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Abstract 

Recent developments in statistical modeling 
of various linguistic phenomena have shown 
that additional features give consistent per-
formance improvements. Quite often, im-
provements are limited by the number of fea-
tures a system is able to explore. This paper 
describes a novel progressive training algo-
rithm that selects features from virtually 
unlimited feature spaces for conditional 
maximum entropy (CME) modeling. Experi-
mental results in edit region identification 
demonstrate the benefits of the progressive 
feature selection (PFS) algorithm: the PFS 
algorithm maintains the same accuracy per-
formance as previous CME feature selection 
algorithms (e.g., Zhou et al., 2003) when the 
same feature spaces are used. When addi-
tional features and their combinations are 
used, the PFS gives 17.66% relative im-
provement over the previously reported best 
result in edit region identification on 
Switchboard corpus (Kahn et al., 2005), 
which leads to a 20% relative error reduction 
in parsing the Switchboard corpus when gold 
edits are used as the upper bound. 

1 Introduction 

Conditional Maximum Entropy (CME) modeling 
has received a great amount of attention within 
natural language processing community for the 
past decade (e.g., Berger et al., 1996; Reynar and 
Ratnaparkhi, 1997; Koeling, 2000; Malouf, 2002; 
Zhou et al., 2003; Riezler and Vasserman, 2004). 
One of the main advantages of CME modeling is 

the ability to incorporate a variety of features in a 
uniform framework with a sound mathematical 
foundation. Recent improvements on the original 
incremental feature selection (IFS) algorithm, 
such as Malouf (2002) and Zhou et al. (2003), 
greatly speed up the feature selection process. 
However, like many other statistical modeling 
algorithms, such as boosting (Schapire and 
Singer, 1999) and support vector machine (Vap-
nik 1995), the algorithm is limited by the size of 
the defined feature space. Past results show that 
larger feature spaces tend to give better results. 
However, finding a way to include an unlimited 
amount of features is still an open research prob-
lem. 

In this paper, we propose a novel progressive 
feature selection (PFS) algorithm that addresses 
the feature space size limitation. The algorithm is 
implemented on top of the Selective Gain Com-
putation (SGC) algorithm (Zhou et al., 2003), 
which offers fast training and high quality mod-
els. Theoretically, the new algorithm is able to 
explore an unlimited amount of features. Be-
cause of the improved capability of the CME 
algorithm, we are able to consider many new 
features and feature combinations during model 
construction. 

To demonstrate the effectiveness of our new 
algorithm, we conducted a number of experi-
ments on the task of identifying edit regions, a 
practical task in spoken language processing. 
Based on the convention from Shriberg (1994) 
and Charniak and Johnson (2001), a disfluent 
spoken utterance is divided into three parts: the 
reparandum, the part that is repaired; the inter-
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regnum, which can be filler words or empty; and 
the repair/repeat, the part that replaces or repeats 
the reparandum. The first two parts combined are 
called an edit or edit region. An example is 
shown below: 
 

interregnum 

It is, you know, this is a tough problem.
reparandum repair 

 
In section 2, we briefly review the CME mod-

eling and SGC algorithm. Then, section 3 gives a 
detailed description of the PFS algorithm. In sec-
tion 4, we describe the Switchboard corpus, fea-
tures used in the experiments, and the effective-
ness of the PFS with different feature spaces. 
Section 5 concludes the paper. 

2 Background 

Before presenting the PFS algorithm, we first 
give a brief review of the conditional maximum 
entropy modeling, its training process, and the 
SGC algorithm. This is to provide the back-
ground and motivation for our PFS algorithm. 

2.1 Conditional Maximum Entropy Model 

The goal of CME is to find the most uniform 
conditional distribution of y given observation 
x, ( )xyp , subject to constraints specified by a set 
of features ( )yxf i , , where features typically take 
the value of either 0 or 1 (Berger et al., 1996). 
More precisely, we want to maximize 
 ( ) ( ) ( ) ( )( )xypxypxppH

yx
log~

,
∑−=           (1) 

given the constraints:  
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This results in the following exponential 
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where λj  is the weight corresponding to the fea-
ture fj, and Z(x) is a normalization factor. 

A variety of different phenomena, including 
lexical, structural, and semantic aspects, in natu-
ral language processing tasks can be expressed in 

terms of features. For example, a feature can be 
whether the word in the current position is a verb, 
or the word is a particular lexical item. A feature 
can also be about a particular syntactic subtree, 
or a dependency relation (e.g., Charniak and 
Johnson, 2005). 

2.2 Selective Gain Computation Algorithm 

In real world applications, the number of possi-
ble features can be in the millions or beyond. 
Including all the features in a model may lead to 
data over-fitting, as well as poor efficiency and 
memory overflow. Good feature selection algo-
rithms are required to produce efficient and high 
quality models. This leads to a good amount of 
work in this area (Ratnaparkhi et al., 1994; Ber-
ger et al., 1996; Pietra et al, 1997; Zhou et al., 
2003; Riezler and Vasserman, 2004) 

In the most basic approach, such as Ratna-
parkhi et al. (1994) and Berger et al. (1996), 
training starts with a uniform distribution over all 
values of y and an empty feature set. For each 
candidate feature in a predefined feature space, it 
computes the likelihood gain achieved by includ-
ing the feature in the model. The feature that 
maximizes the gain is selected and added to the 
current model. This process is repeated until the 
gain from the best candidate feature only gives 
marginal improvement. The process is very slow, 
because it has to re-compute the gain for every 
feature at each selection stage, and the computa-
tion of a parameter using Newton’s method be-
comes expensive, considering that it has to be 
repeated many times.  

The idea behind the SGC algorithm (Zhou et 
al., 2003) is to use the gains computed in the 
previous step as approximate upper bounds for 
the subsequent steps. The gain for a feature 
needs to be re-computed only when the feature 
reaches the top of a priority queue ordered by 
gain. In other words, this happens when the fea-
ture is the top candidate for inclusion in the 
model. If the re-computed gain is smaller than 
that of the next candidate in the list, the feature is 
re-ranked according to its newly computed gain, 
and the feature now at the top of the list goes 
through the same gain re-computing process.  

This heuristics comes from evidences that the 
gains become smaller and smaller as more and 
more good features are added to the model. This 
can be explained as follows: assume that the 
Maximum Likelihood (ML) estimation lead to 
the best model that reaches a ML value. The ML 
value is the upper bound. Since the gains need to 
be positive to proceed the process, the difference 
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between the Likelihood of the current and the 
ML value becomes smaller and smaller. In other 
words, the possible gain each feature may add to 
the model gets smaller. Experiments in Zhou et 
al. (2003) also confirm the prediction that the 
gains become smaller when more and more fea-
tures are added to the model, and the gains do 
not get unexpectively bigger or smaller as the 
model grows. Furthermore, the experiments in 
Zhou et al. (2003) show no significant advantage 
for looking ahead beyond the first element in the 
feature list. The SGC algorithm runs hundreds to 
thousands of times faster than the original IFS 
algorithm without degrading classification per-
formance. We used this algorithm for it enables 
us to find high quality CME models quickly. 

The original SGC algorithm uses a technique 
proposed by Darroch and Ratcliff (1972) and 
elaborated by Goodman (2002): when consider-
ing a feature fi, the algorithm only modifies those 
un-normalized conditional probabilities: 

( )( )∑ j jj yxf ,exp λ   

for (x, y) that satisfy fi (x, y)=1, and subsequently 
adjusts the corresponding normalizing factors 
Z(x) in (3). An implementation often uses a map-
ping table, which maps features to the training 
instance pairs (x, y).  

3 Progressive Feature Selection Algo-
rithm 

In general, the more contextual information is 
used, the better a system performs. However, 
richer context can lead to combinatorial explo-
sion of the feature space. When the feature space 
is huge (e.g., in the order of tens of millions of 
features or even more), the SGC algorithm ex-
ceeds the memory limitation on commonly avail-
able computing platforms with gigabytes of 
memory.  

To address the limitation of the SGC algo-
rithm, we propose a progressive feature selection 
algorithm that selects features in multiple rounds. 
The main idea of the PFS algorithm is to split the 
feature space into tractable disjoint sub-spaces 
such that the SGC algorithm can be performed 
on each one of them. In the merge step, the fea-
tures that SGC selects from different sub-spaces 
are merged into groups. Instead of re-generating 
the feature-to-instance mapping table for each 
sub-space during the time of splitting and merg-
ing, we create the new mapping table from the 
previous round’s tables by collecting those en-
tries that correspond to the selected features. 
Then, the SGC algorithm is performed on each 

of the feature groups and new features are se-
lected from each of them. In other words, the 
feature space splitting and subspace merging are 
performed mainly on the feature-to-instance 
mapping tables. This is a key step that leads to 
this very efficient PFS algorithm.  

At the beginning of each round for feature se-
lection, a uniform prior distribution is always 
assumed for the new CME model. A more pre-
cise description of the PFS algorithm is given in 
Table 1, and it is also graphically illustrated in 
Figure 1. 

Given:  
    Feature space F(0) = {f1

(0), f2
(0), …, fN

(0)},
step_num = m,  select_factor = s 

1. Split the feature space into N1 parts 
    {F1

(1), F2
(1), …, FN1

(1)} = split(F(0)) 

2. for k=1 to m-1 do 
      //2.1 Feature selection 
      for each feature space Fi

(k) do 
           FSi

(k) = SGC(Fi
(k), s) 

      //2.2 Combine selected features 
      {F1

(k+1), …, FNk+1
(k+1)}  =  

                      merge(FS1
(k), …, FSNk

(k)) 

3. Final feature selection & optimization
F(m) = merge(FS1

(m-1), …, FSNm-1
(m-1)) 

FS(m) = SGC(F(m), s) 
Mfinal = Opt(FS(m)) 

 
Table 1. The PFS algorithm. 
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Figure 1. Graphic illustration of PFS algorithm. 
 

In Table 1, SGC() invokes the SGC algorithm, 
and Opt() optimizes feature weights. The func-
tions split() and merge() are used to split and 
merge the feature space respectively.  

Two variations of the split() function are in-
vestigated in the paper and they are described 
below: 

1. random-split: randomly split a feature 
space into n- disjoint subspaces, and select 
an equal amount of features for each fea-
ture subspace.  

2. dimension-based-split: split a feature 
space into disjoint subspaces based on fea-

563



ture dimensions/variables, and select the 
number of features for each feature sub-
space with a certain distribution.  

We use a simple method for merge() in the 
experiments reported here, i.e., adding together 
the features from a set of selected feature sub-
spaces. 

One may image other variations of the split() 
function, such as allowing overlapping sub-
spaces. Other alternatives for merge() are also 
possible, such as randomly grouping the selected 
feature subspaces in the dimension-based split. 
Due to the limitation of the space, they are not 
discussed here. 

This approach can in principle be applied to 
other machine learning algorithms as well.  

4 Experiments with PFS for Edit Re-
gion Identification 

In this section, we will demonstrate the benefits 
of the PFS algorithm for identifying edit regions. 
The main reason that we use this task is that the 
edit region detection task uses features from sev-
eral levels, including prosodic, lexical, and syn-
tactic ones. It presents a big challenge to find a 
set of good features from a huge feature space.  

First we will present the additional features 
that the PFS algorithm allows us to include. 
Then, we will briefly introduce the variant of the 
Switchboard corpus used in the experiments. Fi-
nally, we will compare results from two variants 
of the PFS algorithm. 

4.1 Edit Region Identification Task 

In spoken utterances, disfluencies, such as self-
editing, pauses and repairs, are common phe-
nomena. Charniak and Johnson (2001) and Kahn 
et al. (2005) have shown that improved edit re-
gion identification leads to better parsing accu-
racy – they observe a relative reduction in pars-
ing f-score error of 14% (2% absolute) between 
automatic and oracle edit removal.  

The focus of our work is to show that our new 
PFS algorithm enables the exploration of much 
larger feature spaces for edit identification – in-
cluding prosodic features, their confidence 
scores, and various feature combinations – and 
consequently, it further improves edit region 
identification. Memory limitation prevents us 
from including all of these features in experi-
ments using the boosting method described in 
Johnson and Charniak (2004) and Zhang and 
Weng (2005). We couldn’t use the new features 

with the SGC algorithm either for the same rea-
son. 

The features used here are grouped according 
to variables, which define feature sub-spaces as 
in Charniak and Johnson (2001) and Zhang and 
Weng (2005). In this work, we use a total of 62 
variables, which include 16 1  variables from 
Charniak and Johnson (2001) and Johnson and 
Charniak (2004), an additional 29 variables from 
Zhang and Weng (2005), 11 hierarchical POS tag 
variables, and 8 prosody variables (labels and 
their confidence scores). Furthermore, we ex-
plore 377 combinations of these 62 variables, 
which include 40 combinations from Zhang and 
Weng (2005). The complete list of the variables 
is given in Table 2, and the combinations used in 
the experiments are given in Table 3. One addi-
tional note is that some features are obtained af-
ter the rough copy procedure is performed, where 
we used the same procedure as the one by Zhang 
and Weng (2005). For a fair comparison with the 
work by Kahn et al. (2005), word fragment in-
formation is retained. 

4.2 The Re-segmented Switchboard Data 

In order to include prosodic features and be able 
to compare with the state-oft-art, we use the 
University of Washington re-segmented 
Switchboard corpus, described in Kahn et al. 
(2005). In this corpus, the Switchboard sentences 
were segmented into V5-style sentence-like units 
(SUs) (LDC, 2004). The resulting sentences fit 
more closely with the boundaries that can be de-
tected through automatic procedures (e.g., Liu et 
al., 2005). Because the edit region identification 
results on the original Switchboard are not di-
rectly comparable with the results on the newly 
segmented data, the state-of-art results reported 
by Charniak and Johnson (2001) and Johnson 
and Charniak (2004) are repeated on this new 
corpus by Kahn et al. (2005).  

The re-segmented UW Switchboard corpus is 
labeled with a simplified subset of the ToBI pro-
sodic system (Ostendorf et al., 2001).  The three 
simplified labels in the subset are p, 1 and 4, 
where p refers to a general class of disfluent 
boundaries (e.g., word fragments, abruptly short-
ened words, and hesitation); 4 refers to break 
level 4, which describes a boundary that has a 
boundary tone and phrase-final lengthening;

                                                 
1 Among the original 18 variables, two variables, Pf and Tf 
are not used in our experiments, because they are mostly 
covered by the other variables. Partial word flags only con-
tribute to 3 features in the final selected feature list. 
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Categories Variable Name Short Description 

Orthographic 
Words W-5, … , W+5 

Words at the current position and the left and right 5 
positions. 

Partial Word Flags P-3, …, P+3 
Partial word flags at the current position and the left 
and right 3 positions 

Words 

Distance DINTJ, DW, DBigram, DTrigram Distance features 

POS Tags T-5, …, T+5 
POS tags at the current position and the left and 
right 5 positions. Tags 

Hierarchical  
POS Tags (HTag) HT-5, …, HT+5 

Hierarchical POS tags at the current position and the 
left and right 5 positions. 

HTag Rough Copy Nm, Nn, Ni, Nl, Nr, Ti Hierarchical POS rough copy features. 
Rough Copy 

Word Rough Copy WNm, WNi, WNl, WNr Word rough copy features. 

Prosody Labels PL0, …, PL3 
Prosody label with largest post possibility at the 
current position and the right 3 positions. Prosody 

Prosody Scores PC0, …, PC3 
Prosody confidence at the current position and the 
right 3 positions. 

Table 2. A complete list of variables used in the experiments. 
 

Categories Short Description Number of  
Combinations 

Tags HTagComb Combinations among Hierarchical POS Tags  55 

Words OrthWordComb Combinations among Orthographic Words 55 

Tags 
WTComb 

WTTComb Combinations of Orthographic Words and POS 
Tags; Combination among POS Tags 176 

Rough Copy RCComb Combinations of HTag Rough Copy and Word 
Rough Copy 55 

Prosody PComb Combinations among Prosody, and with Words 36 

Table 3. All the variable combinations used in the experiments. 
 
and 1 is used to include the break index levels 
BL 0, 1, 2, and 3. Since the majority of the cor-
pus is labeled via automatic methods, the f-
scores for the prosodic labels are not high. In 
particular, 4 and p have f-scores of about 70% 
and 60% respectively (Wong et al., 2005). There-
fore, in our experiments, we also take prosody 
confidence scores into consideration. 

Besides the symbolic prosody labels, the cor-
pus preserves the majority of the previously an-
notated syntactic information as well as edit re-
gion labels.  

In following experiments, to make the results 
comparable, the same data subsets described in 
Kahn et al. (2005) are used for training, develop-
ing and testing. 

4.3 Experiments 

The best result on the UW Switchboard for edit 
region identification uses a TAG-based approach 
(Kahn et al., 2005). On the original Switchboard 
corpus, Zhang and Weng (2005) reported nearly 
20% better results using the boosting method 

with a much larger feature space 2 . To allow 
comparison with the best past results, we create a 
new CME baseline with the same set of features 
as that used in Zhang and Weng (2005).  

We design a number of experiments to test the 
following hypotheses: 

1. PFS can include a huge number of new 
features, which leads to an overall per-
formance improvement. 

2. Richer context, represented by the combi-
nations of different variables, has a posi-
tive impact on performance. 

3. When the same feature space is used, PFS 
performs equally well as the original SGC 
algorithm. 

The new models from the PFS algorithm are 
trained on the training data and tuned on the de-
velopment data. The results of our experiments 
on the test data are summarized in Table 4. The 
first three lines show that the TAG-based ap-
proach is outperformed by the new CME base-
line (line 3) using all the features in Zhang and 
Weng (2005). However, the improvement from 
                                                 
2 PFS is not applied to the boosting algorithm at this time 
because it would require significant changes to the available 
algorithm.  
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Results on test data Feature Space Codes number of 
features Precision Recall F-Value 

TAG-based result on UW-SWBD reported in Kahn et al. (2005)    78.20 
CME with all the variables from Zhang and Weng (2005) 2412382 89.42 71.22 79.29 

CME with all the variables from Zhang and Weng (2005) + post 2412382 87.15 73.78 79.91 

+HTag +HTagComb +WTComb +RCComb 17116957 90.44 72.53 80.50 

+HTag +HTagComb +WTComb +RCComb +PL0 … PL3 17116981 88.69 74.01 80.69 

+HTag +HTagComb +WTComb +RCComb +PComb: without cut 20445375 89.43 73.78 80.86 

+HTag +HTagComb +WTComb +RCComb +PComb: cut2 19294583 88.95 74.66 81.18 

+HTag +HTagComb +WTComb +RCComb +PComb: cut2 +Gau 19294583 90.37 74.40 81.61 

+HTag +HTagComb +WTComb +RCComb +PComb: cut2 +post 19294583 86.88 77.29 81.80 
+HTag +HTagComb +WTComb +RCComb +PComb: cut2 +Gau 
+post  19294583 87.79 77.02 82.05 

Table 4. Summary of experimental results with PFS. 
 

CME is significantly smaller than the reported 
results using the boosting method. In other 
words, using CME instead of boosting incurs a 
performance hit. 

The next four lines in Table 4 show that addi-
tional combinations of the feature variables used 
in Zhang and Weng (2005) give an absolute im-
provement of more than 1%. This improvement 
is realized through increasing the search space to 
more than 20 million features, 8 times the maxi-
mum size that the original boosting and CME 
algorithms are able to handle.  

Table 4 shows that prosody labels alone make 
no difference in performance. Instead, for each 
position in the sentence, we compute the entropy 
of the distribution of the labels’ confidence 
scores. We normalize the entropy to the range [0, 
1], according to the formula below: 

            ( ) ( )UniformHpHscore −= 1        (4) 
Including this feature does result in a good 

improvement. In the table, cut2 means that we 
equally divide the feature scores into 10 buckets 
and any number below 0.2 is ignored. The total 
contribution from the combined feature variables 
leads to a 1.9% absolute improvement. This con-
firms the first two hypotheses. 

When Gaussian smoothing (Chen and 
Rosenfeld, 1999), labeled as +Gau, and post-
processing (Zhang and Weng, 2005), labeled as 
+post, are added, we observe 17.66% relative 
improvement (or 3.85% absolute) over the previ-
ous best f-score of 78.2 from Kahn et al. (2005). 

To test hypothesis 3, we are constrained to the 
feature spaces that both PFS and SGC algorithms 
can process. Therefore, we take all the variables 
from Zhang and Weng (2005) as the feature 
space for the experiments. The results are listed 
in Table 5. We observed no f-score degradation 

with PFS. Surprisingly, the total amount of time 
PFS spends on selecting its best features is 
smaller than the time SGC uses in selecting its 
best features. This confirms our hypothesis 3. 

 
Results on test data Split / Non-split Precision Recall F-Value 

non-split 89.42 71.22 79.29 
split by 4 parts 89.67 71.68 79.67 
split by 10 parts 89.65 71.29 79.42 

Table 5. Comparison between PFS and SGC with 
all the variables from Zhang and Weng (2005). 
 

The last set of experiments for edit identifica-
tion is designed to find out what split strategies 
PFS algorithm should adopt in order to obtain 
good results. Two different split strategies are 
tested here. In all the experiments reported so far, 
we use 10 random splits, i.e., all the features are 
randomly assigned to 10 subsets of equal size. 
We may also envision a split strategy that divides 
the features based on feature variables (or dimen-
sions), such as word-based, tag-based, etc. The 
four dimensions used in the experiments are 
listed as the top categories in Tables 2 and 3, and 
the results are given in Table 6.  

 
Results on test data Split  

Criteria 
Allocation 

Criteria Precision Recall F-Value 
Random Uniform 88.95 74.66 81.18 

Dimension Uniform 89.78 73.42 80.78 
Dimension Prior 89.78 74.01 81.14 

Table 6. Comparison of split strategies using feature space 
+HTag+HTagComb+WTComb+RCComb+PComb: cut2 

 
In Table 6, the first two columns show criteria 

for splitting feature spaces and the number of 
features to be allocated for each group. Random 
and Dimension mean random-split and dimen-
sion-based-split, respectively. When the criterion 
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is Random, the features are allocated to different 
groups randomly, and each group gets the same 
number of features. In the case of dimension-
based split, we determine the number of features 
allocated for each dimension in two ways. When 
the split is Uniform, the same number of features 
is allocated for each dimension. When the split is 
Prior, the number of features to be allocated in 
each dimension is determined in proportion to 
the importance of each dimension. To determine 
the importance, we use the distribution of the 
selected features from each dimension in the 
model “+ HTag + HTagComb + WTComb + 
RCComb + PComb: cut2”, namely: Word-based 
15%, Tag-based 70%, RoughCopy-based 7.5% 
and Prosody-based 7.5%3. From the results, we 
can see no significant difference between the 
random-split and the dimension-based-split. 

To see whether the improvements are trans-
lated into parsing results, we have conducted one 
more set of experiments on the UW Switchboard 
corpus. We apply the latest version of Charniak’s 
parser (2005-08-16) and the same procedure as 
Charniak and Johnson (2001) and Kahn et al. 
(2005) to the output from our best edit detector 
in this paper. To make it more comparable with 
the results in Kahn et al. (2005), we repeat the 
same experiment with the gold edits, using the 
latest parser. Both results are listed in Table 7. 
The difference between our best detector and the 
gold edits in parsing (1.51%) is smaller than the 
difference between the TAG-based detector and 
the gold edits (1.9%). In other words, if we use 
the gold edits as the upper bound, we see a rela-
tive error reduction of 20.5%. 

 
Parsing F-score 

Methods Edit  
F-score 

Reported 
in Kahn et 
al. (2005) 

Latest 
Charniak 

Parser 

Diff. 
with 

Oracle 
Oracle 100 86.9 87.92 -- 
Kahn et 
al. (2005) 78.2 85.0 -- 1.90 

PFS best 
results 82.05 -- 86.41 1.51 

Table 7. Parsing F-score various different edit 
region identification results. 

                                                 
3 It is a bit of cheating to use the distribution from the se-
lected model. However, even with this distribution, we do 
not see any improvement over the version with random-
split. 

5 Conclusion 

This paper presents our progressive feature selec-
tion algorithm that greatly extends the feature 
space for conditional maximum entropy model-
ing. The new algorithm is able to select features 
from feature space in the order of tens of mil-
lions in practice, i.e., 8 times the maximal size 
previous algorithms are able to process, and 
unlimited space size in theory. Experiments on 
edit region identification task have shown that 
the increased feature space leads to 17.66% rela-
tive improvement (or 3.85% absolute) over the 
best result reported by Kahn et al. (2005), and 
10.65% relative improvement (or 2.14% abso-
lute) over the new baseline SGC algorithm with 
all the variables from Zhang and Weng (2005). 
We also show that symbolic prosody labels to-
gether with confidence scores are useful in edit 
region identification task. 

In addition, the improvements in the edit iden-
tification lead to a relative 20% error reduction in 
parsing disfluent sentences when gold edits are 
used as the upper bound.  
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