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The goal of capturing structured relational knowl-
edge about lexical terms has been the motivating
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Abstract

We propose a novel algorithm for inducing seman-
tic taxonomies. Previous algorithms for taxonomy
induction have typically focused on independent
classifiers for discovering new single relationships
based on hand-constructed or automatically discov-
ered textual patterns. By contrast, our algorithm
flexibly incorporates evidence from multiple clas-
sifiers over heterogenous relationships to optimize
the entire structure of the taxonomy, using knowl-
edge of a word’s coordinate terms to help in deter-
mining its hypernyms, and vice versa. We apply our
algorithm on the problem of sense-disambiguated
noun hyponym acquisition, where we combine the
predictions of hypernym and coordinate term clas-
sifiers with the knowledge in a preexisting seman-
tic taxonomy (WordNet 2.1). We adid), 000 novel
synsets to WordNet 2.1 &4% precision, a rela-
tive error reduction off0% over a non-joint algo-
rithm using the same component classifiers. Fi-
nally, we show that a taxonomy built using our al-
gorithm shows a 23% relative F-score improvement
over WordNet 2.1 on an independent testset of hy-
pernym pairs.
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synonyms (Lin et al., 2003), a variety of verb re-
lations (Chklovski and Pantel, 2004), and general
purpose analogy relations (Turney et al., 2003).
Such classifiers use hand-written or automatically-
induced patterns likSuch/NFP, as NP, or NP,

like N P, to determine, for example thaf P, is a
hyponym of NP, (i.e., NP, IS-A NF,). While
such classifiers have achieved some degree of suc-
cess, they frequently lack the global knowledge
necessary to integrate their predictions into a com-
plex taxonomy with multiple relations.

Past work on semantic taxonomy induction in-
cludes the noun hypernym hierarchy created in
(Caraballo, 2001), the part-whole taxonomies in
(Girju, 2003), and a great deal of recent work de-
scribed in (Buitelaar et al., 2005). Such work has
typically either focused on only inferring small
taxonomies over a single relation, or as in (Cara-
ballo, 2001), has used evidence for multiple rela-
tions independently from one another, by for ex-
ample first focusing strictly on inferring clusters
of coordinate terms, and then by inferring hyper-
nyms over those clusters.

Another major shortfall in previous techniques

force underlying many projects in lexical acquisi- J X ce
tion, information extraction, and the construction ©f t@xonomy induction has been the inability to

of semantic taxonomies. Broad-coverage semariandle lexical ambiguity. ~Previous approaches
tic taxonomies such as WordNet (Fellbaum, 199gj12ve typically sidestepped the issue of polysemy
and CYC (Lenat, 1995) have been constructed bt0gether by making the assumption of only a sin-
hand at great cost; while a crucial source of know!8!€ Sense per word, and inferring taxonomies ex-

edge about the relations between words, these taflicitly over words and not senses. Enforcing a
onomies still suffer from sparse coverage. false monosemy has the downside of making po-

M laorith ith th tential f ¢ tentially erroneous inferences; for example, col-
any aigorithms wi € potential for auto- lapsing the polysemous terBushinto a single

quitpl)((:)z”e{j e)i(rtwilnudoll?ngg IS\;E?E' i;eIS:xlf(r:(;TsaE(?l\Jlies it?;?%ense might lead one to infer by transitivity that
. ' . arose bushs a kind ofU.S. president

(Riloff and Shepherd, 1997; Roark and Charniak, i P )

1998) and in discovering instances, named enti- OUr approach simultaneously provides a solu-
ties, and alternate glosses (Etzioni et al., 200st0N 0 the problems of jointly considering evi-
Pasca, 2005). Additionally, a wide variety of dence about multiple relationships as well as lexi-

relationship-specific classifiers have been pro®@l @mbiguity within a single probabilistic frame-
posed, including pattern-based classifiers for hy\_/vork. The key contribution of this work is to offer

ponyms (Hearst, 1992), meronyms (Girju, 2003)2 solution to two crucial problems in taxonomy in-
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duction and hyponym acquisition: the problem ofsubsume(LCSY is within exactlym andn links,
combining heterogenous sources of evidence in eespectively We use the notatiod’]”" to denote
flexible way, and the problem of correctly identi- thati andj are (m,n)-cousins. Thus coordinate
fying the appropriate word sense of each new worderms arg 1, 1)-cousins; technically the hypernym

added to the taxonorrly. relation may also be seen as a specific case of this
representation; an immediate parent in the hyper-
2 A Probabilistic Framework for nym hierarchy is 41, 0)-cousin, and thé-th an-
Taxonomy Induction cestor is gk, 0)-cousin.

In section 2.1 we introduce our definitions for tax- 1&xonomic Constraints

onomies, relations, and tii@xonomic constraints A semantic taxonomy such as WordNet en-
that enforce dependencies between relations; iforces certairtaxonomic constraintsvhich disal-
section 2.2 we give a probabilistic model for defin-low particular taxonomied’. For example, the
ing the conditional probability of a set of relational ISA transitivity constraint in WordNet requires
evidence given a taxonomy; in section 2.3 we forthat each synset inherits the hypernyms of its hy-
mulate a local search algorithm to find the taxonpernym, and the part-inheritance constraint re-
omy maximizing this conditional probability; and quires that each synset inherits the meronyms of
in section 2.4 we extend our framework to dealits hypernyms.

with lexical ambiguity. For the case of hyponym acquisition we enforce

_ _ _ the following two taxonomic constraints on the
2.1 Taxonomies, Relations, and Taxonomic  hypernym and, n)-cousin relations:

Constraints

, o 1. ISA Transitivity:
We define a taxonom{[' as a set of pairwise re- y

lationsR. over some domain of objecldt. For H? ANH = HZZM_
example, the relations in WordNet inclutigper-

nymy holonymy verb entailmentand many oth- 2. Definition of (2, n)-cousinhood:

ers; the objects of WordNet between which these

relations hold are its word sensessynsets We Ci" < Ik = LOS(i,j) N Hj A Hj.
define that each relatioR € R is a set of ordered
or unordered pairs of objects, j) € Dr; we de-
fine R;; € T if relationship R holds over objects
(i,7)inT.

Constraint (1) requires that the each synset inherits
the hypernyms of its direct hypernym; constraint
(2) simply defines theng, n)-cousin relation in
terms of the atomic hypernym relation.

Relations for Hyponym Acquisition The addition of any new hypernym relation to a

. preexisting taxonomy will usually necessitate the
_ For_ the case of hyponym acquisition, the OIO'addition of a set of other novel relations as implied
Jects in our taxonomy are WordNeynsets In by the taxonomic constraints. We refer to the full

this paper we focus on two of the many poSSibIeset of novel relations implied by a new lidk;; as
relationships between senses: the hypernym reI%-(R )

_ : _ ;7 ), we discuss the efficient computation of the
tion and the coordlnatg term relatlo'n. We treat theSet of implied links for the purpose of hyponym
hypernym or ISA relat.lc_)n as atomic; we use theacquisition in Section 3.4.

notation H;; if a sensej is then-th ancestor of a

sensei in the hypernym hierarchy. We will Sim- 2 o A probabilistic Formulation

ply use H;; to indicate thatj is an ancestor of

at some unspecified level. Two senses are typi¥Ve propose that the everit;; € T has some
cally considered to be “coordinate terms” or “tax- Prior probability P(R;; € T), and P(R;; €
onomic sisters” if they share an immediate parent 2z |east common subsumetC's(i, j) is defined as a

in the hypernym hierarchy. We generalize this nosynset that is an ancestor in the hypernym hierarchy of both

; ihli : 1 andj which has no child that is also an ancestor of both
tion of siblinghood to state that two senseand andj. When there is more than odeC'S (due to multiple

J are(m, n)-cousinsif their closestieast common inheritance), we refer to thelosestLCS, i.e.,theLC'S that
minimizes the maximum distance t@and;.
The taxonomies discussed in this paper are available for 3An (m,n)-cousin form > 2 corresponds to the English
download atittp://ai.stanford.edu/ ~rionfswn . kinship relation {(m — 1)-th cousin|m — n|-times removed.”
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T) + P(R;; ¢ T) = 1. We define the probability P(Rij|Ef}) using Bayes Rule, we obtain:
of the taxonomy as a whole as the joint probability
of its component relations; given a partition of all

P(Ri; € T|E[)P(EE)
, . = P(E|T) = | |
possible relationR = {A, B} whereA € T and

P(RZ S T)
B ¢ T, we define: RijeT ’ . .
P(Rij ¢T‘EZ)P(E1)
P(T)=P(AcT,B<¢T) 11 P(R»@ZJT) !
Ri;¢T K

We assume that we have some set of observed evi-

dencekE consisting of observed features over pairs  Within our model we define the goal of taxon-
of objects in some domaiDg; we'll begin with  omy induction to be to find the taxonon that
the assumption that our features are over pairs haximizes the conditional probability of our ob-

words, and that the objects in the taxonomy alsgervationsE given the relationships df, i.e., to
correspond directly to wordsGiven a set of fea- find

turesE{;% € E, we assume we have some model T = arg max P(E|T).

for inferring P(R;; € T|E5.), i.e., the posterior T

probability of the even?;; € T given the corre- 2.3 [ ocal Search Over Taxonomies
sponding evidencEfj% for that relation. For exam-
ple, evidence for the hypernym relatiﬂrjf might
be the set of all observed lexico-syntactic pattern

containingi andj in all sentences in some corpus. . . . .
ST o omy T. We restrict our consideration of possible
For simplicity we make the following indepen- ney taxonomies to those created by the single op-

dence assumptions: first, we assume that eacé]’ationADD-RELATION(Rij,T), which adds the
item of observed evidencg/? is independent of single relationR;; to T
1) .

Il other ob devid iventhet am ,
?eopza];ﬁr)se:rvlg[ ev! ?;E%%‘;n © taxonamy We define the multiplicative chang&r(R;;)
T S to the conditional probability?(E|T) given the

Further, we assume that each item of observegddition of a single relatiom;;:
evidenceEg depends on the taxonoriy only by
way of the corresponding relatid;;, i.e., Ar(R;j) = P(E|T)/P(E|T)
g R R

P(ER‘T) B P(EZR|R” S T) if Rij eT _ P(RU € T‘EU)P(EW) P(Rij ¢ T)

U P(Ef|Rij €T) if Ry ¢ T

We propose a search algorithm for findifigfor
he case of hyponym acquisition. We assume we
egin with some initial (possibly empty) taxon-

g R
For example, if our evidencEg is a set of ob- . P <R” € T‘Eij)
served lexico-syntactic patterns indicative of hy- 1_p ( Ri; €T E.R)
pernymy between two wordsandj, we assume Y ’
that whatever dependence the relationdihave  grey s the inverse odds of the prior on the event

on our observations may be explained entirely byRij € T: we consider this to be a constant inde-
dependence on the existence or non-existence Bfendent of, j, and the taxonom.

the single hypernym relatioH (i, 7). . .
g. yperny ] (¢ 5) ) To enforce the taxonomic constraintsh for
Applying these two independence assumptiong,ch application of thé DD-RELATION operator

we may express the conditional probability of our\ye st add all new relations in the implied set
evidence given the taxonomy: I(R;;) not already ifT.> Thus we define the mul-
P(E|T) = H P(E?\Rl-j eT) t!pllcatlve change of the full set of m_1phed rela-
tions as the product over all new relations:

R;;€T
- [ PEER; ¢ T). Ar(I(R;) = ][ Ar(R).
RUQT REI(RZ']')

Rewriting the conditional probability in terms  S5ror example, in order to add the new synset

of our estimates of the posterior probabilitiesmicrosoft under the noun synset company#n#l
in WordNet 2.1, we must necessarily add the

*In section 2.4 we drop this assumption, extending ournew  relations  H?(microsoft, institution#n1)
model to manage lexical ambiguity. C'(microsoft, dotcom#tn#1), and so on.
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This definition leads to the following best-first 3 Extending WordNet
search algorithm for hyponym acquisition, which
at each iteration defines the new taxonomy as th@/e demonstrate the ability of our model to use
union of the previous taxononi¥ and the set of evidence from multiple relations to extend Word-
novel relations implied by the relatioR;; that Net with novel noun hyponyms. While in prin-
maximizesAr(I(R;;)) and thus maximizes the ciple we could use any number of relations, for
conditional probability of the evidence over all simplicity we consider two primary sources of ev-
possible single relations: idence: the probability of two words in WordNet
being in a hypernym relation, and the probability
WHILE Rorgr Ar(I(Fy)) > 1 of two words in WordNet being in a coordinate re-
T — TUI(arg max Ap(I(Ry))).  lation.
Rij¢T In sections 3.1 and 3.2 we describe the construc
2.4 Extending the Model to Manage Lexical ~ tion of our hypemym and coordinate classifiers,
Ambiguity respectively; in section 3.3 we outline the efficient
algorithm we use to perform local search over
Since word senses are not directly observable, ifyponym-extended WordNets; and in section 3.4
the objects in the taxonomy are word senses (as e give an example of the implicit structure-based

WordNet), we must extend our model to allow for word sense disambiguation performed within our
a many-to-many mapping (e.g., a word-to-sens@amework.

mapping) betweedg andDr. For this setting
we assume we know the functieanses(i), map-
ping from the wordi to all of i's possible corre-

sponding senses. Our classifier for the hypernym relation is derived
We assume that each set of word-pair evidencérom the “hypernym-only” classifier described in
Efj we possess is in fact sense-pair evidefige  (Snow et al., 2005). The features used for pre-
for a specific pair of sensds € senses(i),lp €  dicting the hypernym relationship are obtained by
senses(j). Further, we assume that a new relationparsing a large corpus of newswire and encyclo-
between two words is probable only between thepedia text with MINIPAR (Lin, 1998). From the
correct sense pair, i.e.: resulting dependency trees the evide@? for
R R each word paifi, j) is constructed; the evidence
P(RulEij) = Wk = ko,l = lo} - P(Ry|Eij)- 4 as the form IE)f a)vector of counts of occurrences
When computing the conditional probability of a that each labeled syntactic dependency path was
specific new relationRy; € I(R,), we assume found as the shortest path connectingnd j in
that the relevant sense pais, [y is the one which some dependency tree. The labeled training set is
maximizes the probability of the new relation, i.e.constructed by labeling the collected feature vec-
for k € senses(i), € senses(j), tors as positive “known hypernym” or negative
“known non-hypernym” examples using WordNet
2.0; 49,922 feature vectors were labeled as pos-
itive training examples, and 800,828 noun pairs
Our independence assumptions for this extengere |abeled as negative training examples. The
sion need only to be changed slightly; we now asmodel for predictingP(H;;|E/) is then trained
sume that the evidendg/? depends on the taxon- ysing logistic regression, predicting the noun-pair
omy T via only a single relation between sense-hypernymy label from WordNet from the feature
pairs Ry;. Using this revised independence as-ector of lexico-syntactic patterns.
sumption the derivation for best-first search over L . lassifier described ab )
ypernym classifier described above pre

taxonomies for hyponym acquisition remains un- . o : ]
changed. One side effect of this revised indepenqIICtS the probability of the generalized hypernym

o . "~ ancestor relation ovewords P(H;;|Ef). For
dence assumption is that the addition of the smgI(Fh : ( ”.‘ i)
. " ) i e purposes of taxonomy induction, we would
sense-collapsed” relatioRy,; in the taxonomyT

. . : . refer an ancestor-distance specific set of clas-
will explain the evidence for the relation over Pre . P )
_ , g sifiers oversensesi.e., fork € senses(i),l €
words: andj now that such evidence has been re-

- senses(j), the set of classifiers estimating
vealed to concern only the specific senkesd!.
yhesp (P} B, PHZIED, ..},

3.1 Hyponym Classification

(k()’l()) = argnllcalXP(Rkl € T‘EZI})
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One problem that arises from directly assign-erarchy, or withmin(m,n) > 7, are assigned to
ing the probabilityP(Hg}\Eg) x P(Hij\Eg) for a single clasg”°°. Further, due to the symme-
all n is the possibility of adding a novel hyponym try of the similarity score, we merge each class
to an overly-specific hypernym, which might still C™" = C™" U C™"; this implies that the result-
satisfy P(Hﬁijg) for a very largen. In or- ing classifier will predict, as expected given a sym-
der to discourage unnecessary overspecificatiometric input,P(C,Z}”\Eg) = P(Cglm|Eg).
we penalize each probability’(H}5|E/]) by a We find 333,473 noun synset pairs in our train-
factor \*~! for some\ < 1, and renormalize: ing set with similarity score greater than 0.15. We
P(Hfleg) x Ak_lP(Hij\Eg)- In our experi- next apply softmax regression to learn a classifier
ments we sek = 0.95. that predictsP(C;;”|Eg), predicting the Word-
Net class labels from the single similarity score
derived from the noun pair’s cluster similarity.

The classifier for learning coordinate terms relies

on the notion ofistributional similarity, i.e., the 3.3 Details of our Implementation

idea that two words with similar meanings will be
used in similar contexts (Hindle, 1990). We ex-

3.2 (m,n)-cousin Classification

Hyponym acquisition is among the simplest and
tend this notion to suggest that words with similarMOst straightforward of the possible applications

meanings should be near each other in a semaﬁlc our model; here we show how we efficiently

tic taxonomy, and in particular will likely share a 'MPlement our algorithm for this problem. First,
hypernym as a near parent we identify the set of all the word paifs, j) over

. . ) which we have hypernym and/or coordinate ev-
Our classifier for(m,n)-cousins is derived

¢ he algorith q o ioh idence, and which might represent additions of
rom the algorithm and corpus given in (_R_awc an-a3 novel hyponym to the WordNet 2.1 taxonomy
dran et al., 2005). In that work an efficient ran-

domized algorithm is derived _ | (i.e., that has a known noun hypernym and an un-
omized algorithm is derived for computing clus- .. hyponym, or has a known noun coordi-

ters of similar nouns. We use a set of more thar?1ate term and an unknown coordinate term). This

1000 distinct clusters of English nouns coIIecteog/ields a list of 95,000 single links over threshold
by their algorithm over 70 million webpadgs P(Ri;) > 0.12
ij 12,

with each nouni having a score representing its .
For each unknown hyponym we may have

cosine similarity to the centroidof the cluster to . )
which it belongscos(8(i, ¢)) several pieces of evidence; for example, for the
e unknown termcontinentalwe have 21 relevant

We use thel cIu_sther sfcores %f'n(_)un r;]alrs as INPYliaces of hypernym evidence, with links to possi-
to ou_r owln ‘?gOL'F mb or pre 'f}t'ng t em’”)]: ble hypernymgcarrier, airline, unit, .. .}; and we
cousin relationship between the senses o tW‘P]aveSpieces of coordinate evidence, with links to

words: andj. If two wordsi and; appear in - ,,qqipie coordinate termirline, american ea-
a cluster together, with cluster centraidwe set gle, airbus, ..}

our single coordinate input feature to be the mini- h dh di link
mum cluster scorenin(cos(8(i, c)), cos(8(j, ¢))), For each proposed hypernym or coordinate lin

and zero otherwise. For each such noun pair feal[WOIVed with th_e novel hyponyn, }w_e comp'ute
ture, we construct a labeled training setof, {)- the set of candidate hypernyms frin practice

cousin relation labels from WordNet 2.1. We de-We consider all senses of the immediate hypernym
fine a noun pair i j) to be a “known fn,n)- j for each potential novel hypernym, and all senses
cousin” if for some senses ¢ senses(i) ’l c of the coordinate terrh and its first two hypernym
senses(j), C™ e WordNet: if more the{n one ancestors for each potential coordinate.

’ 1] ’

such relation exists, we assume the relation with In thecontinentalexample, from the 26 individ-

smallest sumn + n, breaking ties by smallest ual pieces of evidence over words we construct the

absolute differencdm — n|. We consider all Set of 99 unique synsets that we will consider as

such labeled relationships from WordNet witkz ~ Possible hypernyms; these include the two senses

m,n < 7; pairs of words that have no correspond-of the wordairline, the ten senses of the wocelr-

ing pair of synsets connected in the hypernym hifier, and so forth.

T oAs & oropr g st hand-edit the clusters ¢ Next, we iterate through each of the possi-
S a preprocessing step we hana-eai e clusters to I’%—)Ie hypernym SynsetS Under WhICh we mlght

move those containing non-English words, terms related t
adult content, and other webpage-specific clusters. add the new word; for each synset we com-

805



pute the change in taxonomy score resulting fromdence are implied by adding the single link

adding the implied relation§(H}) required by H!(continental,airline#n#}, thus the resulting

the taxonomic constraints &. Since typically change in the set of implied links given by the cor-

our set of all evidence involving will be much  rect “carrier” sense of airline is much higher than

smaller than the set of possible relationd(#/}}),  that of the “hose” sense. In fact it is the largest of

we may efficiently check whether, for each sensall the 99 considered hypernym links foontinen-

s € senses(w), for all words where we have tal; H!(continental, airline#n#2is link #18,736

some evidencel | whether s participates in added to the taxonomy by our algorithm.

some relation with; in the set of implied rela- .

: 7 . 4  Evaluation

tions I(H;;).” If there is more than one sense

s € senses(w), we add toI(H}) the single re- In order to evaluate our framework for taxonomy
! 2

lationship ;s that maximizes the taxonomy like- induction, we have applied hyponym acquisition

lihood, i.e. argnax,cqenses(uw) A (Ris)- to construct several distinct taxonomies, starting
with the base of WordNet 2.1 and only adding
3.4 Hypernym Sense Disambiguation novel noun hyponyms. Further, we have con-

A maior st th of delis its ability t structed taxonomies using a baseline algorithm,
n:lajorhs rength orour mof © 'hs 'S abl yt ° C‘;T' which uses the identical hypernym and coordinate
rectly choose the sense of a nypernym to w IC}]:Iassifiers used in our joint algorithm, but which

FO add a novel hyponym, desp_|te collecting eV'does not combine the evidence of the classifiers.
idence over untagged word pairs. In our algo- _ , _
In section 4.1 we describe our evaluation

rithm word sense disambiguation is an implicit : X
methodology; in sections 4.2 and 4.3 we analyze

side-effect of our algorithm; since our algorithm i ) o : s _
chooses to add the single link which, with its im- the fine-grained precision and disambiguation pre-

plied links, yields the most likely taxonomy, and cision of our algorithm compared to the baseline;

since each distinct synset in WordNet has a differil S€ction 4.4 we compare the coarse-grained pre-

ent immediate neighborhood of relations, our al-cision of our links (motivated by categories de-

gorithm simply disambiguates each node based of"€d by the WordNesupersensg¢sagainst the
baseline algorithm and against an “oracle” for

its surrounding structural information. ’ -
. . o named entity recognition.
As an example of sense disambiguation in prac- ) )
Finally, in section 4.5 we evaluate the tax-

tice, consider our example abntinental Sup- e i - )
pose we are iterating through each of the 99 pos2nomies inferred by our algorithm directly against

sible synsets under which we might addnti- the WordNet 2.1 taxonomy; we perform this eval-

nentalas a hyponym, and we come to the synsek‘ation by testing each taxonomy on a set of human
airline#n#2 in WordNet 2.1, i.e. “a commer- judgments of hypernym and non-hypernym noun

cial organization serving as a common carrierPairs sampled from newswire text.
In this case we will iterate through each piecey ¢
of hypernym and coordinate evidence; we find
that the relationff (continental, carriej is satis- We evaluate the quality of our acquired hy-
fied with high probability for the specific synset ponyms by direct judgment.  In four sep-
carrier#n#5 the grandparent dfirline#n#2 thus ~ arate annotation sessions, two judges labeled
the factor At (H?3(continental, carrier#n#% is  {50,100,100,10p samples uniformly generated
included in the factor of the set of implied rela- from the first {100,1000,10000,20000single
tions A (I(H!(continental, airline#n#p)). links added by our algorithm.

Suppose we instead evaluate tfiest synset For the direct measure of fine-grained precision,
of airline, i.e., airline#n#1, with the gloss “a We simply ask for each link/ (X, Y") added by the
hose that carries air under pressure.” For thi§ystem, isX aY? In addition to the fine-grained
synset none of the other 20 relationships diPrecision, we give a coarse-grained evaluation, in-

rectly implied by hypernym evidence or the spired by the idea of supersense-tagging in (Cia-
5 relationships implied by the coordinate ev-ramita and Johnson, 2003). The 26 supersenses
- used in WordNet 2.1 are listed in Table 1; we label

. Checking whether or noR:. € I(H;) may be effi- 3 hyponym link as correct in the coarse-grained
ciently computed by checking whetheis in the hypernym luati if th Ih . | q d
ancestors of o if it shares a least common subsumer with €vaiuation '_ € novel hyponym _'S place _un er
within 7 steps. the appropriate supersense. This evaluation task

Methodology
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; ;&PS ggsgpumca“o“ 1165 r:)ebris;; 22§ ;E':Sgn Fine-grained Pre. | Disambiguation Pre.
3 animal 10 feeling 17 phenomenon 24 state #Links | Base| Joint ER Base| Joint ER

4 artifact 11 food 18 plant 25 substande 100 0.60 | 1.00 | 100% | 0.86 | 1.00 | 100%
5 attribute 12 group 19 possession 26 time 1000 0.52 0.93 85% 0.84 1.00 | 100%
Gbody 13location 20 process 10000 | 0.46 | 0.84 | 70% | 0.90 | 1.00 | 100%
7 cognition 14 motive 21 quantity 20000 0.46 0.68 41% 094 | 0.98 68%

Table 1: The 26 WordNet supersenses Table 2: Fine-grained and disambiguation preci-

L . . . sion and error reduction for hyponym acquisition
is similar to a fine-grained Named Entity Recog-

nition (Fleischman and Hovy, 2002) task with 26

#Links | NER | Base| Joint | ERvs. | ER vs.

categories; for example, if our algorithm mistak- Oracle NER | Base
enly inserts a novel non-capital city under the hy- [ 100 100 [ 072 1.00 | 0% | 100%
ponymstate capita) it will inherit the correct su- 1000 | 0.69 | 0.68 | 0.99 | 97% | 85%

: : : 10000 | 0.45 | 0.69 | 0.96 | 93% | 70%
persensdocation Finally, we evaluate the abil- 20000 | 054 | 069 | 092 | 83% | 41%

ity of our algorithm to correctly choose the ap-
propriate sense of the hypernym under which aable 3: Coarse-grained precision and error reduc-
novel hyponym is being added. Our labelers catetion vs. Non-joint baseline and NER Oracle

gorize each candidate sense-disambiguated hyper-

nym synset suggested by our algorithm into the
following categories: be attributed to the observation that the highest-

confidence hypernyms predicted by individual
classifiers are likely to be polysemous, whereas
co: Correct hypernym word, but incorrect sense ofnypernyms of lower confidence are more fre-

that word. qguently monosemous (and thus trivially easy to
disambiguate).

c1: Correct sense-disambiguated hypernym.

c3: Incorrect hypernym, but correct supersense.

c4. Any other relation is considered incorrect. 4.4 Coarse-grained evaluation

We compute coarse-grained precision (as +
c3)/total. Inferring the correct coarse-grained su-
persense of a novel hyponym can be viewed as a
4.2 Fine-grained evaluation fine-grained (26-category) Named Entity Recog-

. . ition task; our algorithm for taxonomy induction
Table 2 displays the results of our evaluation o . ) )
. . - ) . _._.can thus be viewed as performing high-accuracy
fine-grained precision for the baseline non-joint

algorithm @asd and our joint algorithmJoint), fine-grained NER. Here we compare against both

. . the baseline non-joint algorithm as well as an
as well as the relative error reductideR) of our . . . .
. “oracle” algorithm for Named Entity Recogni-

algorithm over the baseline. We use the mini- . , "
. ) . tion, which perfectly classifies the supersense of
mum of the two judges’ scores. Here we define

. . . all nouns that fall under the four supersenses
fine-grained precision as; /total. We see that P

e . j j work
our joint algorithm strongly outperforms the base-{person’gmw’ location, quantity}, but works
. . 2 . only for those supersenses. Table 3 shows the
line, and has high precision for predicting novel

hyponyms up to 10,000 links results of this _coarse-g_re_lined evgluation. We see
' ' that the baseline non-joint algorithm has higher
precision than the NER oracle as 10,000 and
20,000 links; however, both are significantly out-
Also in Table 2 we compare the sense disperformed by our joint algorithm, which main-
ambiguation precision of our algorithm and thetains high coarse-grained precision (92%) even at
baseline. Here we measure the precision 020,000 links.
sense-disambiguation among all examples wherg_5 Comparison of inferred taxonomies and
each algorithm found a correct hyponym word; WordNet
our calculation for disambiguation precision is
c1/ (e1 + c2). Again our joint algorithm outper- For our final evaluation we compare our learned
forms the baseline algorithm at all levels of re-taxonomies directly against the currently exist-
call. Interestingly the baseline disambiguationing hypernym links in WordNet 2.1. In order to
precision improves with higher recall; this may compare taxonomies we use a hand-labeled test

A single hyponym/hypernym pair is allowed to be
simultaneously labeled 2 and 3.

4.3 Hypernym sense disambiguation
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WN | +10K +20K +30K +40K| S, Cederberg and D. Widdows. 2003. Using LSA and
PRE | 0.524| 0.524 0.574 0.583 0.571 Noun Coordination Information to Improve the Pre-
REC| 0165/ 0.165 0203 0211 0.211 cision and Recall of Automatic Hyponymy Extrac-

F | 0251 0251 0.300 0.309 0.307 tion. Proc. CoNLL-2003pp. 111-118.
T. Chklovski and P. Pantel. 2004. VerbOcean: Mining

Table 4: Taxonomy hypernym classification vs. the Web for Fine-Grained Semantic Verb Relations.

WordNet 2.1 on hand-labeled testset Proc. EMNLP-2004
M. Ciaramita and M. Johnson. 2003. Supersense

. Tagging of Unknown Nouns in WordNet.Proc.
set of over 5,000 noun pairs, randomly-sampled EI\/?I%ILS-ZOOS W uns |

from newswire corpora (described in (Snow et al., .

Q. Etzioni, M. Cafarella, D. Downey, A. Popescu,
2005)). We measured the performance of both our 1 shaked, S. Soderland, D. Weld, and A. Yates.
inferred taxonomies and WordNet against this test 2005. Unsupervised Named-Entity Extraction from
set® The performance and comparison of the best the Web: An Experimental StudArtificial Intelli-
WordNet classifier vs. our taxonomies is given in  9€nce165(1):91-134.
Table 4. Our best-performing inferred taxonomyC. Fellbaum. 1998. WordNet: An Electronic Lexical
on this test set is achieved after adding 30,000 Database. Cambridge, MA: MIT Press.
novel hyponyms, achieving an 23% relative im-R. Girju, A. Badulescu, and D. Moldovan. 2003.

rovement in F-score over the WN2.1 classifier. ~ L€arning Semantic Constraints for the Automatic
P Discovery of Part-Whole Relation®roc. HLT-03

5 Conclusions M. Fleischman and E. Hovy. 2002. Fine grained clas-

] ) ] sification of named entitief2roc. COLING-02
We have presented an algorithm for inducing S€. Hearst. 1992. Automatic Acquisition of Hyponyms

mantic taxonomies which attempts to globally * t4m | arge Text CorporaProc. COLING-92

optimize th.e. gntlre §tructure of Fhe taxonomy.D_ Hindle. 1990. Noun classification from predicate-
Our probabilistic architecture also includes a new  5rgument structure®roc. ACL-90

model for I_earnmg_ _coo_rdlnate terms ?ase‘?'_ O™b. Lenat. 1995. cYC: A Large-Scale Investment in
(m, n)-cousin classification. The model’s ability  knowledge Infrastructure, Communications of the
to integrate heterogeneous evidence from different ACM, 38:11, 33-35.

classifiers offers a solution to the key problem ofp_ Lin. 1998. Dependency-based Evaluation of MINI-
choosing the correct word sense to which to attach PAR. Workshop on the Evaluation of Parsing Sys-
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