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Abstract model called CCM. OfPenn Wall Street Journal p-
0-s-strings< 10 (WSJ10), Klein and Manning
We investigate generalizations tie allF (2002) reportr1.1% unlabeled f-score with CCM.

subtrees "DOP" approach tmnsupervised And the hybrid approach of Klein andanning
parsing.Unsupervised DOP models assign (2004), which combines constituency and
all possible binary trees to a set of sentences dependency models, yields 77.6% f-score.

and next use (&rge random subset of) all Bod (2006) shows that a further impreve
subtrees from these binary treesctompute ment on the WSJ10 can be achieved by an unsuper
the most probable parse trees. We will test vised generalization of thall-subtrees approach
both a relative frequency estimator for known as Data-Oriented Parsing (DOP). This
unsupervisedDOP and a maximum unsupervised DOP model, coined U-DOIfiwst
likelihood estimator which iknown to be assigns all possible unlabeled binary treea set of
statistically consistent. We report state-of  sentencesand next uses all subtrees from (a large
the-art results on English (WSJ), German subset of) thestees to compute the most probable
(NEGRA) and Chines¢CTB) data. To the parse trees. Bod (2006) reports that U-DO®
best of our knowledge this is the figgaper only outperforms previous unsupervisearsers but
which tests a maximum likelihood estimator that its performance is as goad a binarizeduper

for DOP on the Wall Street Journal, leading visedparser (i.e. a treebank PCFG) on the WSJ.

to the surprising result thah unsupervised A possible drawback of U-DOMowever,
parsing model beats awidely used is the statistical inconsistency of its estimator
supervised model (a treebank PCFG). (Johnson 2002) which is inherited fratme DOP1
model (Bod 1998). That is, even witmlimited
1 Introduction training data, U-DOP'sstimator is not guaranteed

to converge to thecorrect weight distribution.
The problem ofbootstrapping syntactic structureJohnson (2002: 76) argues in favor of a maximum
from unlabeleddata has regained considerabldikelihood estimator for DOP whichs statistically
interest. Whilesupervised parsers suffer fromconsistent. As it happenisy Bod (2000) we already
shortageof hand-annotated data, unsupervisedeveloped such a DORodel, termed ML-DOP,
parsers operate with unlabeled raata of which which reestimates the subtree probabilities ey
unlimited quantities are available. During the lasmaximum likelihood procedure based on
few years there has been steady progress ifilde Expectation-Maximization.Although cross
Where van Zaanen (2000) achieved 39.2%alidation is needed to avoid overlearning, ML-DOP
unlabeled f-score on ATIS word strings, Clarlkoutperforms DOP1 onthe OVIS corpus (Bod
(2001) reports 42.0% othe same data, and Klein 2000).
and Manning (2002pbtain 51.2% f-score on ATIS This raises the questiowhether we can
part-of-speech strings using @nstituent-context create amnsupervisedOP model whichis also
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statistically consistent. In this paper we wshow combining subtreegrom this corpus, shown in
that an unsupervised version BfL-DOP can be figure 2.

constructed along the lines of U-DOP. We will start

out by summarizing DOP, U-DOBnd ML-DOP,

and next create aew unsupervised model called N ° NP o NF = N
UML-DOP. We report that UML-DOP not only /\ | | /\
obtains higher parse accuracy than U-DOP on thrég YP Mary — Susai NP VP
different domains, but that it also achieves this with | /\
fewer subtrees than U-DOP. To the best our M NP Mary v NP

knowledge, this paper presents the first |

unsupervisegarser that outperforms a widely used "™ likes  Susar
supervisedparseron the WSJ, i.e. a treebank
PCFG. We will raise the questiamhether the end
of supervised parsing is in sight.

Figure 2. A derivation foMary likes Susan

Other derivations may yield the same tree, e.g.:
2 DOP

o NP o V =

S S
The key idea of DOP ishis: given an annotated@e/\ | |
VP /\

corpus,use all subtrees, regardless of size, to par Mary likes NP yP
new sentences. THBOP1 model in Bod (1998)

computes the probabilities of parse tread v NF Mary Vv NP
sentences from the relative frequencies of the
subtrees. Although it is noknown that DOP1's
relative frequency estimator isstatistically  Figure 3. Another derivation yielding same tree
inconsistent (Johnso2002), the model yields

excellent empirical results and has been used ffpp1 computes the probability of a subttess the
state-of-the-art systems. Let's illustrate DOP1 with &opability of selecting among all corpus subtrees
simple example. Assume a corpasnsisting of that can be substituted on the same rasle This

Susal likes Susal

only two trees, as given in figure 1. probability is computed as th@umber of
occurrences of in the corpus| t |, divided by the
/S\ /S\ total numberof occurrences of all subtre¢swith
the same root label &3 Letr(t) return theroot label
NP VP NP VP .
/\ of t. Then we may write:
John \V NP Petel \V NP |t |
| | | | P(t) =
likes Mary hates Susal Zt" r(t'):r(t) |t' |

Figure 1. A corpus of two trees N o )
The probability of a derivatiotye...~ty is computed

New sentences may be derived bgmbining by the product of the probabilities of its subtrges

fragments, i.e. subtrees, from tlisrpus, by means
of a node-substitution operation indicated cas
Node-substitution identifies theleftmost o
nonterminal frontier node of orgubtree with the AS We have seen, themay be several distinct
root nodeof a second subtree (i.e., the secongerivations that generate the saperse tree. The
subtree issubstitutedon the leftmost nonterminal Probability of a parse tre# is the sum of the
frontier node of the first subtree). Thus a new

sentence such dary likes Susarcan be derivethy 1 This subtree probability is redressed by a simple
correction factor discussed in Goodman (2003: 136)

and Bod (2003).

P(te..oty) = i P(t)
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probabilities of itsdistinct derivations. Letig be the assigning all possible binary treés this string,
i-th subtree in the derivatiashthat produces tre€, where each root node is label8@nd eactinternal

then the probability of is given by node is labele. Thus NNS VBDJJ NNS has a
total of five binarytrees shown in figure 4 -- where
P(T = 241 P(tig) for readability we add words as well.

S

Thus DOPI1considers counts of subtrees of a wide 2

range of sizes: everythinfjom counts of single X X

level rules to entire trees taken into account to /\x x/\
N PN

compute the mogtrobable parse tree of a sentence.

: NNS VBD JJ NNS NNS VBD JJ NNS
A disadvantage of the approach mhg that an | | t ﬁ| ) | | I 4 h| | I
eXtremer |al‘ge numberof Subtrees (and nvestors surierec heavy losse: nvestors sufferec heavy losset
derivations) must be considerdgortunately there

exists a compacisomorphic PCFG-reduction of R X

DOP1 whose size is linear rather than exponential in X/X/\\ A
the size of the training set (Goodman 2003). /> P
Moreover,Collins and Duffy (2002) show how a "'° VjD 7PoNNs o NES VjD 7 NNS
tree kernel came applied to DOP1's a”_subtreeslnvestors sufferec heavy losse: Investors sufferec heavy losse

representation. The currently mostuccessful S

version of DOP1 uses a PCFG-reduction tiod

model with am-best parsing algorithm (Bod 2003). x/\x
S N

3 U_DOP NNS VI|3D JJ NNS

Investors sufterec heavy losse

U-DOP extends DOP1 to unsupervispdrsing

(Bod 2006). Itskey idea is to assign all unlabeled Figure 4. All binary trees for NNS VBD JJ NNS
binary trees to a set of sentences and to next use (in (Investors suffered heavy lospes

principle) all subtrees from these binatrges to

parsenew sentences. U-DOP thus proposes one ¥fhile we can efficiently represent treet of all
the richest possible models in bootstrappiregs. binary trees of a string by means of a chart, we need
Previous models like Klein and Manning's (20020 unpack the chart if we want to extract subtrees
2005) CCM model limit the dependencies tdrom this set of binarytrees. And since the total
"contiguous subsequences ofsantence". This number of binary trees for themall WSJ10 is
means thatCCM neglects dependencies that aralmost 12 million, itis doubtful whether we can
non-contiguous such as betweere and thanin ~ apply the unrestricted U-DOP model to such a

"BA carried more people thacargo'. Instead, U  corpus. U-DOP therefomandomly samples a large
DOP's all-subtrees approach capturesboth subset from the total number of parse trees from the

contiguous anchon-contiguous lexical dependen chart (see Bod 2006) and next converts the subtrees
cies. from these parse trees into a PCFG-reduction
As with most other unsupervised parsindGoodman 2003). Since the computation of the
models, U-DOP induces trees for p-o-s string®ost probable parse tree is NP-complete (Sima‘an
rather tharfor word strings. The extension to word1996), U-DOP estimates th@ost probable tree
strings is straightforward as there exkighly from the 100 most probable derivations using
accurate unsupervised part-of-speech taggers (eVgferbi n-best parsingWe could also have used the
Schiitze 1995) whicban be directly combined with more efficientk-best hypergraph parsing technique

unsupervised parsers. by Huang and Chiang (2005), but \Wwave not yet
To give an illustration of U-DORgonsider incorporated this into our implementation.
the WSJ p-o-s string NNS VBDJ NNS which To give an example of theependencies that

may correspond for instance the sentence U-DOP can take into accountonsider the
Investors suffered heavy lossé$-DOP starts by following subtrees in figure 5 fronthe trees in
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figure 4 (where we again add words for readabilityjotal probability of the parse tree. This is equivalent
These subtrees show that U-D@Res into account to saying that there is a hidden component to the

both contiguous and non-contiguous substrings.

S S
X X
///\x {/\\\
NNS VI|3D NNS NNS
| |
Investor: suffere( Investor: losse
X S
/\ X /\
X X
VBD PN
suf!ere( J) NNS
heav losses
X X X
P PN Pas
NNS VBD JJ NNS VBD JJ

Investor: sufgerec heavy losse: suf!ere( heav

Figure 5. Some subtrees from trees in figure 4

Of course, if we onlyhad the sentencénvestors

model, and that DOP can be trained using an EM
algorithmto determine the maximum likelihood
estimate for the training datdhe EM algorithm for
this ML-DOP model is relatetb the Inside-Outside
algorithm for context-free grammars, but the
reestimation formula isomplicated by the presence
of subtrees of depth greater than 1. To detiee
reestimation formula, it is useful to considine
state space of all possible derivations of a tree.

The derivations of a parse trdecan be
viewed asa state trellis, where each state contains a
partially constructed tree in the course of a leftmost
derivation ofT. & denotesa state containing the tree
t which is a subtree of. The state trellis is defined
as follows.

The initial statesp, is a tree with depth zero,
consisting of simply a root node labeled wghThe
final state,sr, is the given parse trée

A statest is connected forward to adkates
st; such thattf = tet', for somet'. Here the
appropriatd’ is defined to bes — t.

A statest is connected backward to alhtes

suffered heavy lossés our corpus, there would be St Such thatt = tp > t', for somet. Again,t' is
no differencein probability between the five parsedefined to be - tp.

trees in figure 4. However, if we alsmave a
different sentence wher&l NNS eavy lossés
appears in a differerdontext, e.g. irHeavy losses
were reported its covering subtree getsrelatively
higher frequency and the parse tree whieeavy

The construction of the statattice and
assignment of transitioprobabilities according to
the ML-DOP models called the forward pass. The
probability ofa given stateP(s), is referred to as
a(s). The forward probability of a states; is

lossesoccurs as a constituent gets a higher totgpmputed recursively

probability.

4 ML-DOP

a(s) = 2 alsy) P(t=to).
Sh

ML-DOP (Bod 2000) extends DOP with aThe backward probability of a state, referred to as
maximum likelihood reestimatiotechnique based f[(s), is calculated according to th#llowing

on the expectation-maximization (EM) algorithmyecuyrsive formula:
(Dempster et al. 1977) which is known to be

statistically consistent (Sha&999). ML-DOP

reestimatesDOP's subtree probabilities in an
iterative way until thechanges become negligible.
The following exposition of ML-DOP is heavily

based on previous worky Bod (2000) and
Magerman (1993).

It is important to realize that thers an
implicit assumption in DOP that alpossible

derivations of a parse tremntribute equally to the
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B(s) = D Blsy) Pt — 1)
Stf

where the backward probability of the goal state is
set equal to the forwarngrobability of the goal state,
B(sT) = a(sT).

The update formula for theount of a
subtreet is (wherer(t) is the root label of):



B(stf)a(stb)P(tlr(t)) sentences and next extracts a lafg@dom) set of
ct(t) = 2 o) subtrees from this tree set. It then reestiméies
Sty (5 tpot=tf *goal initial probabilities of these subtrees by ML-DOR
the sentences from a held-out part of the see
The updatedrobability distribution,P'(t | r(t)), is The trainingis carried out by dividing the tree set
defined to be into two equal parts, and reestimating the subtrees
from onepart on the other. As initial probabilities
P | r(D) = ct(t) we use the subtrees' relative frequencies as describet
ct(r () in section 2 (smoothed by Good-Turing -- see Bod
1998), though it wouldalso be interesting to see
wherect(r () is defined as how the model works with other initial parameters,
in particular with theusage frequencies proposed by
ctr (1) = z ct(t) Zuidema (2096).
£ r(t)=r (t) As with U-DOP, thetotal number of
subtrees thatan be extracted from the binary tree

In practice, ML-DOP starts out by assigning th&€t is too large to be fully taken in@ccount.

same relative frequencies to the subtmeopP1, |°9ether withthe high computational cost of
which are next reestimated by the formulas abovEE€Stimationwe propose even more drastic pruning

We may in principle starbut with any initial han we did inBod (2006) for U-DOP. That is,

parametersincluding random initializations, but WNile ffor sentr:ances 7 Wgrdswg use all bdlnar?/
since ML estimation is known tbe very sensitive '€€S, for each senteneed words we randomly

to the initialization of the parametersijstconvenient samplea fixed number of 128 trees (which
to start with parameters that @eown to perform effectively favors more frequent trees). Tiesulting
well set of trees is referred to as the binary tree set. Next,

we randomly extract for each subtree-deptfixed
subtrees from one half of the training detbe number ofsubtrees, where the depth of subtree is
trained on the other half, and vice versa. This eros@e longest path from root to any leaf. This has
training is important sincetherwise UML-DOP roughly the same effectalse_correctlon factor.used
would assign the training satees their empirical :jn Bohd (2003’200|6)' Thbat IS, fo]rc_ each pzrﬂcmljlar
frequencies and assign zero weight to atlier ept _Wwe sampie su tredsy first ran omly
subtrees (cf. Preschet al. 2004). The updatedSE/€cting anode in a random tree from the binary
probabilities are iteratively reestimated uritie tree set after Wh'c.h weelect random expansions
decrease in cross-entropyecomes negligible. from that node until a subtree of the particular depth

Unfortunately, no compact PCFG-reduction of ML 'S obtained. For our experiments in sectione,

DOP is known. As a consequence, parsing withepeated this procedure 200,00fmes for each

ML-DOP is very costly and the model has hithertéjepth' Theresu_lting'subtrees are then given to ML-
neverbeen tested on corpora larger than OvI8OP'S reestimation procedure. Finally, the
(Bonnema et al. 1997)et, we will show that by reestimated subtrees are used to compute t_he mos
clever pruning we can extend our experiments n&!’obable parse trees fail sentences using Viterbi
only to the WSJ, but also tine German NEGRA n-best, as described in section 3, where the most
and the Chinese CTB. (Zollmann and Sima'an 206%0Pable parse is estimated from the 100 most

propose a different consisteestimator for DOP, probable derivat_ions._- _ :
which we cannot go into here) A potential criticism of(UYML-DOP is that

since we us@®OP1's relative frequencies as initial
5 UML-DOP parameters, ML-DOP may only find a local
maximum nearest to DOP1's estimator. Bus is

Analogous to U-DOP,UML-DOP is an of coursea criticism against any iterative ML

unsupervisedgeneralization of ML-DOP: it first aPProach: ':c IS (rjwotc};uarant_eed dthath_t_he global
assigns all unlabeled binary trees to a set §paximumis found (cf. Manningnd Schiitze 1999:
401). Nevertheless we will see that our reestimation

To avoid overtraining, ML-DOP uses the
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procedure leads taignificantly better accuracy than substrings (as in CCM) btd also reestimate

compared tdJ-DOP (the latter would be equal tothe subtreegrobabilities by a maximum-likelihood

UML-DOP under O iterations). Moreover, in procedure rather than using their (smoothed) relative

contrast to U-DOP, UML-DOIean be theoretically frequencies (as in U-DOP). Note that UML-DOP

motivated: it maximizes the likelihood tfie data achieves these improved results wighver subtrees

using the statistically consistent EM algorithm. than U-DOP, due to UML-DOP's more drastic
pruning of subtrees. It is also noteworthy that UML

6 Experiments: Can we beat supervised by DOP, like U-DOP, does not employ a separate class

unsupervised parsing? for non-constituents, so-calledistituents, while
CCM and CCM+DMYV do. (Interestinglythe top

To compare UML-DOP to U-DOP, we startedt 10 most frequently learned constituebts UML -

with the WSJ10 corpus, which contaig22 DOP were exactly the same as by U-DOP -- see the

sentences< 10 words afterremoving empty relevant table in Bod 2006).

elements and punctuatiome used the same

evaluationmetrics for unlabe!ed p_recisi(_)n (UP) and Model Englist  Germar Chinest

unlabeled recall (UR) as defined in Klein (2005: 21 (WSJ10) (NEGRA10) (CTB10)

22). Klein's definitionsdiffer slightly from the

standard PARSEVAL metrics: multiplicityof cem L oL 45'E
brackets is ignored, brackets of span one are ignored DMV 52.1 49 46.7
and the bracket labels are ignored. The metrics DMV+CCM  77.6 63.¢ 43.2
of UP and UR are combined by the unlabeled f U-DOP 78.2 65.4 46.€
score F1 whichs defined as the harmonic mean of UML-DOP 82.€ 67.C 4r.2

UP and UR: F1 = 2*UP*UR/(UP+UR).

For theWSJ10, we obtained a binary tree  Taple 1. F-scores of UML-DOP compared to
set of 5.68 * 19 trees, by extracting the binary trees previous models on the same data
as described in section 5. From thisary tree set

we sampled 200,000 subtrees for eaulbtree- \ye were also interested in testilgML-DOP on
depth. This resulted ia total set of roughly 1.7 * |onger sentences. We therefore included all WSJ
106 subtrees that were reestimated loyr sentences up to 40 words after removigpty
maximum-likelihood procedure. The decrease iBjements and punctuation (WSJ48pd again
cross-entropy became negligible afteritstations sampled 200,000 subtrees for each depth, using the
(for both halfs of WSJ10). After computintje same method as before. Furthermore, we compared
most probable parse trees, UML-D@Bhieved an ypL-DOP against a supervisdunarized PCFG,
f-score of 82.9% which is 20.5% error reduction j . 3 treebank PCEG whose simple relative
compared to U-DOP'$-score of 78.5% on the frequency estimator corresponds to maximum
same data (Bod 2006). likelihood (Chi and Geman 1998and which we
We next tested UML-DOPon two ghal refer toas "ML-PCFG". To this end, we used
additional domains which were also used in KleiRy random 90%/10% division of WSJ40 into a
and Manning (2004) anBod (2006): the German trajning set and a test set. The ML-PCR&d thus
NEGRA10 (Skut et al. 1997) and théhinese access to the Penn WS@es in the training set,
CTB10 (Xueet al. 2002) both containing 2200+yhjle UML-DOP had to bootstrap all structurem
sentences 10 words after removing punctuation.he flat strings from the training séb next parse the
Tablel shows the results of UML-DOP compared gos test set -- clearly a much more challenging

to U-DOP, the CCM model by Klein and Manningtask. Table 2 gives the results in terms of f-scores.

(2002), the DMV dependency learning model by The table shows that UML-DOP scores
Klein and Manning (2004) as well as theitpetter than U-DOP, also for WSJ40. Our results on
combined model DMV+CCM. WSJ10 are somewhat lower thantable 1 due to

Table 1 shows that UML-DOP scorbstter  the yse ofa smaller training set of 90% of the data.

than U-DOP and Klein and Manningisodels in all - gyt the most surprising result is that UML-DOR's f
cases. It thus pays off to not only use subtrees rather
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score is higher than thsupervisedbvinarized tree  ML-DOP heavily depend on annotatddta whereas

bank PCFG (ML-PCFG) for both WSJ10 andJML-DOP only needs unannotated data. It would

WSJ40. In order to check whether this difference thus be interesting teee how close UML-DOP can

statistically significant, we additionally tested d&@ getto ML-DOP's performance if we enlarge the

different 90/10 divisions of th&/SJ40 (which were amount of training data.

the same splits as in Bod 2006). For these splits,

UML-DOP achieved an average f-score of 66.9%, Conclusion: Is the end of supervised

while ML-PCFG obtained an average f-score oparsing in sight?

64.7%.The difference in accuracy between UML

DOP and ML-PCFGwas statistically significant Now that we have outperformea well-known

according to pairetitesting <0.05). Tothe best of supervisedyarser by an unsupervised one, we may

our knowledge this means that we ha®wn for raise the question as to whether the end of

the first time thatan unsupervisegharsing model supervisedNLP comes in sight. All supervised

(UML-DOP) outperforms avidely used supervised parsers are reaching an asymptated further

parsing model (a treebank PCFG) on the WSJ40 improvement does not seem tmme from more
hand-annotated data but by adding unsupervised or

Model WSJ10  WSJAC semi-unsupe_rvised te_chniquesf. M_cCIosky et al.
2006). Thus if wanodify our question as: does the
U-DOP 78.1 63.9 exclusivelysupervised approach to parsing come to
UML-DOP 82. 66.4 an end, we believe that the answer is certainly yes.
ML-PCEG 81.F 64.6 Yet we should neither rule out the

possibility that entirely unsupervised methogif

in fact surpass semi-supervised methods. The main
problem is how to quantitatively compare these
different parsers, as any evaluati@m hand
annotated data (like the Penn treebankl

L unreasonably favor semi-supervised parsers. There
We should keep in mind that (1) a treeb&#RFG is thus is a quest for designing amnotation

is not state-of-the-art: its performance is med'ocriﬁdependent evaluation scheme. Since parasrs

c;gggared;oze.% ?Od (tZOOt:)b)r :l/l lg(éll(:)ék_y gt aI._ becoming increasingly importait applications like
( ), and (2) that our treeban IS Inarlze(ge/n'talx-baseomachine translation and structural

) . ) S
as in Klein andManning (2005) to make results .
comparable. To be sure, the unbinarixedsion of language models for speerttognition, one way to

the treebank PCFG obtains 89.0% average f—scoﬂ\? would be tocompare these different parsing

ethods by isolating their contributi@m improving
0, -
on WSJ10 and’2.3% average f-score on WS‘MO'a concreteNLP system, rather than by testing them

ngeggséé?naﬂ?eﬂztelﬁ;ﬁzgagﬁaﬁéﬂ?saﬂgcz :%?ainstgold standard annotations which are
gly fat, y iftherently theory-dependent.

larger than two. It Wo_uld be interesting see how The initially disappointing resultsof
vL\J/:\SI(;r)D g;ﬁg:gsrm? fhvgﬁgags?hz)ctz(?p;tﬁ?;gzrry é"f’m%ducing trees entirglft_rom raw text was not SO
possibletrees that can be assigned to strings WoumUCh due to the difficulty of the bootst_ra_p_plng
then further explode problemper se but to (1) the poverty athe initial

P ' models and (2)he difficulty of finding theory

behind tLrJ1';AtL<;fE)uOEr\s/isgi(rg?r:;?iazlzg)eD(S)tlglregrlsrrz independent evaluation criteriihe time has come
P P ' to fully reappraise unsupervised parsinmpdels

such as DOP1, which achieve1.9% average f-

. . which should be trained on massive amounts of
score on the 10 WSJ40 splits, and ML-DOP, whic . o
performed slightlybetter with 82.1% average f ﬁlata, and be evaluated in a concrete application.

; There is a final question as to how far the
score. And '.f DOP1 andviL-DOP are no't POP approach taunsupervised parsing can be
binarized, their average f-scores are respective

Hretchedin principle we can assign all possible
[0) 0,
90.1% and 90.5% ow/SJ40. However, DOP1 andsyntactic categoriessemantic roles, argument

Table 2. F-scores of U-DOP, UML-DOP and a
supervised treebank PCFG (ML-PCFG) for a
random 90/10 split of WSJ10 and WSJ40.
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structures etc. to set of given sentences and let thdohnson, M. 2002. The DOP estimation method is
statistics decide which assignments are most usefugg‘sfld %”d inconsisterfomputational Linguistics

in parsing new sentences. Whether sudheasively e

maleallst approach |§eas|b|e can Only be K|e|n, D. 2005.The UnsuperVised Leal’nlng of Natural
answered by empirical investigation in due time. bi&%';'sige Structure PhD thesis, Stanford
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