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Abstract model selection among values dand©
We first show how a structurédcality bias can improve the worst _unsup. sup. oracle
accuracy of state-of-the-art dependency grammar induction ~ German 19.8 19.8 544 544
models trained by EM from unannotated examples (Klein English 218 41.6 41.6 420

and Manning, 2004). Next, by annealing the free parame- .
ter that controls this bias, we achieve further improvements. Bulgarian 247 44.6 456 456
We then describe an alternative kind of structural bias, to- ~ Mandarin | 31.8 37.2 50.0 50.0
ward “broken” hypotheses consisting of partial structures Turkish 321 41.2 480 514
over segmented sentences, and show a similar pattern of im-
provement. We relate this approach to contrastive estimation ~ Portuguesg 354 37.4 42.3 43.0
(Smith and Eisner, 2005a), apply the latter to grammar in-

duction in six languages, and show that our new approachp|e 1: Baseline performance of EM-trained dependency
improves accuracy by 1-17% (absolute) over CE (and 8-30%55ing models:#; on non-$ attachments in test data, with
over EM), achieving to our knowledge the best results on thi£arious model selection conditions (3 initializer$ smooth-

task to date. Our methodfructural annealing, is a gen-  jnq vajues). The languages are listed in decreasing order by

eral technique with broad applicability to hidden-structure e training set size. Experimental details can be found in the
discovery problems. appendix.

1 Introduction strong preference for short dependencies, then re-

Inducing a weighted context-free grammar fromlax the preference. The new approastuuctural

flat text is a hard problem. A common start- annealing often gives superior performance.

ing point for weighted grammar induction is An alternative structural bias is explored§.

the Expectation-Maximization (EM) algorithm This approach views a sentence as a sequence

(Dempster et al., 1977; Baker, 1979). EM'sof one or more yields of separate, independent

mediocre performance (Table 1) reflects two probirees. The points of segmentation are a hidden

lems. First, it seeks to maximize likelihood, but avariable, and during learning all possible segmen-

grammar that makes the training data likely doedations are entertained probabilistically. This al-

not necessarily assign a linguistically defensibldows the learner to accept hypotheses that explain

syntactic structure. Second, the likelihood surfacéhe sentences as independent pieces.

is not globally concave, and learners such as the In §6 we briefly reviewcontrastive estimation

EM algorithm can get trapped on local maxima(Smith and Eisner, 2005a), relating it to the new

(Charniak, 1993). method, and show its performance alone and when
We seek here to capitalize on the intuition thataugmented with structural bias.

at least early in learning, the learner should search

primarily for string-local structure, because most 2 Task and Model

structure is locat. By penalizing dependencies be- |, this paper we use a simple unlexicalized depen-
tween two words that are farther apart in the stringgency model due to Klein and Manning (2004).
we obtain consistent improvements in accuracy ofrhe model is a probabilistic head automaton gram-
the learned modek8). mar (Alshawi, 1996) with a “split” form that ren-
We then explore how gradualghangings over  ders it parseable in cubic time (Eisner, 1997).
time affects learning§d): we start out with a Letx = (x1,29,..., 2,) be the sentencey is a
*This work was supported by a Fannie and John Hertzspecial “wall” symbol, $, on the left of every sen-

Foundation fellowship to the first author and NSF ITR granttence. A treey is defined by a pair of functions

11S-0313193 to the second author. The views expressed are d both {1,2,...n}

not necessarily endorsed by the sponsors. We thank thre¥left 8N0Y right (both{0,1,2,...,n} — 215%-n7)

anonymous COLING-ACL reviewers for comments. that map each word to its sets of left and right de-
1TO be concrete, in the corpora tested here, 95% of dEpendentS, respectively_ The graph is Constrained

pendency links covex 4 words (English, Bulgarian, Por- L .

tuguese)< 5 words (German, Turkish)c 6 words (Man-  tO be aprojectivetree rooted at $: each word ex-

darin). cept $ has a single parent, and there are no cycles
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or crossing dependenciésyleﬁ(o) is taken to be
empty, andy -z (0) contains the sentence’s singleo.s 1
head. Lety’ denote the subtree rooted at position
i. The probabilityP(y* | x;) of generating this 05 r S T o]
subtree, given its head word, is defined recur- 4 | L L]
sively: re
03t 2 |
[T  pooplstop | D lynG) =) (@), | s — 2 ,
De{left,right} Bulgarian e S
' o1 LF Manda_r{n ”7:7” o |
X H pstop(_‘StOp ’ Ty, D’ ﬁrSty (j)) ' 5 Por”tl:]ugrlll(éssl; ,,,,,,
jEyD(i) . 0 I I 1 I I | |
X Penitd (z | 5, D) x P(y? | ;) -1 08 -06 -04 02 0 0.2

Figure 1: Test-sef performance of models trained by EM

N ; . e« With a locality bias at varyingé. Each curve corresponds
whereﬁrsty (‘7) is a predicate defined to be true iff to a different language and shows performance of supervised

z; is the closest child (on either side) to its parentygel selectiomwithin a givens, acrossh and®© values.
x;. The probability of the entire tree is given by (See Table 3 for performance of models selectetssds.)

_ 0 We decode withy = 0, though we found that keeping the
p@(x, Y) B P(y | $)' The parameter® are the training-time value ob would have had almost no effect. The

conditional distributiongs;o, andpcpild- EM baseline corresponds o= 0.

Experimental baseline: EM. Following com-

' | I ds b ¢ One way to bias a learner toward local expla-
mon practice, we always replace words by part-of;, ios is to senalize longer attachments. This

speech (POS) tag_s before training or testing. W@vas done for supervised parsing in different ways
used the EM algorithm to train this model on POSby Collins (1997), Klein and Manning (2003)

sequenf:esin si'x Ian'guages. Com.plete experimeg—nd McDonald et al. (2005), all of whom con-
ta_l details are givenin the appendlx. I:’erform"’mC%idered intervening material or coarse distance
with unsupervised and supervised model selecg),qgeg \yhen predicting children in a tree. Eis-

tion across differend values in addk smoothing ner and Smith (2005) achieved speed and accuracy

and three |n|t|a||zer@ IS report_ed_ in Table 1. improvements by modeling distance directly in a
The supervised-selected model is in the 40-55%,,"_.<timated (deficient) generative model

Fy-accuracy range on directed dependency attach-

. Here we usestring distanceto measure the
ments. (HereF; =~ precision~ recall; see ap-

) : . . length of a dependency link and consider the inclu-
pendix.) Supervised model selection, which uses. : .
ion of a sum-of-lengths feature in the probabilis-

a small annotated development set, performs al? . . .
. ¢ model, for learning only. Keeping our original
most as well as the oracle, but unsupervised modell

: . .. _model, we will simply multiply into the probabil-
selection, which selects the model that maX|m|zest Py Py P

o .ty of each tree another factor that penalizes lon

likelihood on anunannotateddevelopment set, is y . L P 9
dependencies, giving:

often much worse.

3 Locality Bias among Trees - .
Y g 5y Y i

Hidden-variable estimation algorithms—
including EM—typically work by iteratively
manipulating the model parametépsto improve

an objective functionF(O). E_M expliciﬂy § = 0, we have the original model. A5— —oo,
alternates between the computation @asterior o new modep), will favor parses with shorter

distribution over hypothesegie(y | x) (where  yenendencies. The dynamic programming algo-
y is any tree Wlth yieldx), and computing & New  jthms remain the same as before, with the appro-
parameter estimat@.® priate ¢°li=J| factor multiplied in at each attach-

2 projective parser could achieve perfect accuracy on ouiment between:; and z;. Note that whery = 0,
English and Mandarin datasets,99% on Bulgarian, Turk- p/6 = pe.

ish, and Portuguese, and98% on German.

3For weighted grammar-based models, the posterior doe . . . .
not need to be explicitly represented; instead expectations urEXpe”ment' We applied a Iocal_lty b'a_'s to the
derpe are used to compute updatesdo same dependency model by settingp different

p/@ (X7 y) X pe (X, y)e i=1 jey(q) (2)

wherey (i) = yien(i) U yrignt (). Note that if
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iteration the objective is the same as in EM, but the
annealed search process has acted like a good ini-
tializer. This method was applied with some suc-
cess to grammar induction models by Smith and
Eisner (2004).

In this work, instead of imposing constraints on
the entropy of the model, we manipulate bias to-
ward local hypotheses. Asincreases, we penal-
Bulgarian - ize long dependencies less. We call stisictural

0.6

05

04 -

03

0.2

0.1 [F Turkish -=n-- annealing since we are varying the strength of a
o L3 ‘ ‘ ‘ ‘ ‘ soft constraint (bias) on structural hypotheses. In
-1 0.5 0 0.5 1 15 structural annealing, the final objective would be

Figure 2: Test-sef’, performance of models trained by EM the same as EM if our finad, §; = 0, but we
with structural annealing on the distance weight. Here .

we show performance with add-10 smoothing, the aII-zerofound that annealing farthe‘ﬁj( > 0) works much
initializer, for three languages with three different initial val- better?

uesdp. Time progresses from left to right. Note that it is

picking the right point on the curve to stop. See Table 3 for . . o
performance of models selected across smoothing, initializaWith annealing schedules for We initialized at
tion, starting, and stopping choices, in all six languages.  §p € {—1, —0.4, —0.2}, and increased by 0.1 (in

| . Eq. 2). Th it the first case) 00.05 (in the others) up to; = 3.
values in[—1,0.2] (see Eq. 2). The same initial- \;,4els were trained to convergence at edeh

. (0) . . . g
|zer]:s® and ?moothlng condltlolns Ivver.e tested.q0ch. Model selection was applied over the same
Performance of supervised model selection amongiia i ation and regularization conditions as be-

models trained at different values is plotted in fore, dy, and also over the choice 6f, with stop-

Fig. 1. When a model is selected acrafiscondi- ping allowed at any stage along thérajectory.

tIO!’]S (3 initializersx 6 smoothing values: 7 6s) . Trajectories for three languages with three dif-
using annotated development data, performance F@rent&o values are plotted in Fig. 2. Generally

notably better than the EM baseline using the Samgpeakingéo < 0 performs better. There is con-
selection procedure (see Table 3, second columng.istently an early increase in performance as-

creases, but the stopping matters tremendously.
Selected annealetimodels surpass EM in all six
The central idea of this paper is to graduallylanguages; see the third column of Table 3. Note
change(anneal) the biaé. Early in learning, local that structural annealing does not always outper-
dependencies are emphasized by setfing: 0. form fixed< training (English and Portuguese).
Then ¢ is iteratively increased and training re- This is because we only tested a few valuegof
peated, using the last learned model to initialize. since annealing requires longer runtime.
This idea bears a strong similarity determin-

istic annealing (DA), a technique used in clus- © Structural Bias via Segmentation
terlng and cIaSS|f|cqt|on tp smooth out ObJeCt'V,e A related way to focus on local structure early
func_t|ons that :El)re piecewise constant (hence d|s|.—n learning is tobroadenthe set of hypothe-
continuous) or bumpy (non-concave) (Rpse, 1998$es to includepartial parse structures. k =
_Ueda an(_j Nakano, 1998).' In unsupervised Iegrn{x17x27 .., Tp), the standard approach assumes
ing, DA iteratively re-estimates parameters like hatx corresponds to the vertices of a sinale de-
EM, but begins by requiring that the entropy oft ax P . 9

. . pendency tree. Instead, we entertain every hypoth-
the posteriopeg (y | x) be maximal, then gradu-

ally relaxes this entropy constraint. Since entro esis in whichx is asequencef yields fromsepa-
atly . ropy . o onrate, independently-generated trees. For example,
is concave iro, the initial task is easy (maximize 21, 9, 73) is the yield of one tree(zy, z5) is the

a concave, continuous function). At each step thé LA b
optimization task becomes more difficult, but the  “The reader may note thét > 0 actually corresponds to
initializer is given by the previous step and, in & bias towardonger attachments. A more apt description in

fi tends to be cl t dl | the context of annealing is to say that during early stages the
practice, tends to be close 10 a good local MaXearmer starts liking local attachments too much, and we need

imum of the more difficult objective. By the last to exaggeraté to “coax” it to new hypotheses. See Fig. 2.

4  Structural Annealing
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are willing to consider unassembled sequences of
these partial trees as hypotheses, in addition to
the fully connected trees. One way to accom-
plish this in terms ofy ;. (0) is to say that the
root, $, is allowed to have multiple children, in-
stead of just one. Here, these children are inde-
pendent of each other (e.g., generated by a uni-
gram Markov model). In supervised dependency

0.6

05

04 -

03

02 1

' German parsing, Eisner and Smith (2005) showed that im-

01FF B“Tlgilf(llzﬁ o 1 posing a hard constraint on the whole structure—

o LB ‘ ‘ ‘ ‘ specifically that each non-$ dependency arc cross
0.5 0 05 1 15 fewer thank words—can give guarante€nk?)

Figure 3: Test-sef, performance of models trained by EM runtime with little to no loss in accuracy (for sim-
with structural annealing on the breakage weigltt. Here | del Thi traint Id lead to highl
we show performance with add-10 smoothing, the all-zerd?'€ mo els). IS constraint could lead to highly
initializer, for three languages with three different initial val- contrived parse trees, or none at all, for some
ues/o. Time progresses from left (larg® to right. See Ta-  gentences—both are avoided by the allowance of
ble 3 for performance of models selected across smoothingé . .
initialization, and stopping choices, in all six languages. egmentation into a Sequer_]ce of trees_ (each at-
tached to $). The construction of the “vine” (se-
yield of a second, antl, ..., 7,,) is the yield of a  quence of $'s children) takes onfy(n) time once
third. One extreme hypothesis is thais n single-  the chart has been assembled.
node trees. At the other end of the spectrum is the Qur broadened hypothesis model is a proba-
original set of hypotheses—full trees an Each bilistic vine grammar with a unigram model over
has a nonzero probability. $'s children. We allow (but do not require) seg-
Segmented analyses are intermediate represementation of sentences, where each independent
tations that may be helpful for a learner to usechild of $ is the root of one of the segments. We do
to formulate notions of probable local structure,not impose any constraints on dependency length.
without committing to full trees. We only allow _ _
unobserved breaks, never positing a hard segmen-2 Modeling Segmentation
tation of the training sentences. Over time, we inNow the total probability of am-length sentence
crease the bias against broken structures, forcing, marginalizing over its hidden structures, sums
the learner to commit most of its probability massup not only over trees, but over segmentations of

to full trees. x. For completeness, we must include a proba-
_ _ bility model over the number of trees generated,
5.1 Vine Parsing which could be anywhere fromto n. The model

At first glance broadening the hypothesis spacever the numbefl of trees given a sentence of

to entertain al2”~! possible segmentations may lengthn will take the following log-linear form:

seem expensive. In fact the dynamic program- .

ming compu_tat_lo_n is almost the same as sum- P(T=t|n)= o8 Zezﬂ

ming or maximizing over connected dependency —

trees. For the latter, we use an inside-outside al-

gorithm that computes a score for every parse tre@heres € R is the sole parameter. Wheh= 0,

by computing the scores d@ems or partial struc- €very value ofl" is equally likely. For3 < 0, the

tures, through a bottom-up process. Smaller itemg1odel prefers larger structures with few breaks.

are built first, then assembled using a set of ruleé\t the limit (3 — —oc), we achieve the standard

defining how larger items can be bufilt. learning setting, where the model must explin
Now note that anysequenceof partial trees Using a single tree. We start howeversats> 0,

overx can be constructed by combining the samavhere the model prefers smaller trees with more

items into trees. The only difference is that webreaks, in the limit preferring each wordxrto be
its own tree. We could describe “brokenness” as a

5See also work on partial parsing as a task in its own rightis i i i
. : . eature in the model whose weight, is chosen
Hindle (1990)inter alia. ght

®See Eisner and Satta (1999) for the relevant algorithmeXtrih_Sica'”y (and time—depende_ntly), rather than
used in the experiments. empirically—just as was done with
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model selection among values®f ando® is not robust to the choice of, 3, or 3¢, nor does
worst unsup. sup. oracle it always do as well as annealiagalthough con-

& DORT1 | 325 593 634 634 siderable gains are possible; see the fifth column
O" LENGTH| 305 56.4 57.3 578 of Table 3.

o DORT1 209 56.6 574 574 By testing models trained withfexedvalue of3
<& LENGTH| 201 37.2 462 462 (for values in[—1, 1]), we ascertained that the per-

«. DORT1 194 26.0 405 431 formance improvementis due largely to annealing,
o LENGTH | 251 353 38.3 383 not just the injection of segmentation bias (fourth

o DORT1 94 242 411 411 vs. fifth column of Table 3§.

@
< LENGTH | 137 17.9 262 262 _ o _
DORT1 73 386 582 582 6 Comparison and Combination with

A LENGTH | 215 341 555 555 Contrastive Estimation

& DORT1 | 350 598 718 718 Contrastive estimation (CE) was recently intro-
Q" LENGTH| 308 33.6 336 336 duced (Smith and Eisner, 2005a) as a class of alter-
natives to the likelihood objective function locally

Table 2: Performance of CE on test data, for different neigh- .
borhoods and with different levels of regularization. Bold- maximized by EM. CE was found to outperform

face marks scores better than EM-trained models selected tfeM on the task of focus in this paper, when ap-
same way (Table 1). The score is thg measure on non-$ plied to English data (Smith and Eisner, 2005b).

attachments. Here we review the method briefly, show how it
Annealings resembles the popul&ootstrap-  performs across languages, and demonstrate that
ping technique (Yarowsky, 1995), which starts outit can be combined effectively with structural bias.
aiming for high precision, and gradually improves Contrastive training defines for each exampje
coverage over time. With strong bigs & 0), we  a class of presumably poor, but similar, instances
seek a model that maintains high dependency presalled the “neighborhood,N(x;), and seeks to
cision on (non-$) attachments by attaching mosmaximize
tags to $. Over time, as this is iteratively weak-

ened B — —oo), we hope to improve coverage CN(©) = > logpe(x; | N(xi))
(dependency recall). Bootstrapping was applied ‘

to syntax learning by Steedman et al. (2003). Our _ Z log 2y Po(Xiy)
approach differs in being able to remain partly ag- - 2w eN(x;) 2oy P (X, Y)

nostic about each tag’s true parent (e.g., by giving
50% probability to attaching to $), whereas Steed- At this point we switch to a log-linear (rather
man et al. make a hard decision to retrain on dhan stochastic) parameterization of the same
whole sentencdully or leave it out fully. In ear- weighted grammar, for ease of numerical opti-
lier work, Brill and Marcus (1992) adopted a “lo- mization. All this means is tha® (specifically,
cal first” iterative merge strategy for discovering psiop andpchiig in Eg. 1) is now a set of nonnega-
phrase structure. tive weights rather than probabilities.
Neighborhoods that can be expressed as finite-
state lattices built fronx; were shown to give sig-
nificant improvements in dependency parser qual-
ity over EM. Performance of CE using two of
those neighborhoods on the current model and
o ) L datasets is shown in Table®20-mean diagonal
after training at eacl® value is shown in Fig. 3. Gaussian smoothing was applied, with different

We see that, typically, there is a sharp InCIfeasﬂelariances, and model selection was applied over

n performance somewhere d““”g trammg’_Wh'Chsmoothing conditions and the same initializers as
typically lessens a8 — —oo. Startings too high

can also damage performance. This method, then, 8n principle, segmentation can be combined with the lo-

- cality bias in§3 (6). In practice, we found that this usually
"Performance measures are given usirigliaparser that  under-performed the EM baseline.

finds the single best parse of the sentence with the learned °We experimented with BLETEL, TRANSPOSH, DELE-

parsing parameters. Had we decoded withre parser, we  TEORTRANSPOSH, and LENGTH. To conserve space we

would see a precisioR, recall” curve as3 decreased. show only the latter two, which tend to perform best.

Experiment: Annealing 5. We experimented
with different annealing schedules f8r The ini-
tial value of 3, 3y, was one of{ —1,0,1}. After
EM training, 3 was diminished by this was re-
peated down to a value of; = —3. Performance
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EM  fixed§ annealed fixed3 anneale CE fixedo + CE

0 do — d5 164 Bo — By N N, d

German 54.4 61.3 02 70.0 04-0a4 66.2 04 68.905. 24 63.4 porm1 63.8 bort1, 0.2

English 416 | 61.8.06| 53.8 04-03| 55.6 02| 58.4 05-00| 57.4porr1 | 63.5 porr1,-04
Bulgarian 45.6 49.202 | 58.3 04—02| 47.302| 56.5 0—-17| 40.500rm1 -
Mandarin | 50.0 | 51.104| 58.0 10-02| 38.002| 57.205-14| 43.4 peu1 —

Turkish 48.0 62.302 62.4.02--015 | 53.6-02 59.405-. 07 58.2borm1 61.8 bort1,-0.6

Portuguese 42.3 50.4.04 50.2 04—-01 51502 62.705— 05 71.8 port1 72.6 porr1,-0.2

Table 3: Summary comparing models trained in a variety of ways with some relevant hyperparameters. Supervised model
selection was applied in all cases, including EM (see the appendix). Boldface marks the best performance overall and trials
that this performance did not significantly surpass under a sign testp(is€.0.05). The score is thé; measure on non-$
attachments. The fixefl+ CE condition was tested only for languages where CE improved over EM.

before. Four of the languages have at least one eéombination improves over either technique on its
fective CE condition, supporting our previous En-own. We leave exploration of structural annealing
glish results (Smith and Eisner, 2005b), but CEwith CE to future work.
was harmful for Bulgarian and Mandarin. Perhaps
better neighborhoods exist for these languages, or
there is some ideal neighborhood that would perExperiment: Segmentation Bias within CE.
form well for all languages. For (language,N) pairs where CE was effec-
Our approach of allowing broken tree$sy is tive, we traiqed models using CE wif[h a fixed-
a natural extension of the CE framework. Con-J Ségmentation model. Across condition$ €
trastive estimation views learning as a process of 1, 1), these models performed very badly, hy-
moving posterior probability mageom (implicit) pothesizing extremely Iocgl parse trees: typically
negative example® (explicit) positive examples. OVer 90% of dependencies were length 1 and
The positive evidence, as in MLE, is taken to pePointed in the same dlrectlon, compared with the
the observed data. As originally proposed, CE al$0-70% length-1 rate seen in gold standards. To
lowed a redefinition of the implicit negative ev- Understand why, consider that the CE goal is to
idence from “all other sentences” (as in MLE) Maximize the score of a sentenard all its seg-
to “sentences likec;, but perturbed.” Allowing mentations while minimizing the scores_of neigh-
segmentation of the training sentences redefindrhood sentences and their segmentationsa-An
the positiveand negative evidence. Rather than 9r@m model can accomplish this, since the same
moving probability mass only to full analyses of 7-9rams are present in all segmentationsxof

the training example;, we also allow probability @nd (some) different:-grams appear iriN(x)
mass to go to partial analysesof (for LENGTH and DELETEORTRANSPOSH). A

By injecting a biasd # 0 or 8 > —oc) among bigram-like model that favors monotone branch-

tree hypotheses, however, we have gone beyorf.Bg’ then, is not a bad choicg for a CE learner that
the CE framework. We have added features ténUSt account for segmentations:oandN(x).

the tree model (dependency length-sum, number Why doesn’t CEwithoutsegmentation resort to
of breaks), whose weights we extrinsically manip-n-gram-like models? Inspection of models trained
ulate over time to impose locality bi@%y and im-  using the standard CE method (no segmentation)
prove search o Another idea, not explored with transposition-based neighborhoodrANSs-
here, is to change the contents of the neighborhoolosEL and DELETEORTRANSPOSH did have
N over time. high rates of length-1 dependencies, while the
poorly-performing ELETEL models foundiow
Experiment: Locality Bias within CE. We length-1 rates. This suggests that a bias toward
combined CE with a fixed- locality bias for locality (“n-gram-ness”) is built into the former
neighborhoods that were successful in the earlieneighborhoods, and may partly explain why CE
CE experiment, namely ELETEORTRANSPOSEL  works when it does. We achieved a similar locality
for German, English, Turkish, and Portuguesebias in the likelihood framework when we broad-
Our results, shown in the seventh column of Ta-ened the hypothesis space, but doing so under CE
ble 3, show that, in all cases except Turkish, theverfocuses the model on local structures.
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7 Error Analysis 9 Conclusion

We compared errors made by the selected EM conA/e have presented a new unsupervised parameter
dition with the best overall condition, for each lan- estimation method, structural annealing, for learn-
guage. We found that the number of corrected ating hidden structure that biases toward simplic-
tachments always outnumbered the number of newty and gradually weakens (anneals) the bias over
errors by a factor of two or more. time. We applied the technique to weighted de-
Further, the new models are not getting bettependency grammar induction and achieved a sig-
by merely reversing thelirection of links made nificant gain in accuracy over EM and CE, raising
by EM; undirected accuracy also improved signif-the state-of-the-art across six languages from 42—
icantly under a sign tesp(< 107°), across all six 54% to 58—73% accuracy.
languages. While the most common corrections
were to nouns, these account for only 25-41% Oheferences

corrections, indicating that corrections are not “all

of the same kind.” S. A_fopso,_E. Bick, R. Haber, and D. Santos. 2002. Floresta

Finall . h half of . . sinta(c)tica: a treebank for Portuguese.RAroc. of LREC
Inally, since more than half of corrections in H. Alshawi. 1996. Head automata and bilingual tiling:

every language involved reattachment to a noun Translation with minimal representations. Rroc. of

or a verb (content word), we believe the improved ACL

. N. B. Atalay, K. Oflazer, and B. Say. 2003. The annotation
models to be getting closer than EM to the deeper process in the Turkish treebank. Bnoc. of LING

semantic relations between words that, ideallyy. k. Baker. 1979. Trainable grammars for speech recogni-

syntactic models should uncover. tion. In Proc. of the Acoustical Society of America
S. Brants, S. Dipper, S. Hansen, W. Lezius, and G. Smith.
8 Future Work 2002. The TIGER Treebank. IRroc. of Workshop on

Treebanks and Linguistic Theories

One weakness of all recent weighted grammaF' Brill and M. Marcus. 1992. Automatically acquiring
phrase structure using distributional analysis.Phoc. of

induction work—including Klein and Manning  DARPA Workshop on Speech and Natural Language
(2004), Smith and Eisner (2005b), and the preserft. F. Brown, S. A. Della Pietra, V. J. Della Pietra, and R. L.

; N ; _ Mercer. 1993. The mathematics of statistical machine
paper—is a sensitivity to hyperparameters, includ translation: Parameter estimationComputational Lin-

ing smoothing values, choice &f (for CE), and guistics 19(2):263-311.
annealing schedules—not to mention initializa-S. Buchholz and E. Marsi. 2006. CoNLL-X shared task on

tion. This is quite observable in the results we have Multilingual dependency parsing. Rroc. of CoNLL
. E. Charniak. 1993. Statistical Language Learning MIT
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