
Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the ACL, pages 761–768,
Sydney, July 2006.c©2006 Association for Computational Linguistics

An End-to-End Discriminative Approach to Machine Translat ion

Percy Liang Alexandre Bouchard-Côté Dan Klein Ben Taskar
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Abstract

We present a perceptron-style discriminative ap-
proach to machine translation in which large feature
sets can be exploited. Unlike discriminative rerank-
ing approaches, our system can take advantage of
learned features in all stages of decoding. We first
discuss several challenges to error-driven discrim-
inative approaches. In particular, we explore dif-
ferent ways of updating parameters given a training
example. We find that making frequent but smaller
updates is preferable to making fewer but larger up-
dates. Then, we discuss an array of features and
show both how they quantitatively increase BLEU
score and how they qualitatively interact on spe-
cific examples. One particular feature we investi-
gate is a novel way to introduce learning into the
initial phrase extraction process, which has previ-
ously been entirely heuristic.

1 Introduction

The generative, noisy-channel paradigm has his-
torically served as the foundation for most of the
work in statistical machine translation (Brown et
al., 1994). At the same time, discriminative meth-
ods have provided substantial improvements over
generative models on a wide range of NLP tasks.
They allow one to easily encode domain knowl-
edge in the form of features. Moreover, param-
eters are tuned to directly minimize error rather
than to maximize joint likelihood, which may not
correspond well to the task objective.

In this paper, we present an end-to-end dis-
criminative approach to machine translation. The
proposed system is phrase-based, as in Koehn et
al. (2003), but uses an online perceptron training
scheme to learn model parameters. Unlike mini-
mum error rate training (Och, 2003), our system is
able to exploit large numbers of specific features
in the same manner as static reranking systems
(Shen et al., 2004; Och et al., 2004). However,
unlike static rerankers, our system does not rely
on a baseline translation system. Instead, it up-
dates based on its ownn-best lists. As parameter

estimates improve, the system produces bettern-
best lists, which can in turn enable better updates
in future training iterations. In this paper, we fo-
cus on two aspects of the problem of discrimina-
tive translation: the inherent difficulty of learning
from reference translations, and the challenge of
engineering effective features for this task.

Discriminative learning from reference transla-
tions is inherently problematic because standard
discriminative methods need to know which out-
puts are correct and which are not. However, a
proposed translation that differs from a reference
translation need not be incorrect. It may differ
in word choice, literalness, or style, yet be fully
acceptable. Pushing our system to avoid such al-
ternate translations is undesirable. On the other
hand, even if a system produces a reference trans-
lation, it may do so by abusing the hidden struc-
ture (sentence segmentation and alignment). We
can therefore never be entirely sure whether or not
a proposed output is safe to update towards. We
discuss this issue in detail in Section 5, where we
show that conservative updates (which push the
system towards a local variant of the current pre-
diction) are more effective than more aggressive
updates (which try to directly update towards the
reference).

The second major contribution of this work is
an investigation of an array of features for our
model. We show how our features quantitatively
increase BLEU score, as well as how they qual-
itatively interact on specific examples. We first
consider learning weights for individual phrases
and part-of-speech patterns, showing gains from
each. We then present a novel way to parameter-
ize and introduce learning into the initial phrase
extraction process. In particular, we introduce
alignment constellationfeatures, which allow us
to weight phrases based on the word alignment
pattern that led to their extraction. This kind of
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feature provides a potential way to initially extract
phrases more aggressively and then later down-
weight undesirable patterns, essentially learning a
weighted extraction heuristic. Finally, we use POS
features to parameterize a distortion model in a
limited distortion decoder (Zens and Ney, 2004;
Tillmann and Zhang, 2005). We show that over-
all, BLEU score increases from 28.4 to 29.6 on
French-English.

2 Approach

2.1 Translation as structured classification

Machine translation can be seen as a structured
classification task, in which the goal is to learn
a mapping from an input (French) sentencex to
an output (English) sentencey. Given this setup,
discriminative methods allow us to define a broad
class of featuresΦ that operate on(x,y). For ex-
ample, some features would measure the fluency
of y and others would measure the faithfulness of
y as a translation ofx.

However, the translation task in this framework
differs from traditional applications of discrimina-
tive structured classification such as POS tagging
and parsing in a fundamental way. Whereas in
POS tagging, there is a one-to-one correspondence
between the wordsx and the tagsy, the correspon-
dence betweenx andy in machine translation is
not only much more complex, but is in fact un-
known. Therefore, we introduce a hidden corre-
spondence structureh and work with the feature
vectorΦ(x,y,h).

The phrase-based model of Koehn et al. (2003)
is an instance of this framework. In their model,
the correspondenceh consists of (1) the segmen-
tation of the input sentence into phrases, (2) the
segmentation of the output sentence into the same
number of phrases, and (3) a bijection between
the input and output phrases. The feature vec-
tor Φ(x,y,h) contains four components: the log
probability of the output sentencey under a lan-
guage model, the score of translatingx into y

based on a phrase table, a distortion score, and a
length penalty.1 In Section 6, we vastly increase
the number of features to take advantage of the full
power of discriminative training.

Another example of this framework is the hier-
archical model of Chiang (2005). In this model
the correspondenceh is a synchronous parse tree

1More components can be added to the feature vector if
additional language models or phrase tables are available.

over input and output sentences, and features in-
clude the scores of various productions used in the
tree.

Given featuresΦ and a corresponding set of pa-
rametersw, a standard classification rulef is to
return the highest scoring output sentencey, max-
imizing over correspondencesh:

f(x;w) = argmax
y,h

w · Φ(x,y,h). (1)

In the phrase-based model, computing the
argmax exactly is intractable, so we approximate
f with beam decoding.

2.2 Perceptron-based training

To tune the parametersw of the model, we use the
averaged perceptron algorithm (Collins, 2002) be-
cause of its efficiency and past success on various
NLP tasks (Collins and Roark, 2004; Roark et al.,
2004). In principle,w could have been tuned by
maximizing conditional probability or maximiz-
ing margin. However, these two options require
either marginalization or numerical optimization,
neither of which is tractable over the space of out-
put sentencesy and correspondencesh. In con-
trast, the perceptron algorithm requires only a de-
coder that computesf(x;w).

Recall the traditional perceptron update rule on
an example(xi,yi) is

w← w + Φ(xi,yt)− Φ(xi,yp), (2)

whereyt = yi is the target outputand yp =
f(xi;w) = argmaxy w · Φ(xi,y) is the predic-
tion using the current parametersw.

We adapt this update rule to work with hidden
variables as follows:

w← w + Φ(xi,yt,ht)−Φ(xi,yp,hp), (3)

where (yp,hp) is the argmax computation in
Equation 1, and(yt,ht) is the target that we up-
date towards. If(yt,ht) is the sameargmax com-
putation with the additional constraint thatyt =
yi, then Equation 3 can be interpreted as a Viterbi
approximation to the stochastic gradient

EP (h|xi,yi;w)Φ(xi,yi,h)−EP (y,h|xi;w)Φ(xi,y,h)

for the following conditional likelihood objective:

P (yi | xi) ∝
∑

h

exp(w · Φ(xi,yi,h)).
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Figure 1: Given the current prediction (a), there
are two possible updates, local (b) and bold (c).
Although the bold update (c) reaches the reference
translation, a bad correspondence is used. The lo-
cal update (b) does not reach the reference, but is
more reasonable than (c).

Discriminative training with hidden variables
has been handled in this probabilistic framework
(Quattoni et al., 2004; Koo and Collins, 2005), but
we choose Equation 3 for efficiency.

It turns out that using the Viterbi approximation
(which we callbold updating) is not always the
best strategy. To appreciate the difficulty, consider
the example in Figure 1. Suppose we make the
prediction (a) with the current set of parameters.
There are often several acceptable output transla-
tionsy, for example, (b) and (c). Since (c)’s output
matches the reference translation, should we up-
date towards (c)? In this case, the answer is nega-
tive. The problem with (c) is that the correspon-
denceh contains an incorrect alignment (’ , a).
However, sinceh is unobserved, the training pro-
cedure has no way of knowing this. While the out-
put in (b) is farther from the reference, its corre-
spondenceh is much more reasonable. In short,
it does not suffice foryt to be good; bothyt and
ht need to be good. A major challenge in using
the perceptron algorithm for machine translation
is determining the target(yt,ht) in Equation 3.
Section 5 discusses possible targets to update to-
wards.

3 Dataset

Our experiments were done on the French-English
portion of the Europarl corpus (Koehn, 2002),

Dataset TRAIN DEV TEST

Years ’99–’01 ’02 ’03
# sentences 67K first 1K first 1K
# words (unk.) 715K 10.4K (35) 10.8K (48)

Table 1: The Europarl dataset split we used and
various statistics on length 5–15 sentences. The
number of French word tokens is given, along
with the number that were not seen among the
414K total sentences in TRAIN (which includes all
lengths).

which consists of European parliamentary pro-
ceedings from 1996 to 2003.

We split the data into three sets according to
Table 1. TRAIN served two purposes: it was
used to construct the features, and the 5–15 length
sentences were used for tuning the parameters of
those features. DEV, which consisted of the first
1K length 5–15 sentences in 2002, was used to
evaluate the performance of the system as we de-
veloped it. Note that the DEV set was not used to
tune any parameters; tuning was done exclusively
on TRAIN. At the end we ran our models once on
TEST to get final numbers.2

4 Models

Our experiments used phrase-based models
(Koehn et al., 2003), which require a translation
table and language model for decoding and
feature computation. To facilitate comparison
with previous work, we created the translation
tables using the same techniques as Koehn et al.
(2003).3 The language model was a Kneser-Ney
interpolated trigram model generated using the
SRILM toolkit (Stolcke, 2002). We built our
own phrase-based beam decoder that can handle
arbitrary features.4 The contributions of features
are incrementally added into the score as decoding

2We also experimented with several combinations of jack-
knifing to prevent overfitting, in which we selected features
on TRAIN-OLD (1996–1998 Europarl corpus) and tuned the
parameters on TRAIN, or vice-versa. However, it turned out
that using TRAIN-OLD was suboptimal since that data is less
relevant to DEV. Another alternative is to combine TRAIN-
OLD and TRAIN into one dual-purpose dataset. The differ-
ences between this and our current approach were inconclu-
sive.

3In other words, we used GIZA++ to construct a word
alignment in each direction and a growth heuristic to com-
bine them. We extracted all the substrings that are closed un-
der this high-quality word alignment and computed surface
statistics from cooccurrences counts.

4In our experiments, we used a beam size of 10, which we
found to be only slightly worse than using a beam of 100.
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proceeds.
We experimented with two levels of distortion:

monotonic, where the phrasal alignment is mono-
tonic (but word reordering is still possible within
a phrase) andlimited distortion, where only ad-
jacent phrases are allowed to exchange positions
(Zens and Ney, 2004). In the future, we plan to ex-
plore our discriminative framework on a full dis-
tortion model (Koehn et al., 2003) or even a hier-
archical model (Chiang, 2005).

Throughout the following experiments, we
trained the perceptron algorithm for 10 iterations.
The weights were initialized to 1 on the trans-
lation table, 1 on the language model (the blan-
ket features in Section 6), and 0 elsewhere. The
next two sections give experiments on the two key
components of a discriminative machine transla-
tion system: choosing the proper update strategy
(Section 5) and including powerful features (Sec-
tion 6).

5 Update strategies

This section describes the importance of choosing
a good update strategy—the difference in BLEU
score can be as large as 1.2 between different
strategies. An update strategy specifies thetarget
(yt,ht) that we update towards (Equation 3) given
the current set of parameters and a provided ref-
erence translation(xi,yi). As mentioned in Sec-
tion 2.2, faithful output (i.e.yt = yi) does not
imply that updating towards(yt,ht) is desirable.
In fact, such a constrained target might not even
be reachableby the decoder, for example, if the
reference is very non-literal.

We explored the following three ways to choose
the target(yt,ht):

• Bold updating: Update towards the highest
scoring option(y,h), wherey is constrained
to be the referenceyi buth is unconstrained.
Examples not reachable by the decoder are
skipped.

• Local updating: Generate ann-best list using
the current parameters. Update towards the
option with the highest BLEU score.5

5Since BLEU score (k-BLEU with k = 4) involves com-
puting a geometric mean overi-grams,i = 1, . . . , k, it is zero
if the translation does not have at least onek-gram in common
with the reference translation. Since a BLEU score of zero
is both unhelpful for choosing from then-best and common
when computed on just a single example, we instead used a
smoothed version for choosing the target:

P4
i=1

i-BLEU(x,y)

24−i+1 .
We still report NIST’s usual 4-gram BLEU.
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Figure 2: The three update strategies under two
scenarios.

• Hybrid updating: Do a bold update if the ref-
erence is reachable. Otherwise, do a local up-
date.

Figure 2 shows the space of translations
schematically. On each training example, our de-
coder produces ann-best list. The reference trans-
lation may or may not be reachable.

Bold updating most resembles the traditional
perceptron update rule (Equation 2). We are en-
sured that the target outputy will be correct, al-
though the correspondenceh might be bad. An-
other weakness of bold updating is that we might
not make full use of the training data.

Local updating uses every example, but its steps
are more cautious. It can be viewed as “dy-
namic reranking,” where parameters are updated
using the best option on then-best list, similar
to standard static reranking. The key difference
is that, unlike static reranking, the parameter up-
dates propagate back to the baseline classifier, so
that then-best list improves over time. In this re-
gard, dynamic reranking remedies one of the main
weaknesses of static reranking, which is that the
performance of the system is directly limited by
the quality of the baseline classifier.

Hybrid updating combines the two strategies:
it makes full use of the training data as in local
updating, but still tries to make swift progress to-
wards the reference translation as in bold updat-
ing.

We conducted experiments to see which of the
updating strategies worked best. We trained on
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Decoder Bold Local Hybrid

Monotonic 34.3 34.6 34.5

Limited distortion 33.5 34.7 33.6

Table 2: Comparison of BLEU scores between dif-
ferent updating strategies for the monotonic and
limited distortion decoders on DEV.

5000 of the 67K available examples, using the
BLANKET +LEX+POS feature set (Section 6). Ta-
ble 2 shows that local updating is the most effec-
tive, especially when using the limited distortion
decoder.

In bold updating, only a small fraction of the
5000 examples (1296 for the monotonic decoder
and 1601 for the limited distortion decoder) had
reachable reference translations, and, therefore,
contributed to parameter updates. One might
therefore hypothesize that local updating performs
better simply because it is able to leverage more
data. This is not the full story, however, since the
hybrid approach (which makes the same number
of updates) performs significantly worse than lo-
cal updating when using the limited distortion de-
coder.

To see the problem with bold updating, recall
the example in Figure 1. Bold updating tries to
reach the reference at all costs, even if it means
abusing the hidden correspondence in the process.
In the example, the alignment (’ , a) is unreason-
able, but the algorithm has no way to recognize
this. Local updating is much more stable since it
only updates towards sentences in then-best list.

When using the limited distortion decoder, bold
updating is even more problematic because the
added flexibility of phrase swaps allows more pre-
posterous alignments to be produced. Limited
distortion decoding actually performsworsethan
monotonic decoding with bold updating, but bet-
ter with local updating.

Another difference between bold updating and
local updating is that the BLEU score on the train-
ing data is dramatically higher for bold updating
than for local (or hybrid) updating: 80 for the for-
mer versus 40 for the latter. This is not surprising
given that bold updating aggressively tries to ob-
tain the references. However, what is surprising is
that although bold updating appears to be overfit-
ting severely, its BLEU score on the DEV does not
suffer much in the monotonic case.

Model DEV BLEU TEST BLEU

Monotonic
BLANKET (untuned) 33.0 28.3
BLANKET 33.4 28.4
BLANKET +LEX 35.0 29.2
BLANKET +LEX+POS 35.3 29.6
Pharaoh (MERT) 34.5 28.8

Full-distortion
Pharaoh (MERT) 34.9 29.5

Table 3: Main results on our system with differ-
ent feature sets compared to minimum error-rate
trained Pharaoh.

6 Features

This section shows that by adding an array of
expressive features and discriminatively learn-
ing their weights, we can obtain a 2.3 increase
in BLEU score on DEV. We add these fea-
tures incrementally, first tuning blanket features
(Section 6.1), then adding lexical features (Sec-
tion 6.2), and finally adding part-of-speech (POS)
features (Section 6.3). Table 3 summarizes the
performance gains.

For the experiments in this section, we used the
local updating strategy and the monotonic decoder
for efficiency. We train on all 67K of the length 5–
15 sentences in TRAIN.6

6.1 Blanket features

The blanket features (BLANKET ) consist of the
translation log-probability and the language model
log-probability, which are two of the components
of the Pharaoh model (Section 2.1). After discrim-
inative training, the relative weight of these two
features is roughly 2:1, resulting in a BLEU score
increase from 33.0 (setting both weights to 1) to
33.4.

The following simple example gives a flavor
of the discriminative approach. The untuned
system translated the French phrasetrente-cinq
languesinto five languagesin a DEV example.
Although the probabilityP (five | trente-cinq) =
0.065 is rightly much smaller thanP (thirty-five |
trente-cinq) = 0.279, the language model favors
five languagesover thirty-five languages. The
trained system downweights the language model
and recovers the correct translation.

6We used sentences of length 5–15 to facilitate compar-
isons with Koehn et al. (2003) and to enable rapid experimen-
tation with various feature sets. Experiments on sentencesof
length 5–50 showed similar gains in performance.
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6.2 Lexical features

The blanket features provide a rough guide for
translation, but they are far too coarse to fix spe-
cific mistakes. We therefore addlexical fea-
tures (LEX) to allow for more fine-grained con-
trol. These features come in two varieties. Lexical
phrase features indicate the presence of a specific
translation phrase, such as (y a-t-il, are there), and
lexical language model features indicate the pres-
ence of a specific output n-gram, such asof the.
Lexical language model features have been ex-
ploited successfully in discriminative language
modeling to improve speech recognition perfor-
mance (Roark et al., 2004). We confirm the util-
ity of the two kinds of lexical features: BLAN -
KET+LEX achieves a BLEU score of 35.0, an im-
provement of 1.6 over BLANKET .

To understand the effect of adding lexical fea-
tures, consider the ten with highest and lowest
weights after training:

64 any comments ? -55 (des, of)
63 (y a-t-il, are there) -52 (y a-t-il, are there any)
62 there any comments -42 there any of
57 any comments -39 of comments
46 (des, any) -38 of comments ?

These features can in fact be traced back to the
following example:

Input y a-t-il des observations ?
B are there any of comments ?
B+L are there any comments ?

The second and third rows are the outputs of
BLANKET (wrong) and BLANKET +LEX (correct),
respectively. The correction can be accredited to
two changes in feature weights. First, the lexical
feature (y a-t-il, are there any) has been assigned
a negative weight and (y a-t-il, are there) a pos-
itive weight to counter the fact that the former
phrase incorrectly had a higher score in the origi-
nal translation table. Second, (des, of) is preferred
over (des, any), even though the former is a better
translation in isolation. This apparent degradation
causes no problems, because whendesshould ac-
tually be translated toof, these words are usually
embedded in larger phrases, in which case the iso-
lated translation probability plays no role.

Another example of a related phenomenon is
the following:

Input ... pour cela que j ’ ai voté favorablement .
B ... for that i have voted in favour .
B+L ... for this reason i voted in favour .

Counterintuitively, the phrase pair
(j ’ ai , I have) ends up with a very negative
weight. The reason behind this is that in French,

j ’ ai is often used in a paraphrastic construction
which should be translated into the simple past
in English. For that to happen,j ’ ai needs to
be aligned withI. Since (j ’ ai , I) has a small
score compare to (j ’ ai , I have) in the original
translation table, downweighting the latter pair
allows this sentence to be translated correctly.

A general trend is that literal phrase translations
are downweighted. Lessening the pressure to liter-
ally translate certain phrases allows the language
model to fill in the gaps appropriately with suit-
able non-literal translations. This point highlights
the strength of discriminative training: weights are
jointly tuned to account for the intricate interac-
tions between overlapping phrases, which is some-
thing not achievable by estimating the weights di-
rectly from surface statistics.

6.3 Part-of-speech features

While lexical features are useful for eliminating
specific errors, they have limited ability to gener-
alize to related phrases. This suggests the use of
similar features which are abstracted to the POS
level.7 In our experiments, we used the TreeTag-
ger POS tagger (Schmid, 1994), which ships pre-
trained on several languages, to map each word
to its majority POS tag. We could also relatively
easily base our features on context-dependent POS
tags: the entire input sentence is available before
decoding begins, and the output sentence is de-
coded left-to-right and could be tagged incremen-
tally.

Where we had lexical phrase features, such
as (la réalisation du droit, the right), we now
also have their POS abstractions, for instance
(DT NN IN NN, DT NN). This phrase pair is
undesirable, not because of particular lexical facts
aboutla réalisation, but because dropping a nom-
inal head is generally to be avoided. The lexical
language model features have similar POS coun-
terparts. With these two kinds of POS features,
we obtained an 0.3 increase in BLEU score from
BLANKET +LEX to BLANKET +LEX+POS.

Finally, when we use the limited distortion de-
coder, it is important to learn when to swap adja-
cent phrases. Unlike Pharaoh, which simply has a
uniform penalty for swaps, we would like to use
context—in particular, POS information. For ex-
ample, we would like to know that if a (JJ, JJ)

7We also tried using word clusters (Brown et al., 1992)
instead of POS but found that POS was more helpful.

766



se
cu

re

re
fu

g
e

abri

sûr
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Figure 3: Three constellation features with exam-
ple phrase pairs. Constellations (a) and (b) have
large positive weights and (c) has a large negative
weight.

phrase is constructed after a (NN, NN) phrase,
they are reasonable candidates for swapping be-
cause of regular word-order differences between
French and English. While the bulk of our results
are presented for the monotonic case, the limited
distortion results of Table 2 use these lexical swap
features; without parameterized swap features, ac-
curacy was below the untuned monotonic baseline.

An interesting statistic is the number of nonzero
feature weights that were learned using each
feature set. BLANKET has only 4 features,
while BLANKET +LEX has 1.55 million features.8

Remarkably, BLANKET +LEX+POS has fewer
features—only 1.24 million. This is an effect
of generalization ability—POS information some-
what reduces the need for specific lexical features.

6.4 Alignment constellation features

Koehn et al. (2003) demonstrated that choosing
the appropriate heuristic for extracting phrases is
very important. They showed that the difference
in BLEU score between various heuristics was as
large as 2.0.

The process of phrase extraction is difficult to
optimize in a non-discriminative setting: many
heuristics have been proposed (Koehn et al.,
2003), but it is not obvious which one should be
chosen for a given language pair. We propose a
natural way to handle this part of the translation
pipeline. The idea is to push the learning process
all the way down to the phrase extraction by pa-
rameterizing the phrase extraction heuristic itself.

The heuristics in Koehn et al. (2003) decide
whether to extract a given phrase pair based on the
underlying word alignments (see Figure 3 for three
examples), which we callconstellations. Since we
do not know which constellations correspond to

8Both the language model and translation table compo-
nents have two features, one for known words and one for
unknown words.

Features -CONST +CONST

BLANKET 31.8 32.2
BLANKET +LEX 32.2 32.5
BLANKET +LEX+POS 32.3 32.5

Table 4: DEV BLEU score increase resulting from
adding constellation features.

good phrase pairs, we introduce an alignment con-
stellation feature to indicate the presence of a par-
ticular alignment constellation.9

Table 4 details the effect of adding constella-
tion features on top of our previous feature sets.10

We get a minor increase in BLEU score from each
feature set, although there is no gain by adding
POS features in addition to constellation features,
probably because POS and constellation features
provide redundant information for French-English
translations.

It is interesting to look at the constellations with
highest and lowest weights, which are perhaps sur-
prising at first glance. At the top of the list are
word inversions (Figure 3 (a) and (b)), while long
monotonic constellations fall at the bottom of the
list (c). Although monotonic translations are much
more frequent than word inversions in our dataset,
when translations are monotonic, shorter segmen-
tations are preferred. This phenomenon is another
manifestation of the complex interaction of phrase
segmentations.

7 Final results

The last column of Table 3 shows the performance
of our methods on the final TEST set. Our best test
BLEU score is 29.6 using BLANKET +LEX+POS,
an increase of 1.3 BLEU over our untuned feature
set BLANKET . The discrepancy between DEV per-
formance and TEST performance is due to tem-
poral distance from TRAIN and high variance in
BLEU score.11

We also compared our model with Pharaoh
(Koehn et al., 2003). We tuned Pharaoh’s four pa-
rameters using minimum error rate training (Och,
2003) on DEV.12 We obtained an increase of 0.8

9As in the POS features, we map each phrase pair to its
majority constellation.

10Due to time constraints, we ran these experiments on
5000 training examples using bold updating.

11For example, the DEV BLEU score for BLANKET +LEX
ranges from 28.6 to 33.2, depending on which block of 1000
sentences we chose.

12We used the training scripts from the 2006 MT Shared
Task. We still tuned our model parameters on TRAIN and
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BLEU over the Pharaoh, run with the monotone
flag.13 Even though we are using a monotonic de-
coder, our best results are still slightly better than
the version of Pharaoh that permits arbitrary dis-
tortion.

8 Related work

In machine translation, most discriminative ap-
proaches currently fall into two general categories.
The first approach is to reuse the components of a
generative model, but tune their relative weights in
a discriminative fashion (Och and Ney, 2002; Och,
2003; Chiang, 2005). This approach only works in
practice with a small handful of parameters.

The second approach is to use reranking, in
which a baseline classifier generates ann-best list
of candidate translations, and a separate discrim-
inative classifier chooses amongst them (Shen et
al., 2004; Och et al., 2004). The major limita-
tion of a reranking system is its dependence on
the underlying baseline system, which bounds the
potential improvement from discriminative train-
ing. In machine translation, this limitation is a
real concern; it is common for all translations on
moderately-sizedn-best lists to be of poor qual-
ity. For instance, Och et al. (2004) reported that
a 1000-best list was required to achieve perfor-
mance gains from reranking. In contrast, the de-
coder in our system can use the feature weights
learned in the previous iteration.

Tillmann and Zhang (2005) present a discrim-
inative approach based on local models. Their
formulation explicitly decomposed the score of
a translation into a sequence of local decisions,
while our formulation allows global estimation.

9 Conclusion

We have presented a novel end-to-end discrimi-
native system for machine translation. We stud-
ied update strategies, an important issue in on-
line discriminative training for MT, and conclude
that making many smaller (conservative) updates
is better than making few large (aggressive) up-
dates. We also investigated the effect of adding
many expressive features, which yielded a 0.8 in-
crease in BLEU score over monotonic Pharaoh.
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