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Abstract

This paperpresentsa novel training al-
gorithm for a linearly-scoredblock se-
guencetranslationmodel. The key com-
ponentis a newv procedureo directly op-
timize the global scoringfunction usedby
a SMT decoder No translationJanguage,
or distortion model probabilitiesare used
as in earlier work on SMT. Therefore
our method,which emplo/s lessdomain
specific knowledge, is both simpler and
moreextensiblethanpreviousapproaches.
Moreover, thetrainingprocedurdreatsthe
decoderas a black-box, and thus can be
usedto optimize ary decodingscheme.
The training algorithm is evaluatedon a
standardArabic-Englishtranslationtask.

1 Introduction

This paperpresentsa view of phrase-base8MT
as a sequentialprocessthat generateslock ori-
entationsequencesA block is a pair of phrases
which aretranslationof eachother For example,
Figure 1 shavs an Arabic-Englishtranslationex-
amplethatusesfour blocks. During decodingwe
view translationasa block segmentationprocess,
wherethe input sentencas segmentedfrom left
to right andthe target sentenceas generatedrom
bottomto top, one block at a time. A monotone
block sequencés generatedxceptfor the possi-
bility to handlesomelocal phrasere-ordering.In
thislocalre-orderingmodel(TillmannandZhang,
2005; Kumar and Byrne, 2005) a block b with
orientationo is generatedelative to its predeces-
sorblock &’. During decoding,we maximizethe
scores,, (b, o) of a block orientationsequence

Tong Zhang
Yahoo!Research
New York City, N.Y. 10011
t zhang@ahoo-i nc. com

2

4
airspace O 000 e ee
p
Lebanese | () O O Ob’ - )
violate O Ob O @O O O
2
warplanes | @ @ pr O O O
Israeli OO0 e O O O
A A At A A A
1 1 1 n 1 1 1
T HAt m j |1
A r s h j w b
' b r k Ay n
r Y A 1 A
A P } n
t y y
1
y
P

Figurel: An Arabic-Englishblock translationex-
ample, where the Arabic words are romanized.
The following orientationsequencés generated:
01 =N,0o=L,03=N,04 =R.
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whereb; is ablock, b; 1 is its predecessadblock,
ando; € {L(eft), R(ight), N(eutra)} is athree-
valuedorientationcomponentinked to the block
b;: ablock is generatedo the left or the right of
its predecessoblock b; 1, wherethe orientation
0;—1 of the predecessdblock s ignored. Here,n
is the numberof blocksin thetranslation.We are
interestedn learningtheweightvectorw from the
trainingdata. f (b;, 0;, b;—1) is ahigh-dimensional
binary featurerepresentatioof the block orienta-
tion pair (b;, 0;,b;—1). The block orientationse-
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guenceis generatedinderthe restrictionthat the
concatenatedourcephrase®f the blocksb; yield
theinput sentenceln modelinga block sequence,
we emphasizedjacentlock neighborghat have
right or left orientation sincein thecurrentexper
imentsonly local block swappingis handled heu-
tral orientationis usedfor 'detachedblocksasde-
scribedin (TillmannandZhang,2005)).

This paperfocuseson the discriminatve train-
ing of the weightvectorw usedin Eq. 1. Thede-
codingprocesss decomposedhto local decision
stepsbasedon Eq. 1, but the modelis trainedin
a global settingas shavn belon. The adwantage
of thisapproachis thatit caneasilyhandletensof
millions of featuresg.g. up to 35 million features
for the experimentsn this paper Moreover, under
this view, SMT becomegjuite similar to sequen-
tial naturallanguageannotatiornproblemssuchas
part-of-speechagging and shallaw parsing,and
the novel training algorithm presentedn this pa-
peris actuallymostsimilarto work ontrainingal-
gorithmspresentedor thesetask,e.g. the on-line
training algorithmpresentedn (McDonaldet al.,
2005) and the perceptrortraining algorithm pre-
sentedin (Collins, 2002). The currentapproach
doesnot usespecializedorobability featuresasin
(Och,2003)in ary stageduring decodemparame-
tertraining. Suchprobability featuresncludelan-
guagemodel, translationor distortion probabili-
ties, which are commonly usedin currentSMT
approaches. We areableto achiere comparable
performanceo (Tillmann andZhang,2005). The
novel algorithmdiffers computationallyfrom ear
lier work in discriminatve training algorithmsfor
SMT (Och,2003)asfollows:

e No computationallyexpensive N-bestlists
aregeneratediuring training: for eachinput
sentenceasingleblock sequencés generated
on eachiterationover thetrainingdata.

¢ No additionaldevelopmentdatasetis neces-
saryastheweightvectorw istrainedonbilin-
gualtrainingdataonly.

The paperis structuredas follows: Section2
presentghe baselineblock sequencenodel and
the feature representation. Section 3 presents
the discriminatve training algorithm that learns

A translationanddistortionmodelis usedin generating
the block setusedin the experiments,but thesetranslation
probabilitiesarenot usedduringdecoding.

a good global ranking function usedduring de-
coding. Section4 presentgesultson a standard
Arabic-Englishtranslationtask. Finally, somedis-
cussionandfuturework is presentedn Section5.

2 Block Sequence Model

This paperviews phrase-base®MT as a block
sequencaenerationprocess. Blocks are phrase
pairs consistingof taget and sourcephrasesand
local phrasere-orderingis handledby including
so-calledblock orientation. Startingpoint for the
block-basedranslationmodelis a block set, e.qg.
about9.5 million Arabic-Englishphrasepairsfor
the experimentsin this paper This block setis
usedto decodetraining sentenceo obtainblock
orientationsequencethatareusedin the discrim-
inative parametetraining. Nothing but the block
setandthe paralleltraining datais usedto carry
out the training. We usethe block setdescribed
in (Al-Onaizanetal., 2004),the useof a different
block setmayeffect translatiorresults.
Ratherthanpredictinglocal block neighborsasin
(Tillmann andZhang,2005), herethe modelpa-
rametersaretrainedin a global setting. Starting
with a simplemodel,the training datais decoded
multiple times: the weight vectorw is trainedto
discriminateblock sequencesvith a high trans-
lation scoreagainstblock sequencesvith a high
BLEU score?. The high BLEU scoring block
sequencesre obtainedas follows: the regular
phrase-basedecoderis modified in a way that
it usesthe BLEU scoreas optimizationcriterion
(independentof ary translationmodel). Here,
searchindgor the highestBLEU scoringblock se-
guenceis restrictedto local re-orderingasis the
model-basediecoding(asshavn in Fig. 1). The
BLEU scoreis computedwith respecto the sin-
gle referencetranslationprovided by the paral-
lel training data. A block sequencevith an av-
erageBLEU scoreof about0.54 is obtainedfor
eachtraining sentence®. The ’true’ maximum
BLEU block sequencaswell asthe high scoring

2High scoringblock sequencemaycontaintranslatiorer-
rorsthatarequantifiedby alower BLEU score.

3The training BLEU scoreis computedfor eachtrain-
ing sentencepair separately(treatingeachsentencepair as
asingle-sentenceorpuswith asinglereferencepandthenav-
eragedver all trainingsentencesAlthoughblock sequences
are found with a high BLEU scoreon averagethereis no
guarantedo find the maximumBLEU block sequencdor a
given sentencepair. The target word sequenceorrespond-
ing to a block sequencaloesnot have to matchthe refer
encetranslation,i.e. maximumBLEU scoresare quite low
for sometrainingsentences.
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block sequencesire representedby high dimen-

sionalfeaturevectorsusingthebinaryfeaturede-

finedbelov andthetranslationprocesss handled
as a multi-classclassificationproblemin which

eachblock sequenceaepresentsa possibleclass.
The effect of this training procedurecanbe seen
in Figure 2: eachdecodingstep on the training

dataaddsahigh-scoringblock sequenc#o thedis-

criminatve traininganddecodingperformancen

the training datais improved after eachiteration

(alongwith the testdatadecodingperformance).
A theoreticaljustification for the novel training

procedurds givenin Section3.

We now definethe featurecomponentdgor the
blockbigramfeaturevectorf (b;, 0;,b;,—1) in EQ.1.
Although the training algorithm can handlereal-
valuedfeaturesas usedin (Och, 2003; Tillmann
and Zhang, 2005) the currentpaperintentionally
excludesthem. The currentfeaturefunctionsare
similar to those usedin common phrase-based
translationsystems:for themit hasbeenshavn
thatgoodtranslationperformanceanbeachieved
4. A systemati@nalysisof thenovel trainingalgo-
rithm will allow usto includemuchmoresophis-
ticatedfeaturesin future experiments,i.e. POS-
basedfeatures,syntacticor hierarchicalfeatures
(Chiang, 2005). The dimensionalityof the fea-
ture vectorf(b;, 0;, b;—1) dependsn the number
of binary features. For illustration purposesthe
binary featuresare chosensuchthat they yield 1
on the exampleblock sequenceén Fig. 1. There
arephrase-based andwor d-based features:

J1000(bi, 05, b5 1) =
1 blockb; consistof tametphrase
= 'violate’ andsourcephrasétnthk’
0 otherwise

J1001(bi, 05, b;-1) =
1 ’Lebaneseis awordin thetarget
phraseof block b; and’AllbnAny’
is awordin thesourcephrase
0 otherwise

Thefeaturefiggo is a’unigram’ phrase-baseftta-
ture capturing the identity of a block. Addi-
tional phrase-basetkaturesinclude block orien-
tation, target and sourcephrasebigram features.
Word-basedeaturesare usedas well, e.g. fea-
ture fig01 capturesword-to-word translationde-
40n our test set, (Tillmann and Zhang, 2005) reportsa

BLEU scoreof 37.8 and(Ittycheriahand Roukos, 2005)re-
portsa BLEU scoreof 48.0.

pendenciesimilarto theuseof Model 1 probabil-
itiesin (Koehnetal., 2003). Additionally, we use
distortionfeaturesinvolving relatve sourceword
position and m-gram featuresfor adjacenttarget
words. Thesefeaturescorrespondo the use of
a languagemodel, but the weightsfor thesedea-
turesaretrainedon the paralleltraining dataonly.
For the mostcomplex model, the numberof fea-
turesis about35 million (ignoringall featureghat
occuronly once).

3 Approximate Relevant Set M ethod

Throughouthesectionweletz = (b7, o). Each
blocksequence = (b7, o) correspond$o acan-
didatetranslation.In thetrainingdatawheretamet
translationsaregiven,a BLEU scoreBl(z) canbe
calculatedfor eachz = (b7, o) againstthe tar
gettranslations.In this setup, our goalis to find
a weight vectorw suchthat the higher s, (z) is,
the higher the correspondingBLEU scoreBl(z)
shouldbe. If we canfind sucha weight vector
then block decodingby searchingfor the high-
ests, (z) will leadto goodtranslationwith high
BLEU score.

Formally, we denotea sourcesentenceby S,
andlet V (S) bethe setof possiblecandidateori-
entedblock sequenceg = (b7, 07) thatthe de-
codercan generatefrom S. For example, in a
monotonedecoder the set VV(S) containsblock
sequenceg by} that cover the sourcesentence
S in the sameorder For a decoderwith lo-
cal re-ordering,the candidateset V'(S) alsoin-
cludesadditionalblock sequencewith re-ordered
block configurationsthat the decodercan effi-
ciently search. Thereforedependingon the spe-
cific implementatiorof the decoderthe setV' (S)
canbedifferent.In general V' (S) is asubsetf all
possibleorientedblock sequenceg (b7, of')} that
areconsistentvith inputsentences.

Givenascoringfunctions,,(-) andaninputsen-
tenceS, we canassumethat the decoderimple-
mentsthefollowing decodingule:

)

z(S) = algzrenva()é) Sw(z).

LetS,,...,Sy beasetof IV trainingsentences.
EachsentenceS; is associatedvith a setV (S;)
of possibletranslationblock sequenceghat are
searchabléy the decoder Eachtranslationblock
sequence € V(S;) inducesa translationwhich
is then assigneda BLEU scoreBl(z) (obtained
by comparingagainsthetamgettranslations) The
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goal of the training is to find a weight vector w
suchthatfor eachtraining sentences;, the corre-
spondingdecoderoutputsz € V(S;) which has
the maximumBLEU scoreamongall z € V(S;)
basedn Eq.2. In otherwords,if z maximizeghe
scoringfunctions,,(z), thenz alsomaximizeshe
BLEU metric.

Basedon the description,a simple ideais to
learn the BLEU scoreBl(z) for eachcandidate
block sequencer. Thatis, we would like to es-
timatew suchthat s, (z) ~ Bl(z). This canbe
achieved through least squaresregression. It is
easyto seethatif we canfind a weight vectorw
thatapproximate®l(z), thenthedecoding-rulen
Eq. 2 automaticallymaximizesthe BLEU score.
However, it is usually difficult to estimateBl(z)
reliably basedonly on alinear combinationof the
featurevectorasin Eq. 1. We notethata goodde-
coderdoesnot necessarilyemplgy a scoringfunc-
tion that approximateshe BLEU score. Instead,
we only needto make sure that the top-ranlked
block sequencebtainedby the decoderscoring
function hasa high BLEU score. To formulate
this idea, we attemptto find a decodingparame-
ter suchthat for eachsentences in the training
data,sequence#n V(S) with the highestBLEU
scoresshouldget s,,(z) scoreshigherthanthose
with low BLEU scores.

Denoteby Vi (S) a setof K block sequences
in V(S) with the highestBLEU scores. Our de-
codedresultshouldlie in this set. We call them
the “truth”. The setof the remainingsequences
is V(S) — Vk(S), which we shall referto asthe
“alternatves”. We look for aweightvectorw that
minimizethe following trainingcriterion:

W = argmin
w

V(S:))
3)

1 N
-NEZQQmWAS
i=1

+)\w2]
max  (w,z,z)

K Z Z'eV-Vik
w( ),Bl( )i sw(2'), Bl(z)),

(I)(U), VKa

¢(wvzvz ) = ¢(

where ¢ is a non-ngative real-valuedloss func-
tion (whosespecificchoiceis not critical for the
purposesof this paper),and\ > 0 is a regular
ization parameterIn our experimentsyesultsare
obtainedusingthefollowing convex loss

¢(Sab; Slab,) - (4)

(b—b)(1—

(S - Sl))?i-a

where b, are BLEU scores, s, s’ are transla-
tion scores,and (z); = max(0,z). We refer
to thisformulationas’costMawgin’ (cost-sensitie
matgin) method: for each training sentenceS
the’costMagin’ ®(w, Vi (S), V(S)) betweerthe
"true’ block sequenceetVk (S) andthe alterna-
tive’ block sequencsetV(S) is maximized.Note
thatdueto the truth andalternatve setup, we al-
wayshave b > b'. Thislossfunctiongivesanup-
perboundof theerrorwe will suffer if theorderof
s ands’ is wrongly predictedthatis, if we predict
s < s insteadof s > &’). It alsohasthe property
thatif for the BLEU scoresh = b’ holds,thenthe
lossvalueis small(proportionatto b — ).

A major contrikution of this work is a proce-
dureto solve Eq. 3 approximately The main dif-
ficulty is that the searchspaceV/ (S) coveredby
the decodercanbe extremelylarge. It cannotbe
enumeratedor practical purposes. Our idea is
to replacethis large spaceby a small subspace
V({)(S) c V(S) whichwe call relevantset The
possibilityof thisreductionis basednthefollow-
ing theoreticaresult.

Lemmal Let(w,z,z') bea non-ngative con-
tinuous piece-wisedifferentiable function of w,
and let w be a local solution of Eq. 3. Let
i(w,z) = maXZ’GV(Si)fVK(Si)¢(wazazl)f and
define

VIS ={z e V(S;): Jz € Vk(S;) sit.
57,(12), Z) 5& 0& ¢(w, z, Z/) - gz(wv Z)}

Thenw is a local solutionof

§:¢wl%

®)

If ¢ is acornvex functionof w (asin our choice),
thenwe know thatthe global optimal solutionre-
mainsthe sameif the whole decodingspacel is
replacedy therelevantsetV ().

Each subspacel/(")(S;) will be significantly
smallerthan V(S;). This is becauset only in-
cludesthosealternatvesz’ with scores;(z') close
to oneof theselectedruth. Thesearethemostim-
portantalternatves that are easily confusedwith
the truth. Essentiallythe lemmasaysthatif the
decodemworks well on thesedifficult alternatves
(relevant points), thenit workswell on the whole
space.Theideais closelyrelatedto active learn-
ing in standarcclassificationproblemswherewe

HllIl
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Tablel: GenericApproximateRelevantSetMethod

for each datapointS
initialize truth Vx (S) andalternatve V(") (S)
for each decodingiteration{: ¢ =1,--- ,L
for each datapointS
selectrelevantpoints{z; } € V(S) (*)
updateV (")(8) «— V)(S) U {z;}
updatew by solvingEq. 5 approximately(**)

selectvely pick the mostimportantsamplegoften
basedn estimatioruncertainty¥or labelingin or-
derto maximizeclassificatiorperformancélLewis
and Catlett,1994). In the active learningsetting,
aslongaswedowell ontheactively selectecsam-
ples,wedowell onthewholesamplespaceln our
caseaslong aswe dowell ontherelevantset,the
decodewill performwell.

Sincethe relevant set dependson the decoder
parameterv, andthe decoderparameteiis opti-
mized on the relevant set, it is necessanto es-
timate them jointly using an iteratve algorithm.
Thebasicideais to startwith a decodingparame-
terw, andestimatethe correspondingelevantset;
wethenupdatew basedntherelevantset,andit-
eratethis processTheproceduras outlinedin Ta-
ble 1. We intentionallyleave the implementation
detailsof the (*) stepand(**) stepopen. More-
over, in this generalalgorithm,we do not have to
assumehats,, (z) hastheform of Eq. 1.

A naturalquestionconcerningthe procedures
its convergencebehaior. It canbe shavn thatun-
dermild assumptionsf we pickin (*) analterna-
tivez, € V(S) — Vk(S) for eachz;, € Vi(S)
(k=1,..., K) suchthat

¢(wa Z, Zl)v (6)

Vw2, 2) = ZeV(S) Vi ()
then the procedurecorvemes to the solution of

Eq. 3. Moreover, the rateof cornvergencedepends
only on the propertyof the lossfunction,andnot

on the size of V(S). This propertyis critical as

it shawvs that aslong as Eq. 6 can be computed
efficiently, thenthe ApproximateRelevant Setal-

gorithm is efficient. Moreover, it givesa bound

on the size of an approximaterelevant setwith a

certainaccurag.®

Due to the spacelimitation, we will not include a for-

The approximatesolutionof Eq. 5 in (**) can
be implementedusingstochastigradientdescent
(SGD),wherewe maysimply updatew as:

w—w— nvww(wvzkvik)'

The parameter; > 0 is a fixed constanbftenre-
ferredto aslearningrate. Again, corvemgencere-
sultscanbe proved for this procedure Dueto the
spacdimitation, we skip the formal statementis
well asthe correspondin@nalysis.

Up to this point, we have notassumedry spe-
cific form of the decoderscoringfunctionin our
algorithm.Now considelEg. 1 usedin our model.
We may expresst as:

where F'(z) = >, f(bi,0i,bi—1). Using this
feature representatiorand the loss function in
Eq. 4, we obtainthe following costMagin SGD
updaterule for eachtrainingdatapointandk:

(7
ABly, = Bl(zx) — Bl(zy), i = F(zx) — F(2).

w — w+ nABlgxy (1 — wh - Tk)+4s

4 Experimental Results

We appliedthe novel discriminatve training ap-
proachto a standardArabic-to-Englishtranslation
task. The training data comesfrom UN news
sourcesSomepunctuatiortokenizationandsome
number classingare carried out on the English
and the Arabic training data. We shawv transla-
tion resultsin termsof theautomatidBLEU evalu-
ation metric (Papineniet al., 2002) on the MT03
Arabic-EnglishDARPA evaluation test set con-
sistingof 663 sentencewith 16 278 Arabicwords
with 4 referencetranslations. In orderto speed
uptheparametetrainingtheoriginaltrainingdata
is filtered accordingto the testset: all the Ara-
bic substringsthat occurin the testsetare com-
putedand the parallel training datais filtered to
includeonly thosetrainingsentencgairsthatcon-
tain atleastoneout of thesephrasestheresulting
pre-filteredtraining datacontainsabout230 thou-
sandsentencepairs (5.52 million Arabic words
and6.76 million Englishwords). The block setis
generatedisinga phrase-paiselectionalgorithm
similar to (Koehnet al., 2003; Al-Onaizanet al.,
2004), which includessomeheuristicfiltering to

mal statemenhere. A detailedtheoreticalinvestigationof
themethodwill begivenin ajournalpaper
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increasephrasetranslationaccurag. Blocks that
occuronly oncein the training dataareincluded
aswell.

4.1 Practical Implementation Details

Thetrainingalgorithmin Table2 is adaptedrom
Tablel. Thetrainingis carriedoutby runningL =
30 timesover the paralleltraining data,eachtime
decodingall the N = 230000 training sentences
andgeneratinga singleblock translationrsequence
for eachtraining sentence.The top five block se-
quences/s(S;) with the highestBLEU scoreare
computedup-front for all training sentencepairs
S; andare storedseparatelyasdescribedn Sec-
tion 2. The score-basedecodingof the 230 000
training sentencepairsis carriedoutin parallelon
25 64-Bit OpteronmachinesHere,the monotone
decodingis much fasterthan the decodingwith
block swapping:themonotonedecodingakesless
than 0.5 hoursand the decodingwith swapping
takesaboutanhour Sincethetraining startswith
only the parallel training data and a block set,
someinitial block sequencebave to be generated
in orderto initialize theglobalmodeltraining: for
eachinput sentence simplebagof blockstrans-
lation is generated For eachinput intenval thatis
matchedoy someblock b, a singleblock is added
to the bag-of-blockgtranslationz, (S). The order
in which the blocksaregenerateds ignored. For
this block setonly block and word identity fea-
turesaregeneratedi,.e. featuresof type f1990 and
f1001 in Section2. This stepdoesnot requirethe
useof adecoderTheinitial block sequencérain-
ing datacontainsonly a single alternatve. The
training procedureproceeddy iteratively decod-
ing thetrainingdata.After eachdecodingstep,the
resultingtranslatiorblock sequencearestoredon
discin binary format. A block sequencegener
atedat decodingstep/; is usedin all subsequent
training stepst,, where/ly, > ¢1. The block se-
guencetraining dataafter the [-th decodingstep
is givenas [ ( V5(S;), V{(S;)) ]Z]il wherethe
size |[V(")(S;)| of the relevant alternatve set is
[ + 1. Althoughin orderto achieve fastcorver
gencewith atheoreticalguaranteewe shoulduse
Eqg. 6 to updatethe relevant set, in reality, this
ideais difficult to implementbecausét requires
amorecostlydecodingstep.Thereforein Table2,
we adoptanapproximationywheretherelevantset
is updatedby addingthe decoderoutputat each
stage.n thisway, weareableto treatthedecoding

Table 2: Relevant setmethod: L = numberof decoding
iterations,N = numberof training sentences.

for each inputsentences;, i=1,--- , N
initialize truth V5(S;) andalter
natve V") = {zy(S;)}

for each decodingiteration: ¢ =1,--- , L
trainw usingSGDon training
datal (V5(S)). V(8,)) ..,

for each inputsentencs;, i=1,--- ,N
selecttop-scoringsequencé(S;) and

updateV (")(S;) «— V)(S;) U {z(S))}

schemeasa black box. Oneway to approximate
Eq. 6 is to generatemultiple decodingoutputs
andpick the mostrelevant pointsbasedon Eq. 6.
Since the n-bestlist generationis computation-
ally costly only asingleblock sequencés gener
atedfor eachtraining sentenceoair, reducingthe
memory requirementdor the training algorithm
aswell. Although we are not able to rigorously
provefastconvergenceratefor thisapproximation,
it workswell in practice asFigure2 shavs. Theo-
retically thisis becausgointsachie’zing largeval-
uesin Eqg.6 tendto have higherchances$o become
thetop-ranled decoderoutputaswell. The SGD-
basedn-linetrainingalgorithmdescribedn Sec-
tion 3, is carriedout after eachdecodingstepto
generatethe weight vector w for the subsequent
decodingstep. Sincethis training stepis carried
out on a single machine,it dominateghe overall
computatiortime. Sinceeachiterationaddsa sin-
gle relevant alternatve to the setV(")(S;), com-
putationtime increasesvith the numberof train-
ing iterations:theinitial modelis trainedin afew
minutes,while training the modelafter the 30-th
iterationtakesup to 5 hoursfor the mostcomplex
models.

Table 3 presentsxperimentalresultsin termsof
uncasedBLEU ©. Two re-orderingrestrictionsare
tested,i.e. monotonedecoding(MON’), andlo-
cal block re-orderingwhereneighborblocks can
be swapped('SWAP"). The 'SWAP’ re-ordering
usesthe samefeaturesas the monotonemodels
plus additional orientation-base@nd distortion-

Translationperformancen termsof casedBLEU is typ-
ically reducecby about2 %.
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Table 3: Translationresultsin termsof uncased
BLEU on the training data (230 000 sentences)
andthe MTO03 testdata(670sentences).

Re-ordering| Features train | test
1 'MON’ bleu 0.542 -
2 phrase | 0.378 | 0.256
3 word | 0.427 | 0.341
4 both | 0.477 | 0.359
5| 'SWAP’ bleu | 0.594 -
6 phrase | 0.441 | 0.295
7 word | 0.455 | 0.359
8 both | 0.479 | 0.363

basedfeatures. Different feature sets include
word-basedfeatures,phrase-basefeatures,and
the combinationof both. For the results with
word-basedfeatures,the decoderstill generates
phrase-to-phras&anslations,but all the scoring
is doneon the word level. Line 8 shavs aBLEU
scoreof 36.3 for thebestperformingsystemwhich
usesall word-basedand phrase-baseteatures’.
Line 1 andline 5 of Table 3 shav the training
dataaveragedBLEU scoreobtainedby searching
for the highestBLEU scoringblock sequencdor
eachtraining sentencepair as describedin Sec-
tion 2. Allowing local block swappingin this
searchprocedureyields a muchimproved BLEU
scoreof 0.59. The experimentalresults shav
that word-basedmodelssignificantly outperform
phrase-basedhodels, the combinationof word-
basedand phrase-basefeaturesperformsbetter
thanthosefeaturestypestaken separately Addi-
tionally, swap-basede-orderingslightly improves
performanceover monotonedecoding. For all
experiments, the training BLEU score remains
significantly lower thanthe maximumobtainable
BLEU scoreshavn in line 1 andline 5. In thisre-
spect.thereis significantroom for improvements
in termsof featurefunctionsand alternatve set
generation.The word-basednodelsperformsur
prisingly well, i.e. the modelin line 7 usesonly
threefeaturetypes: modell featuredike figp1 in
Section2, distortionfeaturesandtargetlanguage
m-gramfeaturesup to m = 3. Training speed
varies dependingon the featuretypes used: for
the simplestmodelshavn in line 2 of Table3, the
training takes about12 hours,for the modelsus-

"With a mamgin of +£0.014, the differencesbetweenthe
resultsin line 4, line 7, andline 8 arenot statisticallysignifi-
cant,but the otherresultdifferencesare.
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Figure2: BLEU performanceon the training set
(uppergraph; averagedBLEU with single refer
ence)and the test set (lower graph; BLEU with
four referencesasa function of the training iter-
ation I for the model correspondingo line 8 in
Table3.

ing word-basedeatureshavnin line 3 andline 7
trainingtakeslessthan2 days.Finally, thetraining
for the mostcomplex modelin line 8 takesabout
4 days.

Figure2 shavs the BLEU performancdor the
model correspondingo line 8 in Table 3 as a
function of the numberof training iterations. By
addingtop scoringalternatvesin the training al-
gorithmin Table2, the BLEU performancenthe
trainingdataimprovesfrom about0.22 for theini-
tial modelto about0.48 for the bestmodel after
30 iterations.After eachtrainingiterationthe test
datais decodedaswell. Here,the BLEU perfor
mancemprovesfrom 0.08 for theinitial modelto
about0.36 for thefinal model(we do notinclude
thetestdatablock sequencem thetraining). Ta-
ble 3 shavsatypicallearningcurve for theexperi-
mentsin Table3: thetrainingBLEU scoreis much
higherthanthetestsetBLEU scoredespitehefact
thatthetestsetusest referencdranslations.

5 Discussion and Future Work

The work in this papersubstantiallydiffers from
previous work in SMT basedon the noisy chan-
nel approachpresentedn (Brown et al., 1993).
While errordriven training techniquesare com-
monlyusedto improve theperformancef phrase-
basedtranslation systems(Chiang, 2005; Och,
2003),this paperpresents novel block sequence
translationapproachto SMT that is similar to
sequentialnatural languageannotationproblems
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suchaspart-of-speeclhaggingor shallav parsing,
bothin modelingand parametetraining. Unlike
earlierapproacheso SMT training, which either
rely heavily on domainknowledge, or can only
handlea small numberof features this approach
treatsthe decodingprocessas a black box, and
canoptimizetensmillions of parametergutomat-
ically, whichmalesit applicableo otherproblems
aswell. Thechoiceof our formulationis cornvex,
which ensureghatwe areableto find the global
optimumeven for large scaleproblems.Theloss
function in Eq. 4 may not be optimal, and us-
ing differentchoicesmay leadto future improve-
ments. Another important direction for perfor
mancemprovements to designmethodghatbet-
ter approximateEg. 6. Although at this stagethe
systenperformanceés notyetbetterthanprevious
approachesgoodtranslationresultsare achieved
onastandardranslationtask. While beingsimilar
to (Tillmann andZhang,2005),the currentproce-
dureis more automatedwith comparableperfor
mance. The latter approachrequiresa decompo-
sition of the decodingschemeinto local decision
stepswith theinherentdifficulty acknavledgedin
(TillmannandzZhang,2005). Sincesuchlimitation
is not presentin the currentmodel,improved re-
sultsmaybe obtainedn thefuture. A perceptron-
like algorithmthat handlesglobal featuresin the
contet of re-rankingis alsopresentedn (Shenet
al.,2004).

The computationalrequirementdor the training
algorithmin Table2 canbe significantlyreduced.
While the global training approachpresentedn
this paperis simple, after 15 iterationsor so, the
alternatvesthatarebeingaddedo therelevantset
differ very little from eachother slowing down
thetrainingconsiderablysuchthatthesetof possi-
ble block translations/ (S) might not befully ex-
plored.As mentionedn Section2, the currentap-
proachis still ableto handlereal-\aluedfeatures,
e.g. thelanguagemodel probability This is im-
portantsince the languagemodel can be trained
onamuchlargermonolingualcorpus.
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