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Abstract

We propose a new hierarchical Bayesian
n-gram model of natural languages. Our
model makes use of a generalization of
the commonly used Dirichlet distributions
called Pitman-Yor processes which pro-
duce power-law distributions more closely
resembling those in natural languages. We
show that an approximation to the hier-
archical Pitman-Yor language model re-
covers the exact formulation of interpo-
lated Kneser-Ney, one of the best smooth-
ing methods forn-gram language models.
Experiments verify that our model gives
cross entropy results superior to interpo-
lated Kneser-Ney and comparable to mod-
ified Kneser-Ney.

1 Introduction

Probabilistic language models are used exten-
sively in a variety of linguistic applications, in-
cluding speech recognition, handwriting recogni-
tion, optical character recognition, and machine
translation. Most language models fall into the
class ofn-gram models, which approximate the
distribution over sentences using the conditional
distribution of each word given a context consist-
ing of only the previousn− 1 words,

P (sentence) ≈
T

∏

i=1

P (wordi |wordi−1
i−n+1) (1)

with n = 3 (trigram models) being typical. Even
for such a modest value ofn the number of param-
eters is still tremendous due to the large vocabu-
lary size. As a result direct maximum-likelihood
parameter fitting severely overfits to the training

data, and smoothing methods are indispensible for
proper training ofn-gram models.

A large number of smoothing methods have
been proposed in the literature (see (Chen and
Goodman, 1998; Goodman, 2001; Rosenfeld,
2000) for good overviews). Most methods take a
rather ad hoc approach, wheren-gram probabili-
ties for various values ofn are combined together,
using either interpolation or back-off schemes.
Though some of these methods are intuitively ap-
pealing, the main justification has always been
empirical—better perplexities or error rates on test
data. Though arguably this should be the only
real justification, it only answers the question of
whether a method performs better, nothow nor
why it performs better. This is unavoidable given
that most of these methods are not based on in-
ternally coherent Bayesian probabilistic models,
which have explicitly declared prior assumptions
and whose merits can be argued in terms of how
closely these fit in with the known properties of
natural languages. Bayesian probabilistic mod-
els also have additional advantages—it is rela-
tively straightforward to improve these models by
incorporating additional knowledge sources and
to include them in larger models in a principled
manner. Unfortunately the performance of pre-
viously proposed Bayesian language models had
been dismal compared to other smoothing meth-
ods (Nadas, 1984; MacKay and Peto, 1994).

In this paper, we propose a novel language
model based on a hierarchical Bayesian model
(Gelman et al., 1995) where each hidden variable
is distributed according to a Pitman-Yor process, a
nonparametric generalization of the Dirichlet dis-
tribution that is widely studied in the statistics and
probability theory communities (Pitman and Yor,
1997; Ishwaran and James, 2001; Pitman, 2002).
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Our model is a direct generalization of the hierar-
chical Dirichlet language model of (MacKay and
Peto, 1994). Inference in our model is however
not as straightforward and we propose an efficient
Markov chain Monte Carlo sampling scheme.

Pitman-Yor processes produce power-law dis-
tributions that more closely resemble those seen
in natural languages, and it has been argued that
as a result they are more suited to applications
in natural language processing (Goldwater et al.,
2006). We show experimentally that our hierarchi-
cal Pitman-Yor language model does indeed pro-
duce results superior to interpolated Kneser-Ney
and comparable to modified Kneser-Ney, two of
the currently best performing smoothing methods
(Chen and Goodman, 1998). In fact we show a
stronger result—that interpolated Kneser-Ney can
be interpreted as a particular approximate infer-
ence scheme in the hierarchical Pitman-Yor lan-
guage model. Our interpretation is more useful
than past interpretations involving marginal con-
straints (Kneser and Ney, 1995; Chen and Good-
man, 1998) or maximum-entropy models (Good-
man, 2004) as it can recover the exact formulation
of interpolated Kneser-Ney, and actually produces
superior results. (Goldwater et al., 2006) has inde-
pendently noted the correspondence between the
hierarchical Pitman-Yor language model and in-
terpolated Kneser-Ney, and conjectured improved
performance in the hierarchical Pitman-Yor lan-
guage model, which we verify here.

Thus the contributions of this paper are three-
fold: in proposing a langauge model with excel-
lent performance and the accompanying advan-
tages of Bayesian probabilistic models, in propos-
ing a novel and efficient inference scheme for the
model, and in establishing the direct correspon-
dence between interpolated Kneser-Ney and the
Bayesian approach.

We describe the Pitman-Yor process in Sec-
tion 2, and propose the hierarchical Pitman-Yor
language model in Section 3. In Sections 4 and
5 we give a high level description of our sampling
based inference scheme, leaving the details to a
technical report (Teh, 2006). We also show how
interpolated Kneser-Ney can be interpreted as ap-
proximate inference in the model. We show ex-
perimental comparisons to interpolated and mod-
ified Kneser-Ney, and the hierarchical Dirichlet
language model in Section 6 and conclude in Sec-
tion 7.

2 Pitman-Yor Process

Pitman-Yor processes are examples of nonpara-
metric Bayesian models. Here we give a quick de-
scription of the Pitman-Yor process in the context
of a unigram language model; good tutorials on
such models are provided in (Ghahramani, 2005;
Jordan, 2005). LetW be a fixed and finite vocabu-
lary of V words. For each wordw ∈ W let G(w)
be the (to be estimated) probability ofw, and let
G = [G(w)]w∈W be the vector of word probabili-
ties. We place a Pitman-Yor process prior onG:

G ∼ PY(d, θ,G0) (2)

where the three parameters are: a discount param-
eter0 ≤ d < 1, a strength parameterθ > −d and
a mean vectorG0 = [G0(w)]w∈W . G0(w) is the
a priori probability of wordw: before observing
any data, we believe wordw should occur with
probability G0(w). In practice this is usually set
uniformly G0(w) = 1/V for all w ∈ W . Both θ
andd can be understood as controlling the amount
of variability aroundG0 in different ways. When
d = 0 the Pitman-Yor process reduces to a Dirich-
let distribution with parametersθG0.

There is in general no known analytic form for
the density ofPY(d, θ,G0) when the vocabulary
is finite. However this need not deter us as we
will instead work with the distribution over se-
quences of words induced by the Pitman-Yor pro-
cess, which has a nice tractable form and is suffi-
cient for our purpose of language modelling. To
be precise, notice that we can treat bothG and
G0 as distributions overW , where wordw ∈ W
has probabilityG(w) (respectivelyG0(w)). Let
x1, x2, . . . be a sequence of words drawn inde-
pendently and identically (i.i.d.) fromG. We
shall describe the Pitman-Yor process in terms of
a generative procedure that producesx1, x2, . . . it-
eratively with G marginalized out. This can be
achieved by relatingx1, x2, . . . to a separate se-
quence of i.i.d. drawsy1, y2, . . . from the mean
distribution G0 as follows. The first wordx1 is
assigned the value of the first drawy1 from G0.
Let t be the current number of draws fromG0

(currently t = 1), ck be the number of words as-
signed the value of drawyk (currently c1 = 1),
andc· =

∑

t

k=1 ck be the current number of draws
from G. For each subsequent wordxc·+1, we ei-
ther assign it the value of a previous drawyk with
probability ck−d

θ+c·
(incrementck; setxc·+1 ← yk),

or we assign it the value of a new draw fromG0
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Figure 1: First panel: number of unique words as a function ofthe number of words drawn on a log-log
scale, withd = .5 andθ = 1 (bottom),10 (middle) and100 (top). Second panel: same, withθ = 10
andd = 0 (bottom),.5 (middle) and.9 (top). Third panel: proportion of words appearing only once, as
a function of the number of words drawn, withd = .5 andθ = 1 (bottom),10 (middle),100 (top). Last
panel: same, withθ = 10 andd = 0 (bottom),.5 (middle) and.9 (top).

with probability θ+dt

θ+c·
(incrementt; set ct = 1;

drawyt ∼ G0; setxc·+1 ← yt).

The above generative procedure produces a se-
quence of words drawn i.i.d. fromG, with G
marginalized out. It is informative to study the
Pitman-Yor process in terms of the behaviour it
induces on this sequence of words. Firstly, no-
tice the rich-gets-richer clustering property: the
more words have been assigned to a draw from
G0, the more likely subsequent words will be as-
signed to the draw. Secondly, the more we draw
from G0, the more likely a new word will be as-
signed to a new draw fromG0. These two ef-
fects together produce a power-law distribution
where many unique words are observed, most of
them rarely. In particular, for a vocabulary of un-
bounded size and ford > 0, the number of unique
words scales asO(θT d) whereT is the total num-
ber of words. Ford = 0, we have a Dirichlet dis-
tribution and the number of unique words grows
more slowly atO(θ log T ).

Figure 1 demonstrates the power-law behaviour
of the Pitman-Yor process and how this depends
on d andθ. In the first two panels we show the
average number of unique words among 10 se-
quences ofT words drawn fromG, as a func-
tion of T , for various values ofθ and d. We
see thatθ controls the overall number of unique
words, whiled controls the asymptotic growth of
the number of unique words. In the last two pan-
els, we show the proportion of words appearing
only once among the unique words; this gives an
indication of the proportion of words that occur
rarely. We see that the asymptotic behaviour de-
pends ond but not onθ, with largerd’s producing
more rare words.

This procedure for generating words drawn

from G is often referred to as the Chinese restau-
rant process (Pitman, 2002). The metaphor is as
follows. Consider a sequence of customers (cor-
responding to the words draws fromG) visiting a
Chinese restaurant with an unbounded number of
tables (corresponding to the draws fromG0), each
of which can accommodate an unbounded number
of customers. The first customer sits at the first ta-
ble, and each subsequent customer either joins an
already occupied table (assign the word to the cor-
responding draw fromG0), or sits at a new table
(assign the word to a new draw fromG0).

3 Hierarchical Pitman-Yor Language
Models

We describe ann-gram language model based on a
hierarchical extension of the Pitman-Yor process.
An n-gram language model defines probabilities
over the current word given various contexts con-
sisting of up ton − 1 words. Given a contextu,
let Gu(w) be the probability of the current word
taking on valuew. We use a Pitman-Yor process
as the prior forGu[Gu(w)]w∈W , in particular,

Gu ∼ PY(d|u|, θ|u|, Gπ(u)) (3)

whereπ(u) is the suffix ofu consisting of all but
the earliest word. The strength and discount pa-
rameters are functions of the length|u| of the con-
text, while the mean vector isGπ(u), the vector
of probabilities of the current word given all but
the earliest word in the context. Since we do not
know Gπ(u) either, We recursively place a prior
over Gπ(u) using (3), but now with parameters
θ|π(u)|, d|π(u)| and mean vectorGπ(π(u)) instead.
This is repeated until we get toG∅, the vector
of probabilities over the current word given the
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empty context∅. Finally we place a prior onG∅:

G∅ ∼ PY(d0, θ0, G0) (4)

whereG0 is the global mean vector, given a uni-
form value ofG0(w) = 1/V for all w ∈ W . Fi-
nally, we place a uniform prior on the discount pa-
rameters and aGamma(1, 1) prior on the strength
parameters. The total number of parameters in the
model is2n.

The structure of the prior is that of a suffix tree
of depthn, where each node corresponds to a con-
text consisting of up ton−1 words, and each child
corresponds to adding a different word to the be-
ginning of the context. This choice of the prior
structure expresses our belief that words appearing
earlier in a context have (a priori) the least impor-
tance in modelling the probability of the current
word, which is why they are dropped first at suc-
cessively higher levels of the model.

4 Hierarchical Chinese Restaurant
Processes

We describe a generative procedure analogous
to the Chinese restaurant process of Section 2
for drawing words from the hierarchical Pitman-
Yor language model with allGu’s marginalized
out. This gives us an alternative representation of
the hierarchical Pitman-Yor language model that
is amenable to efficient inference using Markov
chain Monte Carlo sampling and easy computa-
tion of the predictive probabilities for test words.
The correspondence between interpolated Kneser-
Ney and the hierarchical Pitman-Yor language
model is also apparent in this representation.

Again we may treat eachGu as a distribution
over the current word. The basic observation is
that sinceGu is Pitman-Yor process distributed,
we can draw words from it using the Chinese
restaurant process given in Section 2. Further, the
only operation we need of its parent distribution
Gπ(u) is to draw words from it too. SinceGπ(u)

is itself distributed according to a Pitman-Yor pro-
cess, we can use another Chinese restaurant pro-
cess to draw words from that. This is recursively
applied until we need draws from the global mean
distributionG0, which is easy since it is just uni-
form. We refer to this as the hierarchical Chinese
restaurant process.

Let us introduce some notations. For each con-
text u we have a sequence of wordsxu1, xu2, . . .
drawn i.i.d. from Gu and another sequence of

words yu1, yu2, . . . drawn i.i.d. from the parent
distributionGπ(u). We usel to index draws from
Gu andk to index the draws fromGπ(u). Define
tuwk = 1 if yuk takes on valuew, andtuwk = 0
otherwise. Each wordxul is assigned to one of
the drawsyuk from Gπ(u). If yuk takes on value
w definecuwk as the number of wordsxul drawn
from Gu assigned toyuk, otherwise letcuwk = 0.
Finally we denote marginal counts by dots. For
example,cu·k is the number ofxul’s assigned the
value of yuk, cuw· is the number ofxul’s with
valuew, andtu·· is the current number of draws
yuk from Gπ(u). Notice that we have the follow-
ing relationships among thecuw·’s andtuw·:

{

tuw· = 0 if cuw· = 0;

1 ≤ tuw· ≤ cuw· if cuw· > 0;
(5)

cuw· =
∑

u
′:π(u′)=u

tu′w· (6)

Pseudo-code for drawing words using the hier-
archical Chinese restaurant process is given as a
recursive functionDrawWord(u), while pseudo-
code for computing the probability that the next
word drawn from Gu will be w is given in
WordProb(u,w). The counts are initialized at all
cuwk = tuwk = 0.

Function DrawWord(u):
Returns a new word drawn from Gu.
If u = 0, returnw ∈W with probabilityG0(w).
Else with probabilities proportional to:

cuwk − d|u|tuwk: assign the new word toyuk.
Incrementcuwk; returnw.

θ|u| + d|u|tu··: assign the new word to a new
drawyuknew from Gπ(u).
Let w ← DrawWord(π(u));
settuwknew = cuwknew = 1; returnw.

Function WordProb(u,w):
Returns the probability that the next word after
context u will be w.
If u = 0, returnG0(w). Else return

cuw·−d|u|tuw·

θ|u|+cu··
+

θ|u|+d|u|tu··

θ|u|+cu··
WordProb(π(u),w).

Notice the self-reinforcing property of the hi-
erarchical Pitman-Yor language model: the more
a wordw has been drawn in contextu, the more
likely will we draw w again in contextu. In fact
word w will be reinforced for other contexts that
share a common suffix withu, with the probabil-
ity of drawing w increasing as the length of the
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common suffix increases. This is becausew will
be more likely under the context of the common
suffix as well.

The hierarchical Chinese restaurant process is
equivalent to the hierarchical Pitman-Yor language
model insofar as the distribution induced on words
drawn from them are exactly equal. However, the
probability vectorsGu’s have been marginalized
out in the procedure, replaced instead by the as-
signments of wordsxul to drawsyuk from the
parent distribution, i.e. the seating arrangement of
customers around tables in the Chinese restaurant
process corresponding toGu. In the next section
we derive tractable inference schemes for the hi-
erarchical Pitman-Yor language model based on
these seating arrangements.

5 Inference Schemes

In this section we give a high level description
of a Markov chain Monte Carlo sampling based
inference scheme for the hierarchical Pitman-
Yor language model. Further details can be ob-
tained at (Teh, 2006). We also relate interpolated
Kneser-Ney to the hierarchical Pitman-Yor lan-
guage model.

Our training dataD consists of the number of
occurrencescuw· of each wordw after each con-
text u of length exactlyn − 1. This corresponds
to observing wordw drawncuw· times fromGu.
Given the training dataD, we are interested in
the posterior distribution over the latent vectors
G = {Gv : all contextsv} and parametersΘ =
{θm, dm : 0 ≤ m ≤ n− 1}:

p(G,Θ|D) = p(G,Θ,D)/p(D) (7)

As mentioned previously, the hierarchical Chinese
restaurant process marginalizes out eachGu, re-
placing it with the seating arrangement in the cor-
responding restaurant, which we shall denote by
Su. Let S = {Sv : all contextsv}. We are thus
interested in the equivalent posterior over seating
arrangements instead:

p(S,Θ|D) = p(S,Θ,D)/p(D) (8)

The most important quantities we need for lan-
guage modelling are the predictive probabilities:
what is the probability of a test wordw after a con-
textu? This is given by

p(w|u,D) =

∫

p(w|u,S,Θ)p(S,Θ|D) d(S,Θ)

(9)

where the first probability on the right is the pre-
dictive probability under a particular setting of
seating arrangementsS and parametersΘ, and the
overall predictive probability is obtained by aver-
aging this with respect to the posterior overS and
Θ (second probability on right). We approximate
the integral with samples{S(i),Θ(i)}I

i=1 drawn
from p(S,Θ|D):

p(w|u,D) ≈
I

∑

i=1

p(w|u,S(i),Θ(i)) (10)

while p(w|u,S,Θ) is given by the function
WordProb(u,w):

p(w | 0,S,Θ) = 1/V (11)

p(w |u,S,Θ) =
cuw· − d|u|tuw·

θ|u| + cu··

+
θ|u| + d|u|tu··

θ|u| + cu··
p(w |π(u),S,Θ) (12)

where the counts are obtained from the seating ar-
rangementSu in the Chinese restaurant process
corresponding toGu.

We use Gibbs sampling to obtain the posterior
samples{S,Θ} (Neal, 1993). Gibbs sampling
keeps track of the current state of each variable
of interest in the model, and iteratively resamples
the state of each variable given the current states of
all other variables. It can be shown that the states
of variables will converge to the required samples
from the posterior distribution after a sufficient
number of iterations. Specifically for the hierar-
chical Pitman-Yor language model, the variables
consist of, for eachu and each wordxul drawn
from Gu, the indexkul of the draw fromGπ(u)

assignedxul. In the Chinese restaurant metaphor,
this is the index of the table which thelth customer
sat at in the restaurant corresponding toGu. If xul

has valuew, it can only be assigned to draws from
Gπ(u) that has valuew as well. This can either be
a preexisting draw with valuew, or it can be a new
draw taking on valuew. The relevant probabili-
ties are given in the functionsDrawWord(u) and
WordProb(u,w), where we treatxul as the last
word drawn fromGu. This gives:

p(kul = k|S−ul,Θ) ∝
max(0, c−ul

ux
ulk
− d)

θ + c−ul
u··

(13)

p(kul = knew with yuknew = xul|S
−ul,Θ) ∝

θ + dt−ul
u··

θ + c−ul
u··

p(xul|π(u),S−ul,Θ) (14)
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where the superscript−ul means the correspond-
ing set of variables or counts withxul excluded.
The parametersΘ are sampled using an auxiliary
variable sampler as detailed in (Teh, 2006). The
overall sampling scheme for ann-gram hierarchi-
cal Pitman-Yor language model takesO(nT ) time
and requiresO(M) space per iteration, whereT is
the number of words in the training set, andM is
the number of uniquen-grams. During test time,
the computational cost isO(nI), since the predic-
tive probabilities (12) requireO(n) time to calcu-
late for each ofI samples.

The hierarchical Pitman-Yor language model
produces discounts that grow gradually as a func-
tion of n-gram counts. Notice that although each
Pitman-Yor processGu only has one discountpa-
rameter, the predictive probabilities (12) produce
different discountvalues since tuw· can take on
different values for different wordsw. In fact tuw·

will on average be larger ifcuw· is larger; averaged
over the posterior, the actual amount of discount
will grow slowly as the countcuw· grows. This
is shown in Figure 2 (left), where we see that the
growth of discounts is sublinear.

The correspondence to interpolated Kneser-Ney
is now straightforward. If we restricttuw· to be at
most 1, that is,

tuw· = min(1, cuw·) (15)

cuw· =
∑

u
′:π(u′)=u

tu′w· (16)

we will get the same discount value so long as
cuw· > 0, i.e. absolute discounting. Further sup-
posing that the strength parameters are allθ|u| =
0, the predictive probabilities (12) now directly re-
duces to the predictive probabilities given by inter-
polated Kneser-Ney. Thus we can interpret inter-
polated Kneser-Ney as the approximate inference
scheme (15,16) in the hierarchical Pitman-Yor lan-
guage model.

Modified Kneser-Ney uses the same values for
the counts as in (15,16), but uses a different val-
ued discount for each value ofcuw· up to a maxi-
mum ofc(max). Since the discounts in a hierarchi-
cal Pitman-Yor language model are limited to be-
tween 0 and 1, we see that modified Kneser-Ney is
not an approximation of the hierarchical Pitman-
Yor language model.

6 Experimental Results

We performed experiments on the hierarchical
Pitman-Yor language model on a 16 million word
corpus derived from APNews. This is the same
dataset as in (Bengio et al., 2003). The training,
validation and test sets consist of about 14 mil-
lion, 1 million and 1 million words respectively,
while the vocabulary size is 17964. For trigrams
with n = 3, we varied the training set size between
approximately 2 million and 14 million words by
six equal increments, while we also experimented
with n = 2 and4 on the full 14 million word train-
ing set. We compared the hierarchical Pitman-Yor
language model trained using the proposed Gibbs
sampler (HPYLM) against interpolated Kneser-
Ney (IKN), modified Kneser-Ney (MKN) with
maximum discount cut-offc(max) = 3 as recom-
mended in (Chen and Goodman, 1998), and the
hierarchical Dirichlet language model (HDLM).

For the various variants of Kneser-Ney, we first
determined the parameters by conjugate gradient
descent in the cross-entropy on the validation set.
At the optimal values, we folded the validation
set into the training set to obtain the finaln-gram
probability estimates. This procedure is as recom-
mended in (Chen and Goodman, 1998), and takes
approximately 10 minutes on the full training set
with n = 3 on a 1.4 Ghz PIII. For HPYLM we
inferred the posterior distribution over the latent
variables and parameters given both the training
and validation sets using the proposed Gibbs sam-
pler. Since the posterior is well-behaved and the
sampler converges quickly, we only used 125 it-
erations for burn-in, and 175 iterations to collect
posterior samples. On the full training set with
n = 3 this took about 1.5 hours.

Perplexities on the test set are given in Table 1.
As expected, HDLM gives the worst performance,
while HPYLM performs better than IKN. Perhaps
surprisingly HPYLM performs slightly worse than
MKN. We believe this is because HPYLM is not a
perfect model for languages and as a result poste-
rior estimates of the parameters are not optimized
for predictive performance. On the other hand
parameters in the Kneser-Ney variants are opti-
mized using cross-validation, so are given opti-
mal values for prediction. To validate this con-
jecture, we also experimented with HPYCV, a hi-
erarchical Pitman-Yor language model where the
parameters are obtained by fitting them in a slight
generalization of IKN where the strength param-
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T n IKN MKN HPYLM HPYCV HDLM

2e6 3 148.8 144.1 145.7 144.3 191.2
4e6 3 137.1 132.7 134.3 132.7 172.7
6e6 3 130.6 126.7 127.9 126.4 162.3
8e6 3 125.9 122.3 123.2 121.9 154.7

10e6 3 122.0 118.6 119.4 118.2 148.7
12e6 3 119.0 115.8 116.5 115.4 144.0
14e6 3 116.7 113.6 114.3 113.2 140.5
14e6 2 169.9 169.2 169.6 169.3 180.6
14e6 4 106.1 102.4 103.8 101.9 136.6

Table 1: Perplexities of various methods and for
various sizes of training setT and length ofn-
grams.

etersθ|u|’s are allowed to be positive and opti-
mized over along with the discount parameters
using cross-validation. Seating arrangements are
Gibbs sampled as in Section 5 with the parame-
ter values fixed. We find that HPYCV performs
better than MKN (except marginally worse on
small problems), and has best performance over-
all. Note that the parameter values in HPYCV are
still not the optimal ones since they are obtained
by cross-validation using IKN, an approximation
to a hierarchical Pitman-Yor language model. Un-
fortunately cross-validation using a hierarchical
Pitman-Yor language model inferred using Gibbs
sampling is currently too costly to be practical.

In Figure 2 (right) we broke down the contribu-
tions to the cross-entropies in terms of how many
times each word appears in the test set. We see
that most of the differences between the methods
appear as differences among rare words, with the
contribution of more common words being neg-
ligible. HPYLM performs worse than MKN on
words that occurred only once (on average) and
better on other words, while HPYCV is reversed
and performs better than MKN on words that oc-
curred only once or twice and worse on other
words.

7 Discussion

We have described using a hierarchical Pitman-
Yor process as a language model and shown that
it gives performance superior to state-of-the-art
methods. In addition, we have shown that the
state-of-the-art method of interpolated Kneser-
Ney can be interpreted as approximate inference
in the hierarchical Pitman-Yor language model.

In the future we plan to study in more detail

the differences between our model and the vari-
ants of Kneser-Ney, to consider other approximate
inference schemes, and to test the model on larger
data sets and on speech recognition. The hierarchi-
cal Pitman-Yor language model is a fully Bayesian
model, thus we can also reap other benefits of the
paradigm, including having a coherent probabilis-
tic model, ease of improvements by building in
prior knowledge, and ease in using as part of more
complex models; we plan to look into these possi-
ble improvements and extensions.

The hierarchical Dirichlet language model of
(MacKay and Peto, 1994) was an inspiration for
our work. Though (MacKay and Peto, 1994) had
the right intuition to look at smoothing techniques
as the outcome of hierarchical Bayesian models,
the use of the Dirichlet distribution as a prior was
shown to lead to non-competitive cross-entropy re-
sults. Our model is a nontrivial but direct gen-
eralization of the hierarchical Dirichlet language
model that gives state-of-the-art performance. We
have shown that with a suitable choice of priors
(namely the Pitman-Yor process), Bayesian meth-
ods can be competitive with the best smoothing
techniques.

The hierarchical Pitman-Yor process is a natural
generalization of the recently proposed hierarchi-
cal Dirichlet process (Teh et al., 2006). The hier-
archical Dirichlet process was proposed to solve
a different problem—that of clustering, and it is
interesting to note that such a direct generaliza-
tion leads us to a good language model. Both the
hierarchical Dirichlet process and the hierarchi-
cal Pitman-Yor process are examples of Bayesian
nonparametric processes. These have recently re-
ceived much attention in the statistics and ma-
chine learning communities because they can re-
lax previously strong assumptions on the paramet-
ric forms of Bayesian models yet retain computa-
tional efficiency, and because of the elegant way
in which they handle the issues of model selection
and structure learning in graphical models.
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Figure 2: Left: Average discounts as a function ofn-gram counts in IKN (bottom line), MKN (middle
step function), and HPYLM (top curve). Right: Break down of cross-entropy on test set as a function
of the number of occurrences of test words. Plotted is the sumover test words which occurredc times
of cross-entropies of IKN, MKN, HPYLM and HPYCV, wherec is as given on thex-axis and MKN is
used as a baseline. Lower is better. Both panels are for the full training set andn = 3.
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