, D) ~ Zp(wlu,S(Z), e(z)) (10)

parent distribution, i.e. the seating arrangement of

customers around tables in the Chinese restaurant . . .

. . while p(w|u,S,®) is given by the function

process corresponding @,. In the next section WordProb(u.w):

we derive tractable inference schemes for the hi- e

erarchical Pitman-Yor language model based on p(w|0,8,0)=1/V (11)

i=1

these seating arrangements. Cuwr — djuftu.
p(wlu,§,0) = —————
5 Inference Schemes O + cu-
. . . . . O1ul + djuitu.
In this section we give a high level description %p(wh(u),&@) (12)
|u| Cqu..

of a Markov chain Monte Carlo sampling based
inference scheme for the hierarchical Pitmanwhere the counts are obtained from the seating ar-
Yor language model. Further details can be obrangementS,, in the Chinese restaurant process
tained at (Teh, 2006). We also relate interpolatectorresponding t@-.,.
Kneser-Ney to the hierarchical Pitman-Yor lan- We use Gibbs sampling to obtain the posterior
guage model. samples{S,®} (Neal, 1993). Gibbs sampling
Our training dataD consists of the number of keeps track of the current state of each variable
occurrences,,,. of each wordw after each con- of interest in the model, and iteratively resamples
text u of length exactlyn — 1. This corresponds the state of each variable given the current states of
to observing wordw drawncy,,. times fromG,.  all other variables. It can be shown that the states
Given the training datd, we are interested in of variables will converge to the required samples
the posterior distribution over the latent vectorsfrom the posterior distribution after a sufficient
G = {G, : all contextsv} and parameter® = number of iterations. Specifically for the hierar-
{0m,dm :0<m<n-—1} chical Pitman-Yor language model, the variables
consist of, for eachu and each word:,,; drawn
r(6,8[D) =p(9,0,D)/p(D) (7) from Gy, the indexk,,; of the draw fromG
As mentioned previously, the hierarchical Chineseassigned:,,;. In the Chinese restaurant metaphor,
restaurant process marginalizes out eéth re- thisis the index of the table which tlih customer
placing it with the seating arrangement in the corsat at in the restaurant corresponding=to. If zy
responding restaurant, which we shall denote byas valueaw, it can only be assigned to draws from
Su. LetS = {Sy : all contextsv}. We are thus G () that has valuev as well. This can either be
interested in the equivalent posterior over seating preexisting draw with value, or it can be a new
arrangements instead: draw taking on valuev. The relevant probabili-
ties are given in the functior®rawWord(u) and
p(S,©[P) =p(S,©,D)/p(D) (8) WordProb(u,w), where we treatr,; as the last
The most important quantities we need for lan-word drawn fromG,,. This gives:

guage modelling are the predictive probabilities: max(0, ol d)

what is the probability of a test word aftera con-  (k, = k|S™™, ©) uxuzi 7 (13)
textu? This is given by 0+ cut
p(kul = k" with Yuknew = xul|87ula @) X

p(w\u,D) = p(w|u,5,@)p(8,@|’D) d(87®) —ul
/ Ot (), 5™ ©)  (14)

(9) (9 + Cu..
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where the superscriptul means the correspond- 6 Experimental Results

ing set of variables or counts with,; excluded. _ _ )
The parameter® are sampled using an auxiliary e performed experiments on the hierarchical
variable sampler as detailed in (Teh, 2006). Thditman-Yor language model on a 16 million word
overall sampling scheme for angram hierarchi- Corpus derived from APNews. This is the same
cal Pitman-Yor language model tak@$nT) time dat'ase.t as in (Bengio et al., 2_003). The training,
and require$) (M) space per iteration, whefis validation and test sets consist of about 14 mil-
the number of words in the training set, ahflis 10N, 1 million and 1 million words respectively,
the number of unique-grams. During test time, While the vocabulary size is 17964. For trigrams
the computational cost i9(nI), since the predic- with n = 3, we varied the training set size between

tive probabilities (12) requir€(n) time to calcu-  @PProximately 2 million and 14 million words by
late for each of samples. six equal increments, while we also experimented

. : . with n = 2 and4 on the full 14 million word train-
Tdhe hledrgrchlcal F;]ltman-Yor Iaanglflage m?deling set. We compared the hierarchical Pitman-Yor
produces discounts that grow gradually as a uncfanguage model trained using the proposed Gibbs

tign of n-gram counts. Nlotir?e that ?hoth eaChsampler (HPYLM) against interpolated Kneser-
Pitman-Yor procesér, only has one discourpia- Ney (IKN), modified Kneser-Ney (MKN) with

rameter, the predictive probabilities (12) produce maximum discount cut-offM™ — 3 as recom-

d?fferent discountvalg% since ty,. can take on mended in (Chen and Goodman, 1998), and the
dlfferent values for dlffere_:nt Word&”' In facttu,. hierarchical Dirichlet language model (HDLM).
will on average pe larger du,. is larger; avergged For the various variants of Kneser-Ney, we first
\(/)v\i/IT rgtr?)svps(?s\til;lo;’st':]heeicotﬂi[camogurgt/vg d_:_shcigunhetermin_ed the parameters by conjugqte gradient
is shown in Figure 2 (left) wh;;Ué we see that thedescent m_the cross-entropy on the vallda_tlon_ set.
growth of discounts is sub’Iinear At the optlmal' \{alues, we foId_ed the_ validation
' set into the training set to obtain the finalgram
The correspondence to interpolated Kneser-Neyrobability estimates. This procedure is as recom-
is now straightforward. If we restrict,,,. to be at  mended in (Chen and Goodman, 1998), and takes
most 1, that is, approximately 10 minutes on the full training set
with n = 3 on a 1.4 Ghz PIlll. For HPYLM we
inferred the posterior distribution over the latent

b = min(1, cuy.) (15)  variables and parameters given both the training
Caw. = Z tu'w- (16) and validation sets using the proposed Gibbs sam-
u'ir(w)=u pler. Since the posterior is well-behaved and the

sampler converges quickly, we only used 125 it-
erations for burn-in, and 175 iterations to collect
we will get the same discount value so long asyosterior samples. On the full training set with
cuw- > 0, i.€. absolute discounting. Further sup-,, — 3 this took about 1.5 hours.
posing that the strength parameters ar@/gl = Perplexities on the test set are given in Table 1.
0, the predictive probabilities (12) now directly re- pg expected, HDLM gives the worst performance,
duces to the predictive probabilities given by inter- hiie HPYLM performs better than IKN. Perhaps

polated Kneser-Ney. Thus we can interpret inter'surprisingly HPYLM performs slightly worse than

polated Kneser-Ney as the approximate inferencgy . \we believe this is because HPYLM is not a
scheme (15,16) in the hierarchical Pitman-Yor Ian'perfect model for languages and as a result poste-

guage model. rior estimates of the parameters are not optimized
Modified Kneser-Ney uses the same values fofor predictive performance. On the other hand
the counts as in (15,16), but uses a different valparameters in the Kneser-Ney variants are opti-
ued discount for each value 6f,,. up to a maxi- mized using cross-validation, so are given opti-
mum of ¢(M® Since the discounts in a hierarchi- mal values for prediction. To validate this con-
cal Pitman-Yor language model are limited to be-jecture, we also experimented with HPYCYV, a hi-
tween 0 and 1, we see that modified Kneser-Ney igrarchical Pitman-Yor language model where the
not an approximation of the hierarchical Pitman-parameters are obtained by fitting them in a slight
Yor language model. generalization of IKN where the strength param-
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T n IKN  MKN HPYLM HPYCV HDLM the differences between our model and the vari-
2e6 3| 148.8 1441 145.7 1443 191.2 ants of Kneser-Ney, to consider other approximate
4e6 3| 137.1 1327 134.3 132.7 172.7 inference schemes, and to test the model on larger
6e6 3| 130.6 126.7 127.91264 162.3 datasetsandon speech recognition. The hierarchi-
8e6 3| 1259 122.3 123.21219 154.7 cal Pitman-Yor language model is a fully Bayesian
10e6 3| 122.0 118.6 119.4118.2 148.7 model, thus we can also reap other benefits of the
12e6 3| 119.0 115.8 116.51154 144.0 paradigm, including having a coherent probabilis-
14e6 3| 116.7 113.6 114.3113.2 140.5 tic model, ease of improvements by building in
14e6 2| 169.9 169.2 169.6 169.3 180.6 prior knowledge, and ease in using as part of more
14e6 4| 106.1 102.4 103.8101.9 136.6 complex models; we plan to look into these possi-

ble improvements and extensions.
Table 1: Perplexities of various methods and for The hierarchical Dirichlet language model of
various sizes of training séf and length ofn-  (MacKay and Peto, 1994) was an inspiration for
grams. our work. Though (MacKay and Peto, 1994) had

the right intuition to look at smoothing techniques
etersf) s are allowed to be positive and opti- as the outcome'qf hlera.rchilcaI_BayeS|an _models,
mized over along with the discount parameters:[he use of the Dirichlet dlstrlt_)gtlon as a prior was
using cross-validation. Seating arrangements ar hown'to lead to non-competitive cross-entropy re-
Gibbs sampled as in Section 5 with the parame—SUIt_S' Qur model 'S a noptnwa! .bUt direct gen-
ter values fixed. We find that HPYCV performs eralization of the hierarchical Dirichlet language
better than MKN (except marginally worse on model that gives state-of-the-art performance. We

small problems), and has best performance Ovelt]ave shown that with a suitable choice 'of priors
all. Note that the parameter values in HPYCV arenamely the Pitman-Yor process), Bayesian meth-

still not the optimal ones since they are obtaineoOds can be competitive with the best smoothing

by cross-validation using IKN, an approximation technques. _ _ _
to a hierarchical Pitman-Yor language model. Un- The hierarchical Pitman-Yor process is a natural

fortunately cross-validation using a hierarchical9€neraiization of the recently proposed hierarchi-

Pitman-Yor language model inferred using Gibbscal Dirichlet process (Teh et al., 2006). The hier-

sampling is currently too costly to be practical. ~ archical Dirichlet process was proposed to solve
In Figure 2 (right) we broke down the contribu- a dn‘fergnt problem—that of clust_erlng, and |t_|s
tions to the cross-entropies in terms of how manyNteresting to note that such a direct generaliza-
times each word appears in the test set. We sdn 16ads us to a good language model. Both the
that most of the differences between the methon'erarCh'Cal Dirichlet process and the hierarchi-
appear as differences among rare words, with th§2! Pitman-Yor process are examples of Bayesian
contribution of more common words being neg-N°nParametric processes. These have recently re-
ligible. HPYLM performs worse than MKN on ce!ved mU(_:h attention in the statistics and ma-
words that occurred only once (on average) ané:hlne Ie_arnlng communities b_ecause they can re-
better on other words, while HPYCYV is reversed!2X Préviously strong assumptions on the paramet-
and performs better than MKN on words that oc-/€ forms of Bayesian models yet retain computa-
curred only once or twice and worse on othertional efficiency, and because of the elegant way
words. in which they handle the issues of model selection
and structure learning in graphical models.
7 Discussion
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