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Abstract

The present work advances the accu-
racy and training speed of discrimina-
tive parsing. Our discriminative parsing
method has no generative component, yet
surpasses a generative baseline on con-
stituent parsing, and does so with mini-
mal linguistic cleverness. Our model can
incorporate arbitrary features of the in-
put and parse state, and performs fea-
ture selection incrementally over an ex-
ponential feature space during training.
We demonstrate the flexibility of our ap-
proach by testing it with several pars-
ing strategies and various feature sets.
Our implementation is freely available at:
http://nlp.cs.nyu.edu/parser/.

1 Introduction

Discriminative machine learning methods hav

parsers, demonstrating techniques that might also
be useful for other structured prediction problems.
The proposed method does model selection with-
out ad-hoc smoothing or frequency-based feature
cutafs. It requires no heuristics or humaffast

to optimize the single important hyper-parameter.
The training regime can use all available informa-
tion from the entire parse history. The learning al-
gorithm projects the hand-provided features into a
compound feature space and performs incremen-
tal feature selection over this large feature space.
The resulting parser achieves higher accuracy than
a generative baseline, despite not using a genera-
tive model as a feature.

Section 2 describes the parsing algorithm. Sec-
tion 3 presents the learning method. Section 4
presents experiments with discriminative parsers
built using these methods. Section 5 compares our
approach to related work.

e2 Parsing Algorithm

improved accuracy on many NLP tasks, includingThe following terms will help to explain our work.
POS-tagging, shallow parsing, relation extractionA spanis a range over contiguous words in the in-
and machine translation. Some advances have alput. Spansrossif they overlap but neither con-
been made on full syntactic constituent parsingtains the other. Artem is a (spanlabel) pair. A
Successful discriminative parsers have relied ostate is a partial parse, i.e. a set of items, none
generative models to reduce training time andf whose spans may cross. A paiséerence is
raise accuracy above generative baselines (Collires (stateitem) pair, i.e. a state and an item to be
& Roark, 2004; Henderson, 2004; Taskar et al.added to it. Thdrontier of a state consists of the
2004). However, relying on information from a items with no parents yet. Ttodildren of a candi-
generative model might prevent these approachegate inference are the frontier items below the item
from realizing the accuracy gains achieved by disto be inferred, and thbead of a candidate infer-
criminative methods on other NLP tasks. Anotherence is the child item chosen by English head rules
problem is training speed: Discriminative parsergCollins, 1999, pp. 238-240). A pargmth is a

are notoriously slow to train.

sequence of parse inferences. For some input sen-

In the present work, we make progress towardsence and training parse tree, a statedgect if
overcoming these obstacles. We propose a flexithe parser can infer zero or more additional items
ble, end-to-end discriminative method for trainingto obtain the training parse tree, and an inference
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is correct if it leads to a correct state. entry for each featuré:
Given input sentencs, the parser searches for ho(i) = @ - X(i) = Z Or - X(i) (3)
parsep out of the possible parséXs): T

p = arg minCe(p) (1)  The sign ofhg(i) predicts they-value ofi and the
peP(s) magnitude gives the confidence in this prediction.
whereCe(p) is thecostof parsep under mode®: The training procedure optimiz€sto minimize
the expected risRg over training set. Ry is the
Co(p) = Z Co(l) ) objective function, a combination dbssfunction
iep Le andregularization termQg:
Section 3.1 describes how to computs{i). Be- Ro(l) = Lo(l) + Qo (4)

causecg(i) € R*, the cost of a partial parse mono-
tonically increases as we add items to it.

The parsing algorithm considers a successio
of states. The initial state contains terminal items, Le(l) = Z lo(i) (5)
whose labels are the POS tags given by the tagger iel
of Ratnaparkhi (1996). Each time we pop a statdn principle,lg can be any loss function, but in the
from the agendage computes the costs for the present work we use the log-loss (Collins et al.,
candidate bottom-up inferences generated frord002):
that state. Each candidate inference results in a lo(i) = b(i) - In(1 + expue (i) (6)
successor state to be placed on the agenda.

The cost functioncg can consider arbitrary
properties of the input and parse state. We are not po(i) = ¥(i) - he(i) (7)
aware of any tractable solution to Equation 1, suchnference costg(i) in Equation 2 islg(i) com-
as dynamic programming. Therefore, the parseputed using(i) = +1 andb(i) = 1, i.e.:
finds p using a variant of uniform-cost search. . .

The parser implements the search using an agenda Co(1) = In(1 + exphe (1)) (®)
that stores entire states instead of single items. €e in Equation 4 is a regularizer, which penal-
Each time a state is popped from the agenda, thiges complex models to reduce overfitting and gen-
parser uses depth-first search starting from thgralization error. We use thfe penalty:

state that was popped until it (greedily) finds a Qp = Z,l. 1O¢] (9)
complete parse. In preliminary experiments, this f

The loss of the inference set decomposes into the
I|1oss of individual inferences:

andue(i) is themargin of inference:

cost search (Russell & Norvig, 1995). of the regularizer. This choice of objecti is
o motivated by Ng (2004), who suggests that, given
3 Training Method a learning setting where the number of irrelevant

features is exponential in the number of train-
ing examples, we can nonetheless ledfactively
Our training set consists of candidate inferencesby building decision trees to minimize thg-
from the parse trees in the training data. Fronregularized log-loss. On the other hand, Ng (2004)
each training inferencee | we generate the tuple suggests that most of the learning algorithms com-
(X(1), y(i), b(i)y. X(i) is a feature vector describing monly used by discriminative parsensll overfit
i, with each element if0, 1}. We will useX;(i)to  when exponentially many irrelevant features are
refer to the element oX(i) that pertains to feature present
f.y(i) = +1if i is correct, and/(i) = —1 if not. Learning over an exponential feature space is
Some training examples might be more importanthe very setting we have in mind. priori, we de-
than others, so each is giverbas b(i) € R*, as  fine only a setA of simpleatomic features (given
detailed in Section 3.3. TR , : . ,

) o . including the following learning algorithms:

The goal during training is to induce a hypothe-e unregularized logistic regression
sishe(i), which is a real-valued inference scoring® logistic regression with afy penalty (i.e. a Gaussian prior)
. . . e SVMs using most kernels

function. In the present worky is a linear model

_ : e multilayer neural nets trained by backpropagation
parameterized by a real vect®; which has one e the perceptron algorithm

3.1 General Setting
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in Section 4). The learner then indugasnpound  accuracy reaches a plateau (Step 1.4). Otherwise,
features, each of which is a conjunction of possiwe relax the regularization penalty by decreasing
bly negated atomic features. Each atomic featura (Steps 1.6 and 1.7) and continue training. In this
can have one of three values (yregdon’t care), way, instead of choosing the bestheuristically,
so the size of the compound feature spacéls 3 we can optimize it during a single training run
exponential in the number of atomic features. It(Turian & Melamed, 2005).
was also exponential in the number of training ex- Each training iteration (Steps 1.5-1.13) has sev-
amples in our experimenty = |1]). eral steps. First, we choose some compound fea-
tures that have high magnitude gradient with re-
3.2 Boosting/;-Regularized Decision Trees  gpect to the objective function. We do this by
We use an ensemble of confidence-rated decisiopuilding a new decision tree, whose leaves rep-
trees (Schapire & Singer, 1999) to represanf  resent the chosen compound features (Steps 1.5—
The path from the root to each nodé a decision 1.9). Second, we confidence-rate each leaf to min-
tree corresponds to some compound feafuend  imize the objective over the examples that per-
we write o(n) = f. To score an inferenceusing colate down to that leaf (Steps 1.10-1.12). Fi-
a decision tree, we percolate the inference’s feanally, we append the decision tree to the ensem-
turesX(i) down to a leaf and return confidence ble and update parameter vec#®raccordingly
®,(n)- An inferencd percolates down to nodeiff  (Step 1.13). In this manner, compound feature se-
Xy = 1. Each leaf node keeps track of the pa- lection is performed incrementallguring train-
rameter value®, .3 The scorehe(i) given to an  ing, as opposed ta priori.
inference by the whole ensemble is the sum of the Our strategy minimizing the objectivBg(l)
confidences returned by the trees in the ensembléEquation 4) is a variant of steepest descent
(Perkins et al., 2003). To compute the gradient of
the unpenalized lodsg with respect to the param-
eter®; of featuref, we have:

Listing 1 Outline of training algorithm.
1. procedure TraiN(l)
2: ensemble— 0

3 de o o) 5 o) o) 45
4. while dev set accuracy is increasidg 00t & oue(i) 00f

5: t « tree with one (root) node where:

6: while the root node cannot be sptib el . .

7: decayt, parameten gg(f) = y(0) - X (1) (11)
8: while s_ome leaf irt can .be. Sp“d(.) Using Equation 6, we define thveeight of an ex-
o split the leaf to maximize gain amplei under the current model as the rate at
10: percolate everye | toaleafnode  \yhich loss decreases as the margin iotreases:
11: for eachleafnint dq o . Al i) _ 1

12: update®,n) to minimizeRg We(i) = —m = b(i) - m (12)
13: append to ensemble

Recall thatX; (i) is either 0 or 1. Combining Equa-
Listing 1 presents our training algorithm. At tions 10-12 gives:

the beginning of training, the ensemble is empty, oLe(l) . .

© = 0, and thef; parameten is set toco (Steps 1.2 00 %: y(i) - we (1) (13)
and 1.3). We train until the objective cannot be fur- Xi(i)=1

ther reduced for the current choice @fWe then  \we define theyain of featuref as:

determine the accuracy of the parser on a held-out dLo(1)
development set using the previodsvalue (be- Go(l; f) = max(o, grell)l _ /l) (14)
fore it was decreased), and stop training when this 001

Equation 14 has this form because the gradient of

2Turian and Melamed (2005) reported that decision tree . . _ .
applied to parsing have higher accuracy and training speeihe penalty term is undefined @ = 0. This dis-

than decision stumps, so we build full decision trees rathe€ontinuity is why ¢, regularization tends to pro-

than stumps. _ duce sparse models.@g(l; f) = 0, then the ob-
3Any given compound feature can appear in more than one

tree, but each leaf node has a distinct confidence value. FdeCtiveRe(l) is at its_ minimum V\_/ith respect _to pa-
simplicity, we ignore this possibility in our discussion. rameter®¢. OtherwiseGg(l; f) is the magnitude
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of the gradient of the objective as we adj@stin  teach the parser to recover from mistakes grace-
the appropriate direction. fully.

To build each decision tree, we begin with aroot Turian and Melamed (2005) observed that uni-
node. The root node corresponds to a dummy “alform example biasds(i) produced lower accuracy
ways true” feature. We recursively split nodes byas training progressed, because the induced clas-
choosing a splitting feature that will allow us to in- sifiers minimized the error pexample To min-
crease the gain. Nodewith corresponding com- imize the error peistate we assign every train-
pound featurex(n) = f can be split by atomic fea- ing state equal value and share half the value uni-
tureaif: formly among the negative examples for the ex-

amples generated from that state and the other half

Go(l; f A 8)+Cell; T A=3) > Cell; T) (15) unifr())rmlg/ among the positive examples.

If no atomic feature satisfies the splitting crite- We parallelize training by inducing 26 label
rion in Equation 15, them becomes a leaf node classifiers (one for each non-terminal label in the
of the decision tree an@,(n) becomes one of the Penn Treebank). Parallelization might not uni-
values to be optimized during the parameter upformly reduce training time becausefférent la-
date step. Otherwise, we choose atomic feature bel classifiers train at fierent rates. However, par-

to split noden: allelization uniformly reducesnemoryusage be-
A cause each label classifier trains only on inferences
a=argmaxGe(l; f Aa)+Ge(l; f A —-a .
geAa)( ol ) o ) whose consequent item has that label.

(16)
This split creates child nodes; and ny, with 4 Experiments

e(m) = f Adande(ny) = f A =& L .
Discriminative parsers are notoriously slow to

Parameter update is done sequentially on onl)é .
the most recently added compound features, whic fain. For example_, Taskar et al. (2004) took sev-
eral months to train on thg 15 word sentences

correspond to the leaves of the new decision tree; . .
After the entire tree is built, we percolate exam-" the English Penn Treebank (Dan Klein, p.c.).

ples down to their appropriate leaf nodes. We ther-lr he present work makes progress towards faster

choose for each leaf nodethe paramete®, discriminative parser training: our slowest classi-

that minimizes the objective over the examples inﬂe'r took fewer than 5 days to train. Even so, it

that leaf. A convenient property of decision treesV_VOUIOI have taken much longer to train on the en-
. , tire treebank. We follow Taskar et al. (2004) in
is that the leaves’ compound features are mutuall

exclusive. Their parameters can be directly opti}(ralnlng and testing o 15 word sentences in

. . . . the English Penn Treebank (Taylor et al., 2003).
mized independently of each other using a IlneW q i 02-21 for traini tion 22
search over the objective. e used sections 02-21 for training, section

for development, and section 23 for testing, pre-
3.3 The Training Set processed as per Table 1. We evaluated our parser

_ ~using the standard PARSEVAL measures (Black et
We choose a single correct path from each trainingy ' 1991): labelled precision, labelled recall, and

parse tree, and the training examples correspond {gpelled F-measure (Prec., Rec., and fespec-
all candidate inferences considered in every statgyely), which are based on the number of non-
along this patt. In the deterministic setting there torminal items in the parser's output that match
is only one correct path, so example generatioghgse in the gold-standard pafse.

is identical to that of Sagae and Lavie (2005). If a5 mentioned in Section 2, items are inferred
parsing proceeds non-deterministically then ther%ottom-up and the parser cannot infer any item

might be multiple paths that lead to the same final 4t crosses an item already in the state. Although
parse, so we choose one randomly. This methog,qre areO(n?) possible (spariabel) pairs over a

of generating training examples does not require & gntier containingn items, we reduce this to the
working parser and can be run prior to any train- 5. inferences that have at most five childfen.
ing. The disadvantage of this approach is thatit—

.. . 5 ™ .
minimizes the error of the parser atrrectstates 1 correctness of a stratified shing test has been called
into question (Michael Collins, p.c.), so we are not aware of

only. It does not account for compounded error Ofany valid significance tests for observedfeliences in PAR-
SEVAL scores.
“Nearly all of the examples generated are negative {1). 60nly 0.57% of non-terminals in the preprocessed develop-
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Table 1 Steps for preprocessing the data. Starred steps are performed only when parse trees are available
in the data (e.g. not on test data).
1. * Strip functional tags and trace indices, and remove traces.
. * ConvertPRT to ADVP. (This convention was established by Magerman (1995).)
. Remove quotation marks (i.e. terminal items taggéar ’ ’). (Bikel, 2004)
. * Raise punctuation. (Bikel, 2004)
. Remove outermost punctuatin.
. * Remove unary projections to self (i.e. duplicate items with the same span and label).
. POS tag the text using the tagger of Rathaparkhi (1996).
8. Lowercase headwords.

NOoO o WN

aAs pointed out by an anonymous reviewer of Collins (2003), removing outermost punctuation might discard useful infor-
mation. Collins and Roark (2004) saw a LFMS improvement of 0.8% over their baseline discriminative parser after adding
punctuation features, one of which encoded the sentence-final punctuation.

To ensure the parser does not enter an infinite looglable 2 Results on the development set, training

no two items in a state can have both the samand testing using onlg 15 word sentences.

span and the same label. Given these restrictions active

on candidate inferences, there were roughly 40 1 features | % Rec. % Prec. F

million training examples generated in the train- |2r 0.040 11.9K | 89.86 89.63 89.74

ing set. These were partitioned among the 26 con- p.u. 0.020 13.7K | 89.92 89.84 89.88

stituent label classifiers. Building a decision tree 2] 0.014 14.0K | 90.66 89.81 90.23

(Steps 1.5-1.9 in Listing 1) using the entire ex-

ample setl can be very expensive. We estimateand non-deterministic bottom-up (b.u.). The

loss gradients (Equation 13) using a sample of th&@on-deterministic parser was allowed to choose

inference set, which gives a 100-fold increase irany bottom-up inference. The other two parsers

training speed (Turian & Melamed, 2006). were deterministic: bottom-up inferences had
Our atomic feature sef contains 300K fea- t0 be performed strictly left-to-right or right-

tures, each of the form “is there an item in groupto-left, respectively. We stopped training when

J whose labgheadworgheadtagheadtagclass is each parser had 15K active features. Figure 1

X'?". 7 Possible values of ‘X’ for each predicate shows the accuracy of theffirent runs over the

are collected from the training data. FogIn < 3, development set as training progressed. Table 2

possible values fod are: gives the PARSEVAL scores of these parsers at
e the firstlastn child items their optimal {1 penalty setting. We found that
« the firstn left/right context items the perplexity of the r2l model was low so that,
« then children items lefright of the head in 85% of the sentences, its greedy parse was the
e the head item. optimal one. The 12r parser does poorly because

The left and rightcontext items are the frontier it decisions were more iicult than those of the
items to the left and right of the children of the other parsers. If it inferred far-right items, it was

candidate inference, respectively. more likely to prevent correct subsequent infer-
ences that were to the left. But if it inferred far-left
4.1 Different Parsing Strategies items, then it went against the right-branching

tendency of English sentences. The left-to-right
parser would likely improve if we were to use a
left-corner transform (Collins & Roark, 2004).

To demonstrate the flexibility of our learn-
ing procedure, we trained three fidirent
parsers: left-to-right (I12r), right-to-left (r2l),
Parsers in the literature typically choose some
ment set have more than five children. local threshold on the amount of search, such as

"The predicate headtagclass is a supertype of the headtag. . . .
Given our compound features, these are not strictly necessary, maximum beam width. With an accurate scor-

but they accelerate training. An example is “proper noun,”ing function, restricting the search space using

which contains the POS tags given to singular and pluraly fixed beam width might be unnecessary. In-
proper nouns. Space constraints prevent enumeration of thet d . d bal threshold |
headtagclasses, which are instead provided at the URL giveﬁ ead, we imposed global threshold on explo-

in the abstract. ration of the search space. Specifically, if the
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Figure 1 F; scores on the development set of theFigure 2 F; scores of right-to-left parsers with dif-
Penn Treebank, using only 15 word sentences. ferent atomic feature sets on the development set
The x-axis shows the number of non-zero param-of the Penn Treebank, using ordy15 word sen-
eters in each parser, summed over all classifiers. tences.
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parser has found some complete parse and hds2 More Atomic Features

explor_ed at least 100K states (i.e. scored at Iea%e compared our right-to-left parser with the
100K inferences), search stopped prematurely angaseline set of atomic features to one with a far
the parser would return the (possibly sub-optimal}jcher atomic feature set, includingnbounded

current best complete parse. The 12r and r2fqnext features, length features, and features of
parsers never exceeded this threshold, and &lpe terminal items. This “kitchen sink” parser

ways found the optimal complete parse. Howevermere|y has access to many more item grolyte-

the non-deterministic bottom-up parsers searclyqyiped in Table 3. All features are all of the form

was cut-short in 28% of the sentences. The NONgiven earlier, except for length features (Eisner &

deterministic parser can reach each parse staith 2005). Length features compute the size of
through many dferent paths, so it searches agne of the groups of items in the indented list in
larger space than a deterministic parser, with morgpje 3. The feature determines if this length is
redundancy. equal tggreater than te, 0 < n < 15. The kitchen

To gain a better understanding of the weak-sink parser had 1.1 million atomic features, 3.7
nesses of our parser, we examined a sample @imes the number available in the baseline. In fu-
50 development sentences that the r2l parser dighire work, we plan to try linguistically more so-
not get entirely correct. Roughly half the errorsphisticated features (Charniak & Johnson, 2005)
were due to noise and genuine ambiguity. The reas well as sub-tree features (Bod, 2003; Kudo et
maining errors fell into three types, occurring with al., 2005).
roughly the same frequency: Figure 2 shows the accuracy of the right-to-

e ADVPs and ADJPs The r2| parser hadF= left parsers with dferent atomic feature sets over
81.1% onADVPs, and lf = 71.3% onADJPs. An- the development set as training progressed. Even
notation ofADJP andADVP in the PTB is inconsis- though the baseline training made progress more
tent, particularly founary projections. quickly than the kitchen sink, the kitchen sink’s F

« POS Tagging Errors Many of the parser’s er- Surpassed the baseline’séarly in training, and at
rors were due to incorrect POS tags. In future work8-3K active parameters it achieved a development
we will integrate POS-tagging as inferences of theét i1 0f 90.55%.
parser, allowing it to entertain competing hypothe-
ses about the correct tagging. 4.3 Test Set Results

¢ Bilexical dependenciesAlthough compound To situate our results in the literature, we compare
features exist to detecftfmities between words, our results to those reported by Taskar et al. (2004)
the parser had fliculties with bilexical depen- and Turian and Melamed (2005) for their dis-
dency decisions that were unobserved in the traineriminative parsers, which were also trained and
ing data. The classifier would need more trainingested on< 15 word sentences. We also compare
data to learn thesdimities. our parser to a representative non-discriminative
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Table 3 Item groups available in the kitchen sink run.

¢ the firsflastn child items, 1< n< 4

e the firstn left/right contextitems, k n< 4

¢ then children items lefright of the head, k n< 4

o thenth frontier item leftright of the leftmogtheadrightmost child item, I n< 3

o thenth terminal item leftright of the leftmosheadrightmost terminal item dominated by the item
being inferred, x n< 3

¢ the leftmostheadrightmost child item of the leftmogteadrightmost child item
¢ the following groups of frontier items:

— all items

— left/right context items

— non-leftmostnon-heaghon-rightmost child items

— child items leftright of the head item, inclusiyexclusive

the terminal items dominated by one of the item groups in the indented list above

Table 4 Results of parsers on the test set, trainingyenerative baseline (the Collins model).

and testing using onlg 15 word sentences. The main limitation of our work is that we can

_ % Rec. % Prec. £ (o training reasonably quickly only on short sen-
Turian and Melamed (2005) 86.47 87.80 87.1%nces because a sentence withvords gener-

Bikel (2004) 87.85 88.75 88.30 atesO(n?) training inferences in total. Although
Taskar et al. (2004) 89.10 89.14 89.1%enerating training examples in advance with-
kitchen sink 89.26 89.55 89.40 out a working parser (Turian & Melamed, 2005)

. is much faster than using inference (Collins &
parser (Bikel, 200&) the only one that we were Roark, 2004; Henderson, 2004; Taskar et al.,

able to train and test under exactly the same €%5004), our training time can probably be de-

perimental conditions (including the use of I:)oscreased further by choosing a parsing strategy with
tags from the tagger of Ratnaparkhi (1996)). Ta-

I b hing factor. Lik k, Ratna-
ble 4 shows the PARSEVAL results of these foura OWET branching factor. LIxe our work, =atna
parkhi (1999) and Sagae and Lavie (2005) gener-
parsers on the test set.

ate examplesft-line, but their parsing strategies
are essentially shift-reduce so each sentence gen-
erates onlyO(n) training examples.

Our parsing approach is based upon a single end- An advantage of our approach is its flexibility.
to-end discriminative learning machine. Collins As our experiments showed, it is quite simple to
and Roark (2004) and Taskar et al. (2004) beagubstitute in dferent parsing strategies. Although
the generative baseline only after using the stanwe used very little linguistic information (the head
dard trick of using the output from a generativerules and the POS tag classes), our model could
model as a feature. Henderson (2004) finds thadlso start with more sophisticated task-specific
discriminative training was too slow, and reportsfeatures in its atomic feature set. Atomic features
accuracy higher than generative models by disthat access arbitrary information are represented
criminatively reranking the output of his genera-directly without the need for an induced interme-
tive model. Unlike these state-of-the-art discrimi-diate representation (cf. Henderson, 2004).

_native pgrsers, our method_does not (yet_) use any iner papers (Clark & Curran, 2004: Kaplan
information from a generative model to improve al., 2004, e.g.) have applied log-linear mod-

training speed or accuracy. As far as we know, W&is to parsing. These works are based upon con-
present the first discriminative parser that does NOfitional models. which include a normalization

use information from a generative model to beat 3erm. However, our loss function forgoes normal-

8Bikel (2004) is a “clean room” reimplementation of the !Zat'on’ which means tha_t itis easily decomposed
Collins (1999) model with comparable accuracy. into the loss of individual inferences (Equation 5).

5 Comparison with Related Work
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