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Abstract 

This paper investigates a machine learn-
ing approach for temporally ordering and 
anchoring events in natural language 
texts. To address data sparseness, we 
used temporal reasoning as an over-
sampling method to dramatically expand 
the amount of training data, resulting in 
predictive accuracy on link labeling as 
high as 93% using a Maximum Entropy 
classifier on human annotated data. This 
method compared favorably against a se-
ries of increasingly sophisticated base-
lines involving expansion of rules de-
rived from human intuitions. 

1 Introduction 

The growing interest in practical NLP applica-
tions such as question-answering and text sum-
marization places increasing demands on the 
processing of temporal information. In multi-
document summarization of news articles, it can 
be useful to know the relative order of events so 
as to merge and present information from multi-
ple news sources correctly. In question-
answering, one would like to be able to ask when 
an event occurs, or what events occurred prior to 
a particular event.  

A wealth of prior research by (Passoneau 
1988), (Webber 1988), (Hwang and Schubert 
1992), (Kamp and Reyle 1993), (Lascarides and 
Asher 1993), (Hitzeman et al. 1995), (Kehler 
2000) and others, has explored the different 
knowledge sources used in inferring the temporal 
ordering of events, including temporal adver-
bials, tense, aspect, rhetorical relations, prag-
matic conventions, and background knowledge. 
For example, the narrative convention of events 
being described in the order in which they occur 

is followed in (1), but overridden by means of a 
discourse relation, Explanation in (2).  

(1) Max stood up. John greeted him.  
(2) Max fell. John pushed him.  
In addition to discourse relations, which often 

require inferences based on world knowledge, 
the ordering decisions humans carry out appear 
to involve a variety of knowledge sources, in-
cluding tense and grammatical aspect (3a), lexi-
cal aspect (3b), and temporal adverbials (3c): 

(3a) Max entered the room. He had drunk a lot 
of wine.  

(3b) Max entered the room. Mary was seated 
behind the desk.  

(3c) The company announced Tuesday that 
third-quarter sales had fallen.  

Clearly, substantial linguistic processing may 
be required for a system to make these infer-
ences, and world knowledge is hard to make 
available to a domain-independent program. An 
important strategy in this area is of course the 
development of annotated corpora than can fa-
cilitate the machine learning of such ordering 
inferences. 

This paper 1  investigates a machine learning 
approach for temporally ordering events in natu-
ral language texts. In Section 2, we describe the 
annotation scheme and annotated corpora, and 
the challenges posed by them. A basic learning 
approach is described in Section 3. To address 
data sparseness, we used temporal reasoning as 
an over-sampling method to dramatically expand 
the amount of training data.  

As we will discuss in Section 5, there are no 
standard algorithms for making these inferences 
that we can compare against. We believe 
strongly that in such situations, it’s worthwhile 
for computational linguists to devote consider-
                                                 
1Research at Georgetown and Brandeis on this prob-
lem was funded in part by a grant from the ARDA 
AQUAINT Program, Phase II.  
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able effort to developing insightful baselines. 
Our work is, accordingly, evaluated in compari-
son against four baselines: (i) the usual majority 
class statistical baseline, shown along with each 
result, (ii) a more sophisticated baseline that uses 
hand-coded rules (Section 4.1), (iii) a hybrid 
baseline based on hand-coded rules expanded 
with Google-induced rules (Section 4.2), and (iv) 
a machine learning version that learns from im-
perfect annotation produced by (ii) (Section 4.3).  

2 Annotation Scheme and Corpora 

2.1 TimeML 

TimeML (Pustejovsky et al. 2005) 
(www.timeml.org) is an annotation scheme for 
markup of events, times, and their temporal rela-
tions in news articles. The TimeML scheme flags 
tensed verbs, adjectives, and nominals with 
EVENT tags with various attributes, including 
the class of event, tense, grammatical aspect, po-
larity (negative or positive), any modal operators 
which govern the event being tagged, and cardi-
nality of the event if it’s mentioned more than 
once. Likewise, time expressions are flagged and 
their values normalized, based on TIMEX3, an 
extension of the ACE (2004) (tern.mitre.org) 
TIMEX2 annotation scheme.  

For temporal relations, TimeML defines a 
TLINK tag that links tagged events to other 
events and/or times. For example, given (3a), a 
TLINK tag orders an instance of the event of 
entering to an instance of the drinking with the 
relation type AFTER. Likewise, given the sen-
tence (3c), a TLINK tag will anchor the event 
instance of announcing to the time expression 
Tuesday (whose normalized value will be in-
ferred from context), with the relation 
IS_INCLUDED. These inferences are shown (in 
slightly abbreviated form) in the annotations in 
(4) and (5). 
(4) Max <EVENT eventID=“e1” 

class=“occurrence” tense=“past” as-
pect=“none”>entered</EVENT> the room. 
He <EVENT eventID=“e2” 
class=“occurrence” tense=“past” as-
pect=“perfect”>had drunk</EVENT>a 
lot of wine.  
<TLINK eventID=“e1” relatedToEven-

tID=“e2” relType=“AFTER”/> 
 (5) The company <EVENT even-

tID=“e1” class=“reporting” 
tense=“past” as-
pect=“none”>announced</EVENT> 
<TIMEX3 tid=“t2” type=“DATE” tempo-
ralFunction=“false” value=“1998-01-
08”>Tuesday </TIMEX3> that third-

quarter sales <EVENT eventID=“e2” 
class=“occurrence” tense=“past” as-
pect=“perfect”> had fallen</EVENT>.  
<TLINK eventID=“e1” relatedToEven-

tID=“e2” relType=“AFTER”/> 
<TLINK eventID=“e1” relatedTo-

TimeID=“t2” relType=“IS_INCLUDED”/> 
 
The anchor relation is an Event-Time TLINK, 

and the order relation is an Event-Event TLINK. 
TimeML uses 14 temporal relations in the 
TLINK RelTypes, which reduce to a disjunctive 
classification of 6 temporal relations RelTypes = 
{SIMULTANEOUS, IBEFORE, BEFORE, BE-
GINS, ENDS, INCLUDES}. An event or time is 
SIMULTANEOUS with another event or time if 
they occupy the same time interval. An event or 
time INCLUDES another event or time if the 
latter occupies a proper subinterval of the former. 
These 6 relations and their inverses map one-to-
one to 12 of Allen’s 13 basic relations (Allen 
1984)2. There has been a considerable amount of 
activity related to this scheme; we focus here on 
some of the challenges posed by the TLINK an-
notation, the part that is directly relevant to the 
temporal ordering and anchoring problems. 

2.2 Challenges 

The annotation of TimeML information is on a 
par with other challenging semantic annotation 
schemes, like PropBank, RST annotation, etc., 
where high inter-annotator reliability is crucial 
but not always achievable without massive pre-
processing to reduce the user’s workload. In Ti-
meML, inter-annotator agreement for time ex-
pressions and events is 0.83 and 0.78 (average of 
Precision and Recall) respectively, but on 
TLINKs it is 0.55 (P&R average), due to the 
large number of event pairs that can be selected 
for comparison. The time complexity of the hu-
man TLINK annotation task is quadratic in the 
number of events and times in the document. 

Two corpora have been released based on Ti-
meML: the TimeBank (Pustejovsky et al. 2003) 
(we use version 1.2.a) with 186 documents and 

                                                 
2Of the 14 TLINK relations, the 6 inverse relations are re-
dundant. In order to have a disjunctive classification, SI-
MULTANEOUS and IDENTITY are collapsed, since 
IDENTITY is a subtype of SIMULTANEOUS. (Specifi-
cally, X and Y are identical if they are simultaneous and 
coreferential.) DURING and IS_INCLUDED are collapsed 
since DURING is a subtype of IS_INCLUDED that anchors 
events to times that are durations. IBEFORE (immediately 
before) corresponds to Allen’s MEETS. Allen’s OVER-
LAPS relation is not represented in TimeML. More details 
can be found at timeml.org. 
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64,077 words of text, and the Opinion Corpus 
(www.timeml.org), with 73 documents and 
38,709 words. The TimeBank was developed in 
the early stages of TimeML development, and 
was partitioned across five annotators with dif-
ferent levels of expertise. The Opinion Corpus 
was developed very recently, and was partitioned 
across just two highly trained annotators, and 
could therefore be expected to be less noisy. In 
our experiments, we merged the two datasets to 
produce a single corpus, called OTC. 

Table 1 shows the distribution of EVENTs and 
TIMES, and TLINK RelTypes3 in the OTC. The 
majority class percentages are shown in paren-
theses. It can be seen that BEFORE and SI-
MULTANEOUS together form a majority of 
event-ordering (Event-Event) links, whereas 
most of the event anchoring (Event-Time) links 
are INCLUDES.  
 

12750 Events, 2114 Times 
Relation Event-Event Event-Time 
IBEFORE 131 15 
BEGINS 160 112 
ENDS 208 159 
SIMULTANEOUS 1528 77 
INCLUDES 950 3001 (65.3%) 
BEFORE 3170 (51.6%) 1229 
TOTAL 6147 4593 

Table 1. TLINK Class Distributions in OTC 
Corpus 

 
The lack of TLINK coverage in human anno-

tation could be helped by preprocessing, pro-
vided it meets some threshold of accuracy. Given 
the availability of a corpus like OTC, it is natural 
to try a machine learning approach to see if it can 
be used to provide that preprocessing. However, 
the noise in the corpus and the sparseness of 
links present challenges to a learning approach. 

3 Machine Learning Approach 

3.1 Initial Learner 

There are several sub-problems related to in-
ferring event anchoring and event ordering. Once 
a tagger has tagged the events and times, the first 
task (A) is to link events and/or times, and the 
second task (B) is to label the links. Task A is 
hard to evaluate since, in the absence of massive 
preprocessing, many links are ignored by the 
human in creating the annotated corpora. In addi-
                                                 
3The number of TLINKs shown is based on the number of 
TLINK vectors extracted from the OTC. 

tion, a program, as a baseline, can trivially link 
all tagged events and times, getting 100% recall 
on Task A. We focus here on Task B, the label-
ing task. In the case of humans, in fact, when a 
TLINK is posited by both annotators between the 
same pairs of events or times, the inter-annotator 
agreement on the labels is a .77 average of P&R. 
To ensure replicability of results, we assume per-
fect (i.e., OTC-supplied) events, times, and links.  

Thus, we can consider TLINK inference as the 
following classification problem: given an or-
dered pair of elements X and Y, where X and Y 
are events or times which the human has related 
temporally via a TLINK, the classifier has to as-
sign a label in RelTypes. Using RelTypes instead 
of RelTypes ∪  {NONE} also avoids the prob-
lem of heavily skewing the data towards the 
NONE class.  

To construct feature vectors for machine 
learning, we took each TLINK in the corpus and 
used the given TimeML features, with the 
TLINK class being the vector’s class feature.  
For replicability by other users of these corpora, 
and to be able to isolate the effect of components, 
we used ‘perfect’ features; no feature engineer-
ing was attempted. The features were, for each 
event in an event-ordering pair, the event-class, 
aspect, modality, tense and negation (all nominal 
features); event string, and signal (a preposi-
tion/adverb, e.g., reported on Tuesday), which 
are string features, and contextual features indi-
cating whether the same tense and same aspect 
are true of both elements in the event pair. For 
event-time links, we used the above event and 
signal features along with TIMEX3 time features. 

For learning, we used an off-the-shelf Maxi-
mum Entropy (ME) classifier (from Carafe, 
available at sourceforge.net/projects/carafe). As 
shown in the UNCLOSED (ME) column in Ta-
ble 24, accuracy of the unclosed ME classifier 
does not go above 77%, though it’s always better 
than the majority class (in parentheses). We also 
tried a variety of other classifiers, including the 
SMO support-vector machine and the naïve 
Bayes tools in WEKA (www.weka.net.nz). SMO 
performance (but not naïve Bayes) was compa-
rable with ME, with SMO trailing it in a few 
cases (to save space, we report just ME perform-
ance). It’s possible that feature engineering could 
improve performance, but since this is “perfect” 
data, the result is not encouraging.  

                                                 
4All machine learning results, except for ME-C in Table 4, 
use 10-fold cross-validation. ‘Accuracy’ in tables is Predic-
tive Accuracy. 
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 UNCLOSED (ME) CLOSED (ME-C) 
 Event-Event Event-Time Event-Event Event-Time 

Accuracy: 62.5 (51.6) 76.13 (65.3) 93.1 (75.2) 88.25 (62.3) 
Relation Prec Rec F Prec Rec F Prec Rec F Prec Rec F 
IBEFORE 50.00 27.27 35.39 0 0 0 77.78 60.86 68.29 0 0 0 
BEGINS 50.00 41.18 45.16 60.00 50.00 54.54 85.25 82.54 83.87 76.47 74.28 75.36 
ENDS 94.74 66.67 78.26 41.67 27.78 33.33 87.83 94.20 90.90 79.31 77.97 78.62 
SIMULTANEOUS 50.35 50.00 50.17 33.33 20.00 25.00 62.50 38.60 47.72 73.68 56.00 63.63 
INCLUDES 47.88 34.34 40.00 80.92 62.72 84.29 90.41 88.23 89.30 86.07 80.78 83.34 
BEFORE 68.85 79.24 73.68 70.47 62.72 66.37 94.95 97.26 96.09 90.16 93.56 91.83 

 
Table 2. Machine learning results using unclosed and closed data

 

3.2 Expanding Training Data using Tem-
poral Reasoning 

To expand our training set, we use a temporal  
closure component SputLink (Verhagen 2004), 
that takes known temporal relations in a text and  
derives new implied relations from them, in ef-
fect making explicit what was implicit. SputLink 
was inspired by (Setzer and Gaizauskas 2000) 
and is based on Allen’s interval algebra, taking 
into account the limitations on that algebra that 
were pointed out by (Vilain et al. 1990). It is ba-
sically a constraint propagation algorithm that 
uses a transitivity table to model the composi-
tional behavior of all pairs of relations in a 
document. SputLink’s transitivity table is repre-
sented by 745 axioms. An example axiom:  
 
If relation(A, B) = BEFORE && 
   relation(B, C) = INCLUDES 
then infer relation(A, C) = BEFORE 
 
Once the TLINKs in each document in the 

corpus are closed using SputLink, the same vec-
tor generation procedure and feature representa-
tion described in Section 3.1 are used. The effect 
of closing the TLINKs on the corpus has a dra-
matic impact on learning. Table 2, in the 
CLOSED (ME-C) column shows that accura-
cies for this method (called ME-C, for Maximum 
Entropy learning with closure) are now in the 
high 80’s and low 90’s, and still outperform the 
closed majority class (shown in parentheses).  

What is the reason for the improvement?5 One 
reason is the dramatic increase in the amount of 
training data. The more connected the initial un-

                                                 
5Interestingly, performance does not improve for SIMUL-
TANEOUS.  The reason for this might be due to the rela-
tively modest increase in SIMULTANEOUS relations from 
applying closure (roughly factor of 2). 

closed graph for a document is in TLINKs, the 
greater the impact in terms of closure. When the 
OTC is closed, the number of TLINKs goes up 
by more than 11 times, from 6147 Event-Event 
and 4593 Event-Time TLINKs to 91,157 Event-
Event and 29,963 Event-Time TLINKs. The 
number of BEFORE links goes up from 3170 
(51.6%) Event-Event and 1229 Event-Time 
TLINKs (26.75%) to 68585 (75.2%) Event-
Event and 18665 (62.3%) Event-Time TLINKs, 
making BEFORE the majority class in the closed 
data for both Event-Event and Event-Time 
TLINKs. There are only an average of 0.84 
TLINKs per event before closure, but after clo-
sure it shoots up to 9.49 TLINKs per event. 
(Note that as a result, the majority class percent-
ages for the closed data have changed from the 
unclosed data.) 

Being able to bootstrap more training data is 
of course very useful. However, we need to dig 
deeper to investigate how the increase in data 
affected the machine learning. The improvement 
provided by temporal closure can be explained 
by three factors:  (1) closure effectively creates a 
new classification problem with many more in-
stances, providing more data to train on; (2) the 
class distribution is further skewed which results 
in a higher majority class baseline (3) closure 
produces additional data in such a way as to in-
crease the frequencies and statistical power of 
existing features in the unclosed data, as opposed 
to adding new features.  For example, with un-
closed data, given A BEFORE B and B BE-
FORE C, closure generates A BEFORE C which 
provides more significance for the features re-
lated to A and C appearing as first and second 
arguments, respectively, in a BEFORE relation.  

In order to help determine the effects of the 
above factors, we carried out two experiments in 
which we sampled 6145 vectors from the closed 
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data – i.e. approximately the number of Event-
Event vectors in the unclosed data.  This effec-
tively removed the contribution of factor (1) 
above. The first experiment (Closed Class Dis-
tribution) simply sampled 6145 instances uni-
formly from the closed instances, while the sec-
ond experiment (Unclosed Class Distribution) 
sampled instances according to the same distri-
bution as the unclosed data. Table 3 shows these 
results.  The greater class distribution skew in the 
closed data clearly contributes to improved accu-
racy. However, when using the same class distri-
bution as the unclosed data (removing factor (2) 
from above), the accuracy, 76%, is higher than 
using the full unclosed data.  This indicates that 
closure does indeed help according to factor (3). 

4 Comparison against Baselines 

4.1 Hand-Coded Rules 

Humans have strong intuitions about rules for 
temporal ordering, as we indicated in discussing 
sentences (1) to (3). Such intuitions led to the 
development of pattern matching rules incorpo-
rated in a TLINK tagger called GTag. GTag 
takes a document with TimeML tags, along with 
syntactic information from part-of-speech tag-
ging and chunking from Carafe, and then uses 
187 syntactic and lexical rules to infer and label 
TLINKs between tagged events and other tagged 
events or times. The tagger takes pairs of 
TLINKable items (event and/or time) and 
searches for the single most-confident rule to 
apply to it, if any, to produce a labeled TLINK 
between those items. Each (if-then) rule has a 
left-hand side which consists of a conjunction of 
tests based on TimeML-related feature combina-
tions (TimeML features along with part-of-
speech and chunk-related features), and a right-
hand side which is an assignment to one of the 
TimeML TLINK classes.  

The rule patterns are grouped into several dif-
ferent classes: (i) the event is anchored with or 
without a signal to a time expression within the 
same clause, e.g., (3c), (ii) the event is anchored 
without a signal to the document date (as is often 
the case for reporting verbs in news), (iii) an 
event is linked to another event in the same sen-
tence, e.g., (3c), and (iv) the event in a main 
clause of one sentence is anchored with a signal 
or tense/aspect cue to an event in the main clause 
of the previous sentence, e.g., (1-2), (3a-b). 

The performance of this baseline is shown in 
Table 4 (line GTag). The top most accurate rule 
(87% accuracy) was GTag Rule 6.6, which links 

a past-tense event verb joined by a conjunction to 
another past-tense event verb as being BEFORE 
the latter (e.g., they traveled and slept the 
night ..): 

 
If sameSentence=YES && 
 sentenceType=ANY && 
 conjBetweenEvents=YES && 
 arg1.class=EVENT && 
 arg2.class=EVENT && 
 arg1.tense=PAST && 
 arg2.tense=PAST && 
 arg1.aspect=NONE && 
 arg2.aspect=NONE && 
 arg1.pos=VB && 
 arg2.pos=VB && 
 arg1.firstVbEvent=ANY && 
 arg2.firstVbEvent=ANY  
then infer relation=BEFORE 
 
The vast majority of the intuition-bred rules 

have very low accuracy compared to ME-C, with 
intuitions failing for various feature combina-
tions and relations (for relations, for example, 
GTag lacks rules for IBEFORE, STARTS, and 
ENDS). The bottom-line here is that even when 
heuristic preferences are intuited, those prefer-
ences need to be guided by empirical data, 
whereas hand-coded rules are relatively ignorant 
of the distributions that are found in data. 

4.2 Adding Google-Induced Lexical Rules 

One might argue that the above baseline is too 
weak, since it doesn’t allow for a rich set of lexi-
cal relations. For example, pushing can result in 
falling, killing always results in death, and so 
forth. These kinds of defeasible rules have been 
investigated in the semantics literature, including 
the work of Lascarides and Asher cited in Sec-
tion 1.  

However, rather than hand-creating lexical 
rules and running into the same limitations as 
with GTag’s rules, we used an empirically-
derived resource called VerbOcean (Chklovski 
and Pantel 2004), available at 
http://semantics.isi.edu/ocean. This resource con-
sists of lexical relations mined from Google 
searches. The mining uses a set of lexical and 
syntactic patterns to test for pairs of verb 
strongly associated on the Web in an asymmetric 
‘happens-before’ relation. For example, the sys-
tem discovers that marriage happens-before di-
vorce, and that tie happens-before untie.  

We automatically extracted all the ‘happens-
before’ relations from the VerbOcean resource at 
the above web site, and then automatically con-
verted those relations to GTag format, producing 
4,199 rules. Here is one such converted rule: 
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If arg1.class=EVENT && 
   arg2.class=EVENT && 
   arg1.word=learn && 
   arg2.word=forget && 
then infer relation=BEFORE 
 
Adding these lexical rules to GTag (with mor-

phological normalization being added for rule 
matching on word features) amounts to a consid-
erable augmentation of the rule-set, by a factor of 
22. GTag with this augmented rule-set might be 
a useful baseline to consider, since one would 
expect the gigantic size of the Google ‘corpus’ to 
yield fairly robust, broad-coverage rules.  

What if both a core GTag rule and a VerbO-
cean-derived rule could both apply? We assume 
the one with the higher confidence is chosen. 
However, we don’t have enough data to reliably 
estimate rule confidences for the original GTag 
rules; so, for the purposes of VerbOcean rule 
integration, we assigned either the original Ver-
bOcean rules as having greater confidence than 

the original GTag rules in case of a conflict (i.e., 
a preference for the more specific rule), or vice-
versa.  

 The results are shown in Table 4 (lines 
GTag+VerbOcean). The combined rule set, un-
der both voting schemes, had no statistically sig-
nificant difference in accuracy from the original 
GTag rule set. So, ME-C beat this baseline as 
well.  

The reason VerbOcean didn’t help is again 
one of data sparseness, due to most verbs occur-
ring rarely in the OTC. There were only 19 occa-
sions when a happens-before pair from VerbO-
cean correctly matched a human BEFORE 
TLINK, of which 6 involved the same rule being 
right twice (including learn happens-before for-
get, a rule which students are especially familiar 
with!), with the rest being right just once. There 
were only 5 occasions when a VerbOcean rule 
incorrectly matched a human BEFORE TLINK, 
involving just three rules. 

 
 

 Closed Class Distribution UnClosed Class Distribution 
Relation Prec Rec F Accuracy Prec Rec F Accuracy 
IBEFORE 100.0 100.0 100.0 83.33 58.82 68.96 
BEGINS 0 0 0 72.72 50.0 59.25 
ENDS 66.66 57.14 61.53 62.50 50.0 55.55 
SIMULTANEOUS 14.28 6.66 9.09 60.54 66.41 63.34 
INCLUDES 73.91 77.98 75.89 75.75 77.31 76.53 
BEFORE 90.68 92.60 91.63 

87.20  
(72.03) 

84.09 84.61 84.35 

76.0 
(40.95)  

Table 3. Machine Learning from subsamples of the closed data 
 

Accuracy Baseline 
Event-Event Event-Time 

GTag 63.43 72.46 
GTag+VerbOcean - GTag overriding VerbOcean 64.80 74.02 
GTag+VerbOcean - VerbOcean overriding GTag 64.22 73.37 
GTag+closure+ME-C 53.84 (57.00) 67.37 (67.59) 

Table 4. Accuracy of ‘Intuition’ Derived Baselines 
 

4.3 Learning from Hand-Coded Rules 
Baseline 

The previous baseline was a hybrid confi-
dence-based combination of corpus-induced 
lexical relations with hand-created rules for tem-
poral ordering. One could consider another obvi-
ous hybrid, namely learning from annotations 
created by GTag-annotated corpora. Since the 
intuitive baseline fares badly, this may not be 
that attractive. However, the dramatic impact of 
closure could help offset the limited coverage 
provided by human intuitions.   

Table 4 (line GTag+closure+ME-C) shows the 
results of closing the TLINKs produced by 
GTag’s annotation and then training ME from 
the resulting data. The results here are evaluated 
against a held-out test set. We can see that even 
after closure, the baseline of learning from un-
closed human annotations is much poorer than 
ME-C, and is in fact substantially worse than the  
majority class on event ordering.  

This means that for preprocessing new data 
sets to produce noisily annotated data for this 
classification task, it is far better to use machine-
learning from closed human annotations rather 
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than machine-learning from closed annotations 
produced by an intuitive baseline. 

5 Related Work 

Our approach of classifying pairs independ-
ently during learning does not take into account 
dependencies between pairs.  For example, a 
classifier may label <X, Y> as BEFORE. Given 
the pair <X, Z>,  such a classifier has no idea if 
<Y, Z> has been classified as BEFORE, in 
which case, through closure, <X, Z> should be 
classified as BEFORE. This can result in the 
classifier producing an inconsistently annotated 
text. The machine learning approach of (Cohen 
et al. 1999) addresses this, but their approach is 
limited to total orderings involving BEFORE, 
whereas TLINKs introduce partial orderings in-
volving BEFORE and five other relations. Future 
research will investigate methods for tighter in-
tegration of temporal reasoning and statistical 
classification. 

The only closely comparable machine-
learning approach to the problem of TLINK ex-
traction was that of (Boguraev and Ando 2005), 
who trained a classifier on Timebank 1.1 for 
event anchoring for events and times within the 
same sentence, obtaining an F-measure (for tasks 
A and B together) of 53.1. Other work in ma-
chine-learning and hand-coded approaches, 
while interesting, is harder to compare in terms 
of accuracy since they do not use common task 
definitions, annotation standards, and evaluation 
measures. (Li et al. 2004) obtained 78-88% accu-
racy on ordering within-sentence temporal rela-
tions in Chinese texts. (Mani et al. 2003) ob-
tained 80.2 F-measure training a decision tree on 
2069 clauses in anchoring events to reference 
times that were inferred for each clause. (Ber-
glund et al. 2006) use a document-level evalua-
tion approach pioneered by (Setzer and Gai-
zauskas 2000), which uses a distinct evaluation 
metric. Finally, (Lapata and Lascarides 2004) use 
found data to successfully learn which (possibly 
ambiguous) temporal markers connect a main 
and subordinate clause, without inferring under-
lying temporal relations. 

In terms of hand-coded approaches, (Mani and 
Wilson 2000) used a baseline method of blindly 
propagating TempEx time values to events based 
on proximity, obtaining 59.4% on a small sample 
of 8,505 words of text. (Filatova and Hovy 2001) 
obtained 82% accuracy on ‘timestamping’ 
clauses for a single type of event/topic on a data 
set of 172 clauses. (Schilder and Habel 2001) 

report 84% accuracy inferring temporal relations 
in German data, and (Li et al. 2001) report 93% 
accuracy on extracting temporal relations in Chi-
nese. Because these accuracies are on different 
data sets and metrics, they cannot be compared 
directly with our methods. 

Recently, researchers have developed other 
tools for automatically tagging aspects of Ti-
meML, including EVENT (Sauri et al. 2005) at 
0.80 F-measure and TIMEX36 tags at 0.82-0.85 
F-measure. In addition, the TERN competition 
(tern.mitre.org) has shown very high (close to .95  
F-measures) for TIMEX2 tagging, which is fairly 
similar to TIMEX3. These results suggest the 
time is ripe for exploiting ‘imperfect’ features in 
our machine learning approach. 

6 Conclusion 

Our research has uncovered one new finding: 
semantic reasoning (in this case, logical axioms 
for temporal closure), can be extremely valuable 
in addressing data sparseness. Without it, per-
formance on this task of learning temporal rela-
tions is poor; with it, it is excellent. We showed 
that temporal reasoning can be used as an over-
sampling method to dramatically expand the 
amount of training data for TLINK labeling, re-
sulting in labeling predictive accuracy as high as 
93% using an off-the-shelf Maximum Entropy 
classifier. Future research will investigate this 
effect further, as well as examine factors that 
enhance or mitigate this effect in different cor-
pora. 

The paper showed that ME-C performed sig-
nificantly better than a series of increasingly so-
phisticated baselines involving expansion of 
rules derived from human intuitions. Our results 
in these comparisons confirm the lessons learned 
from the corpus-based revolution, namely that 
rules based on intuition alone are prone to in-
completeness and are hard to tune without access 
to the distributions found in empirical data.  
Clearly, lexical rules have a role to play in se-
mantic and pragmatic reasoning from language, 
as in the discussion of example (2) in Section 1. 
Such rules, when mined by robust, large corpus-
based methods, as in the Google-derived VerbO-
cean, are clearly relevant, but too specific to ap-
ply more than a few times in the OTC corpus.  

It may be possible to acquire confidence 
weights for at least some of the intuitive rules in 
GTag from Google searches, so that we have a 
                                                 
6http://complingone.georgetown.edu/~linguist/GU_TIME_
DOWNLOAD.HTML 
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level field for integrating confidence weights 
from the fairly general GTag rules and the fairly 
specific VerbOcean-like lexical rules. Further, 
the GTag and VerbOcean rules could be incorpo-
rated as features for machine learning, along with 
features from automatic preprocessing.  

We have taken pains to use freely download-
able resources like Carafe, VerbOcean, and 
WEKA to help others easily replicate and 
quickly ramp up a system. To further facilitate 
further research, our tools as well as labeled vec-
tors (unclosed as well as closed) are available for 
others to experiment with. 
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