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Abstract

We propose a novel reordering model for
phrase-based statistical machine transla-
tion (SMT) that uses a maximum entropy
(MaxEnt) model to predicate reorderings
of neighbor blocks (phrase pairs). The
model provides content-dependent, hier-
archical phrasal reordering with general-
ization based on features automatically
learned from a real-world bitext. We
present an algorithm to extract all reorder-
ing events of neighbor blocks from bilin-
gual data. In our experiments on Chinese-
to-English translation, this MaxEnt-based
reordering model obtains significant im-
provements in BLEU score on the NIST
MT-05 and IWSLT-04 tasks.

1 Introduction
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which are common between two languages with
very different orders. Another simple model is flat

reordering model (Wu, 1996; Zens et al., 2004;

Kumar et al., 2005) which is not content depen-
dent either. Flat model assigns constant probabili-
ties for monotone order and non-monotone order.
The two probabilities can be set to prefer mono-
tone or non-monotone orientations depending on
the language pairs.

In view of content-independency of the dis-
tortion and flat reordering models, several re-
searchers (Och et al., 2004; Tillmann, 2004; Ku-
mar et al., 2005; Koehn et al., 2005) proposed a
more powerful model called lexicalized reorder-
ing model that is phrase dependent. Lexicalized
reordering model learns local orientations (mono-
tone or non-monotone) with probabilities for each
bilingual phrase from training data. During de-
coding, the model attempts to finding a Viterbi lo-
cal orientation sequence. Performance gains have

Phrase reordering is of great importance forbeen reported for systems with lexicalized reorder-

phrase-based SMT systems and becoming an asyg model. However, since reorderings are re-
tive area of research recently. Compared witHated to concrete phrases, researchers have to de-
word-based SMT systems, phrase-based systersgn their systems carefully in order not to cause
can easily address reorderings of words withinother problems, e.g. the data sparseness problem.
phrases. However, at the phrase level, reordering Another smart reordering model was proposed
is still a computationally expensive problem justby Chiang (2005). In his approach, phrases are re-
like reordering at the word level (Knight, 1999). organized into hierarchical ones by reducing sub-

Many systems use very simple models to rephrases to variables. This template-based scheme
order phrases. One is distortion model (Och not only captures the reorderings of phrases, but
and Ney, 2004; Koehn et al., 2003) which penal-also integrates some phrasal generalizations into
izes translations according to their jump distancehe global model.
instead of their content. For example Nfwords In this paper, we propose a novel solution for
are skipped, a penalty a¥ will be paid regard- phrasal reordering. Here, under the ITG constraint
less of which words are reordered. This modek\/\/u, 1997; Zens et al., 2004), we need to con-
takes the risk of penalizing long distance jumpssider just two kinds of reorderingstraight and

In this paper, we focus our discussions on phrases the{.pverted between two consecutive blocks. There-
are not necessarily aligned to syntactic constituent boundarfore reordering can be modelled as a problem of
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classification with only two labelsstraight and  used to translate source phrasato target phrase
inverted In this paper, we build a maximum en- x and generate a block. Later, thestraightrule
tropy based classification model as the reorderingl) merges two consecutive blocks into a single
model. Different from lexicalized reordering, we larger block in the straight order; while the-
do not use the whole block as reordering evidenceyertedrule (2) merges them in the inverted order.
but only features extracted from blocks. This isThese two merging rules will be used continuously
more flexible. It makes our model reorder anyuntil the whole source sentence is covered. When
blocks, observed in training or not. The wholethe translation is finished, a tree indicating the hi-
maximum entropy based reordering model is emerarchical segmentation of the source sentence is
bedded inside a log-linear phrase-based model &lso produced.
translation. Following the Bracketing Transduc- In the following, we will define the model in
tion Grammar (BTG) (Wu, 1996), we built a a straight way, not in the dynamic programming
CKY-style decoder for our system, which makesrecursion way used by (Wu, 1996; Zens et al.,
it possible to reorder phrases hierarchically. 2004). We focus on defining the probabilities of
To create a maximum entropy based reorderinglifferent rules by separating different features (in-
model, the first step is learning reordering exam<luding the language model) out from the rule
ples from training data, similar to the lexicalized probabilities and organizing them in a log-linear
reordering model. But in our way, any evidencesform. This straight way makes it clear how rules
of reorderings will be extracted, not limited to re- are used and what they depend on.
orderings of bilingual phrases of length less than a For the two merging rulestraightandinverted
predefined number of words. Secondly, featuresipplying them on two consecutive blockd and
will be extracted from reordering examples ac-A? is assigned a probabilitr™ (A)
cording to feature templates. Finally, a maximum ,
entropg/ classifier will blz.\ trained on t);ua features. Prit(A) = Q. A;ﬁE(Al,A% (4)

In this paper we describe our system and th§yhere theq is the reordering score of block’
MaxEnt-based reordering model with the assoCixng 42, )\, is its weight andA,, ,,(a1.42) iS the
! ’ LM ’

ated algorithm. We also present experiments thahcrement of the language model score of the two
indicate that the MaxEnt-based reordering modep|ocks according to their final ordel; y, is its
improves translation significantly compared Withweight.

other reordering approaches and a state-of-the-art por the |exical rule, applying it is assigned a

distortion-based system (Koehn, 2004). probability Pr! (A)

2 System Overview Pri(A) = paly)™ - pyle) - pres(aly)™

2.1 Model Prea(ylz)™ - exp(1)® - exp(|z])*
) . . )\LM( ) (5)

Under the BTG scheme, translation is more Prar \ T

like ‘monolingual parsing through derivations. yherep(.) are the phrase translation probabilities
Throughout the_ translation prpcedure, three ruleg, poth directionspy.,(-) are the lexical transla-
are used to derive the translation tion probabilities in both directions, andep(1)
44 (A, A%) 1) and exp(|z|) are the phrase penalty and word
penalty, respectively. These features are very com-
mon in state-of-the-art systems (Koehn et al.,

Al ) (2)  2005; Chiang, 2005) ands are weights of fea-
tures.
A— (z,y) 3) For the reordering modé}, we define it on the

. . . two consecutive blockd! and A2 and their order
During decoding, the source sentence is seg- (straight, inverted)

. . (0]
mented into a sequence of phrases asin a standardE
phrase-based model. Then the lexical ri@g? is Q= f(o, A', A?) (6)

2Currently, we restrict phrases andy not to be null. Under th|s framework, diﬁerent reordering mod_
Therefore neither deletion nor insertion is carried out during . .
decoding. However, these operations are to be considered ﬁls can be designed. In fact, we defined four re-
our future version of model. ordering models in our experiments. The first one
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is NONE meaning no explicit reordering featuresby applying the lexical rule. Then for each cell
at all. We set2 to 1 for all different pairs of that spans from to j on the source side, all pos-
blocks and their orders. So the phrasal reordersible derivations spanning fromto j are gener-
ing is totally dependent on the language modelated. Our algorithm guarantees that any sub-cells
This model is obviously different from the mono- within (4, j) have been expanded before dgllj)
tone search, which does not useitieertedrule at  is expanded. Therefore the way to generate deriva-
all. The second one is a distortion style reorderingions in cell (i, j) is to merge derivations from

model, which is formulated as any two neighbor sub-cells. This combination is
. done by applying thetraight andinvertedrules.

Q- { exp(0), 0 = straight Each application of these two rules will generate
exp(|A']) + (|A%)), o= inverted a new derivation covering ceff, j). The score of

the new generated derivation is derived from the
scores of its two sub-derivations, reordering model
_ _ , score and the increment of the language model
sign will penalize those non-monotone transla- ;e according to the Equatigd). When the

tions. The third one is a flat reordering model, 5|6 input sentence is covered, the decoding is
which assigns probabilities for the straight and in-q,

verted order. It is formulated as

where |A?| denotes the number of words on the
source side of blocks. Whehk, < 0, this de-

Pruning of the search space is very important for
Q= Pm o = straight the decoder. We use three pruning ways. The first
1 —pm, o=inverted one is recombination. When two derivations in
_ _ _ the same cell have the sameeftmost/rightmost
In our e'»'(penments on 'Chlnese-E.ngllsh tasks, th?vords on the English yields, whete depends on
probability for the straight order is set a, = 0 order of the language model, they will be re-
0.95. This is because word order in Chinese and,,pineq by discarding the derivation with lower
Englishis usually similar. The last one is the maXi-s.ore. The second one is the threshold pruning

mum entropy based reordering model proposed by jyich discards derivations that have a score worse
us, which will be described in the next section. thana times the best score in the same cell. The

We define a derivatiod as a sequence of appli- |4¢t gne is the histogram pruning which only keeps
cations of ruleg1) — (3), and letc(D) ande(D) e topy, best derivations for each cell. In all our
be the Chinese and English yieldsiof The prob- experiments, we set — 40, — 0.5 to get a

ability of a derivationD is tradeoff between speed and performance in the de-

Pr(D) = HPr(i) @) velopment set.

i Another feature of our decoder is thebest list
generation. Thé:-best list is very important for
the minimum error rate training (Och, 2003a)
which is used for tuning the weights for our

where Pr(7) is the probability of theth applica-
tion of rules. Given an input sentenecethe final
translatione* is derived from the best derivation

D* model. We use a very lazy algorithm for theébest
list generation, which runs two phases similarly to
D* = argmax Pr(D) the one by Huang et al. (2005). In the first phase,
e(D)=c the decoder runs as usual except that it keeps some
et = e(DY) (8) information of weaker derivations which are to be

discarded during recombination. This will gener-
2.2 Decoder ate not only the first-best of final derivation but
We developed a CKY style decoder that employs also a shared forest. In the second phase, the
beam search algorithm, similar to the one by Chidazy algorithm runs recursively on the shared for-
ang (2005). The decoder finds the best derivatioest. It finds the second-best of the final deriva-
that generates the input sentence and its transléion, which makes its children to find their second-
tion. From the best derivation, the best Engkidh best, and children’s children’s second-best, until
is produced. the leaf node’s second-best. Then it finds the third-
Given a source sentenegfirstly we initiate the  best, forth-best, and so on. In all our experiments,
chart with phrases from phrase translation tableve setk = 200.
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The decoder is implemented in C++. Using the
pruning settings described above, without #he .
best list generation, it takes about 6 seconds to »
translate a sentence of average length 28.3 words
on a 2GHz Linux system with 4G RAM memory.

target

3 Maximum Entropy Based Reordering n ]
Model

source

In this section, we discuss how to create a max-

imum entropy based reordering model. As deFigure 1. The bold dots are corners. The ar-
scribed above, we defined the reordering madel rows from the corners are their links. Corngris
on the three factors: order block A! and block shared by block! andb?, which in turn are linked
A?. The central problem is, given two neighbor by the STRAIGHT links bottomleftandtopright
blocks A! and A2, how to predicate their order of ¢;. Similarly, blockb® andb* are linked by the
o € {straight,inverted}. This is a typical prob- INVERTED links, topleftandbottomrightof c,.

lem of two-class classification. To be consistent

with the whole model, the conditional probabil- ) o

ity p(o|Al, A2) is calculated. A simple way to 2000) in both directions, we apply thé grow-
compute this probability is to take counts from thediag-final” - refinement rule on the intersection
training data and then to use the maximum likeli-alignments for each sentence pair.

hood estimate (MLE) Before we introduce_thi_s algorithm,_we intro_—
Lo duce some formal definitions. The first one is
1 42y _ Count(o, A", A%) blockwhich is a pair of source and target contigu-
p(O|A 7A ) - 1 2 9
Count(Al, A?) ous sequences of words
The similar way is used by lexicalized reordering h— (s’? tjz)
117 7J1

model. However, in our model this way can’t work
because blocks become larger and larger due to ugimust be consistent with the word alignmeit
ing the merging rules, and finally unseen in the
training data. This means we can not use blocks

as direct reordering evidences. This definition is similar to that of bilingual phrase

A good way to t_h's prpblem Is to use features Ofexcept that there is no length limitation over block.
blocks as reordering evidences. Good features can reordering exampleis a triple of (o, b', b%)

not only capture reorderings, avoid sparseness, bWherebl and b are two neighbor blocks and

also integrgte generalizations. It is' Very straighﬁs the order between them. We define each vertex
to use maximum entropy model to integrate fea'of block ascorner. Each corner has foudinks in

tures to predicate reorderings of blocks. Under th?our directions topright, topleft bottomright bot-
MaxEnt model, we have tomleft and each link links a set of blocks which

exp(Y; 0:hi(0, A, A2)) have the corner as their vertex. Ttogpright and
S, exp(>; O:hi(o, AT, A2)) bottomleftlink blocks with the straight order, so

we call themSTRAIGHTIinks. Similarly, we call

where the functiona; € {0, 1} are model features thetopleftandbottomright INVERTEDInks since
and thed; are weights of the model features whichthey link blocks with the inverted order. For con-

can be trained by different algorithms (Malouf, venience, we usé < L to denote that block

V(i,j) € M,ipg <i<ig < j1 <j<jo

Q= pylo|A!, 4%) =

2002). is linked by the linkL. Note that the STRAIGHT
_ _ links can not coexist with the INVERTED links.
3.1 Reordering Example Extraction These definitions are illustrated in Figure 1.
Algorithm The reordering example extraction algorithm is

The input for the algorithm is a bilingual corpus shown in Figure 2. The basic idea behind this al-
with high-precision word alignments. We obtain gorithm is to register all neighbor blocks to the

the word alignments using the way of Koehn et al.associated links of corners which are shared by
(2005). After running GIZA++ (Och and Ney, them. To do this, we keep an array to record link

524



1: Input: sentence paifs, t) and their alignmend/ o bl 52) — 1, b't1=E,0=0
22 R:=0 i(0,,6%) = {07 otherwise
3: for each sparfiy, iz) € s do L )
4:  find blockd = (s;2,t}?) that is consistent witfi/ hj(o,b",b%) = { Lo bty =B, b0%t = E2,0=0
5. Extend block on thé target boundary with one possi- 0, otherwise
ble non-aligned word to get blocks(b)
6: for each block™ € b| J E(b) do , Figure 3: MaxEnt-based reordering feature tem-
7 Registeb” to the links of four corners of it . . .
8  endfor plates. The first one is a lexical feature, and the
9: end for second one is a target collocation feature, where
10: for each corne€ in the matrixM do . ; . .
11 if STRAIGHT links existhen E; are English words) € {straight,inverted}.
12: R := RU{(straight,b*,b%)},
bl — C.bottomleft, b — C.topright . .
13:  else ifINVERTED links existthen is block CO"OC&tIOﬂbl.Sl(g.Cbl.tl ande.sl&bQ.tl.
14: R := RU{(inverted, b, %)}, The templates for the lexical feature and the collo-
s %1 - C.topleft,b* «— €.bottomright cation feature are shown in Figure 3.
. endl .
16: end for Why do we use the first words as features?
17: Output: reordering example® These words are nicely at the boundary of blocks.

One of assumptions of phrase-based SMT is that
Figure 2: Reordering Example Extraction Algo- phrase cohere across two languages (Fox, 2002),
rithm. which means phrases in one language tend to be

moved together during translation. This indicates

information of comers when extracting blocks, that boundary words of blocks may keep informa-

Line 4 and 5 are similar to the phrase extractiorfion for their movements/reorderings. To test this

algorithm by Och (2003b). Different from Och, hypothesis, we calculate the information gain ra-
we just extend one word which is aligned to nullti© (IGR) for boundary words as well as the whole

on the boundary of target side. If we put somePlocks against the order on the reordering exam-

length limitation over the extracted blocks and out-P/€S extracted by the algorithm described above.

put them, we get bilingual phrases used in standarghe |GR is the measure used in the decision tree

phrase-based SMT systems and also in our syd€arning to select features (Quinlan, 1993). It
tem. Line 7 updates all links associated with the/ €Presents how precisely the feature predicate the
current block. You can attach the current blockclass. For featurg and class:, the /GR(f, c)

to each of these links. However this will increase En(c) — En(clf)
reordering examples greatly, especially those with IGR(f,c) =
thestraight order. In our Experiments, we just at- En(f)
tach the smallest blocks to the STRAIGHT links
and the largest blocks to the INVERTED links. is the conditional entropy. To our sur-

This will keep the.number of reordering examp!esprise’ the IGR for the four boundary words
acceptable but without performance degradatlon(.IGR(<b1'S1 b2.s1, blty, b2ty), order) =

Line 12 and 14 extract reordering examples. () 5437) is very close to that for the two blocks
together (IGR((b', b%), order) = 0.2655).
Although our reordering examples do not cover
With the extracted reordering examples, we cardll reordering events in the training data, this
obtain features for our MaxEnt-based reorderingesult shows that boundary words do provide
model. We design two kinds of features, lexi- Some clues for predicating reorderings.

cal features and collocation features. For a block )

b = (s, 1), we uses; to denote the firstword of the 4 EXperiments

sources, 1 to denote the fi.rst word of th_e target  \we carried out experiments to compare against
Lexical features are defined on the single word,arious reordering models and systems to demon-

sy orty. Collocation features are defined on thegtrate the competitiveness of MaxEnt-based re-
combinations; or ¢; between two blocké! and ordering:

b2. Three kinds of combinations are used. The first
one is source collocation;.s;&b%.s;. The sec- 1. Monotone search: thmverted rule is not
ond is target collocatior, .t,&b?.t. The last one used.

(11)

'where FEn(-) is the entropy and En(:|-)

3.2 Features
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2. Reordering variants: thBIONE distortion Pharaoh
and flat reordering models described in SecWe shared the same phrase translation tables
tion 2.1. between Pharaoh and our system since the two
_ . systems use the same features of phrases. In fact,
3. Pharaoh: A state-of-the-art distortion-basedye extracted more phrases than Pharaoh’s trainer
decoder (Koehn, 2004). with its default settings. And we also used our re-
implemented trainer to tune lambdas of Pharaoh
to maximize its BLEU score. During decoding,
Our experiments were made on two Chinese-toye pruned the phrase table with= 100 (default
English translation tasks: NIST MT-05 (news do-zo)’ pruned the chart with = 100, = 10~°
main) and IWSLT-04 (travel dialogue domain).  (default setting), and limited distortions to 4
NIST MT-05. In this task, the bilingual train- (gefault 0).
ing data comes from the FBIS corpus with 7.06M
Chinese words and 9.15M English words. The tri-\jaxEnt-based Reordering Model

gram language model training data consists of Enye firstly ran our reordering example extraction
glish texts mostly derived from the English side 3igorithm on the bilingual training data without
of the UN corpus (catalog number LDC2004E12),3ny |ength limitations to obtain reordering ex-
which totally contains 81M English words. For the amples and then extracted features from these
efficiency of minimum error rate training, we built examples. In the task of NIST MT-05, we
our development set using sentences of length @ptained about 2.7M reordering examples with
most 50 characters from the NIST MT-02 evalua-he straight order, and 367K with the inverted
tion test data. order, from which 112K lexical features and
IWSLT-04. For this task, our experiments were 1 7M collocation features after deleting those
carried out on the small data track. Both thewijth one occurrence were extracted. In the task
bilingual training data and the trigram languageof |WSLT-04, we obtained 79.5k reordering
model training data are restricted to the supplieexamples with the straight order, 9.3k with the
corpus, which contains 20k sentences, 179k Chimyerted order, from which 16.9K lexical features
nese words and 157k English words. We used thgnq 89.6K collocation features after deleting those
CSTAR 2003 test set consisting of 506 sentencgiith one occurrence were extracted. Finally, we
pairs as development set. ran the MaxEnt toolkit by Zhand to tune the
feature weights. We set iteration number to 100

and Gaussian prior to 1 for avoiding overfitting.
We obtained high-precision word alignments us-

ing the way described in Section 3.1. Then we4.3 Results

ran our reordering example extraction algorithm toye dropped unknown words (Koehn et al., 2005)
output blocks of length at most 7 words on the Chi-of translations for both tasks before evaluating
nese side together with their internal alignmentsinqir BLEU scores. To be consistent with the
We also limited the length ratio between the targepficial evaluation criterions of both tasks, case-
and source languagenguz(|s|, [¢[)/min(|s|, [¢[)  sensitive BLEU-4 scores were computed For the
to 3. After extracting phrases, we calculated the\|sT MT-05 task and case-insensitive BLEU-4
phrase translation probabilities and lexical translagcqres were computed for the IWSLT-04 task
tion probabilities in both directions for each bilin- Experimental results on both tasks are shown in
gual phrase. o Table 1. Italic numbers refer to results for which
_ For the minimum-error-rate training, we re- the difference to the best result (indicated in bold)
implemented Venugopal's trainér (Venugopal g not statistically significant. For all scores, we
etal., 2005) in C++. For all experiments, we rang|so show the 95% confidence intervals computed
this trainer with the decoder iteratively to tune theusing Zhang's significant tester (Zhang et al.

weights As to maximize the BLEU score on the 2004) which was modified to conform to NIST’s
development set.

4.1 Corpus

4.2 Training

4See http://homepages.inf.ed.ac.uk/s0450736
- /maxenttoolkit.html.

3See http://mww.cs.cmu.edu/ ashishv/imer.html. Thisisa °Note that the evaluation criterion of IWSLT-04 is not to-
Matlab implementation. tally matched since we didn’t remove punctuation marks.
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definition of the BLEU brevity penalty. Systems NIST MT-05 | IWSLT-04

We observe that if phrasal reordering is totally monotone 20.1+ 0.8 | 37.8+ 3.2
dependent on the language modBIONE we NONE 19.6+ 0.8 | 36.3+2.9
get the worst performance, even worse than theDistortion 20.94+0.8 | 38.8+ 3.0
monotone search. This indicates that our languageFlat 20.5+0.8 | 38.7+2.8
models were not strong to discriminate between Pharaoh 20.8+0.8 | 38.9+ 3.3
straight orders and inverted orders. The flat and MaxEnt (lex) 220+ 0.8 | 424+ 3.3
distortion reordering models (Row 3 and 4) show MaxEnt (lex + col)| 22.2+0.8 | 42.8+ 3.3

similar performance with Pharaoh. Although they

are not dependent on phrases, they really reordéfable 1: BLEU-4 scores (%) with the 95% confi-

phrases with penalties to wrong orders supportedence intervals. Italic numbers refer to results for
by the language model and therefore outperformvhich the difference to the best result (indicated in
the monotone search. In row 6, only lexical fea-bold) is not statistically significant.

tures are used for the MaxEnt-based reordering

model; while row 7 uses lexical features and col- ) )
location features. On both tasks, we observe that©" Plocks. Experiments on standard Chinese-

various reordering approaches show similar andEndlish translation tasks from two different do-
stable performance ranks in different domains andh@ins showed that our method achieves a signif-

the MaxEnt-based reordering models achieve thigant improvement over the distortion/flat reorder-

best performance among them. Using all featurefd models.
for the MaxEnt model (lex + col) is marginally Traditional distortion/flat-based SMT transla-

better than using only lex features (lex). tion systems are good for learning phrase transla-
tion pairs, but learn nothing for phrasal reorder-
4.4 Scaling to Large Bitexts ings from real-world data. This is our original

. . . _motivation for designing a new reordering model,
In the experiments described above, collocation .. ‘ - .
oo which can learn reorderings from training data just

features do not make great contributions to the per: . . S
; like learning phrasal translations. Lexicalized re-

formance improvement but make the total num- . : .
. o ordering model learns reorderings from training

ber of features increase greatly. This is a prob-

lem for MaxEnt parameter estimation if it is SCaIeddata, but it binds reorderings to individual concrete

to large bitexts. Therefore, for the integration Ofphrases, which restricts the model to reorderings

MaxEnt-based phrase reordering model in the sysQf phrases seen in tralnmg data. On. the cqnt.rary,

. . the MaxEnt-based reordering model is not limited
tem trained on large bitexts, we remove colloca- . ) . o
) . by this constraint since it is based on features of
tion features and only use lexical features from hrase. not phrase itself. It can be easilv general
the last words of blocks (similar to those from theP ’ b . Y9

first words of blocks with similar performance) ized to reorder unseen phrases provided that some
L . - . * features are fired on these phrases.

This time the bilingual training data contain 2.4M Anoth q ¢ the MaxEnt-based

sentence pairs (68.1M Chinese words and 73.8M q ”‘?t er adv?n_taq[(ra] ? 'tt N ?Xk nt-base ; re-

English words) and two trigram language modelg’r@€rNg model 1s hat it can take more tea-

are used. One is trained on the English side 0}ures into reordering, even though they are non-

the bilingual training data. The other is trained onindependent. T'”’?“a”” et. al _(2005) also use a
the Xinhua portion of the Gigaword corpus with MaxEnt model to integrate various features. The

181.1M words. We also use some rules to trans2erence is that they use the MaxEnt model to

late numbers, time expressions and Chinese pe_p_redict not only orders but also blocks. To do that,

son names. The new Bleu score on NIST MT—Oét is necessary for the MaxEnt model to incorpo-
is 0.291 wh.ich is very promising rate real-valued features such as the block trans

lation probability and the language model proba-
5 Discussion and Future Work bility. Due to the expensive computation, a local

model is built. However, our MaxEnt model is just
In this paper we presented a MaxEnt-based phrasemodule of the whole log-linear model of transla-
reordering model for SMT. We used lexical fea-tion which uses its score as a real-valued feature.
tures and collocation features from boundaryThe modularity afforded by this design does not
words of blocks to predicate reorderings of neigh4ncur any computation problems, and make it eas-
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ier to update one sub-model with other modulesranz Josef Och and Hermann Ney. 2000. Improved statisti-
unchanged. cal alignment models. IRroceedings of ACL 200@ages

. 440- 447.
Beyond the MaxEnt-based reordering model,

another feature deserving attention in our systerhranz Josef Och. 2003a. Minimum error rate training in sta-
. . tistical machine translation. IRroceedings of ACL 2003

is t_he_CKY style decoder which observes the ITG. pages 160 167.

This is different from the work of Zens et. al.

2004). In their approach, translation is generatedanz Josef Och. 2003b. Statistical Machine Translation:
( ) PP g From Single-Word Models to Alignment Templates The-

linearly, word by word and phrase by phrase ina g
traditional way with respect to the incorporationF Josef Och and H Nev. 2004. The ali

: : _ranz ose ch an ermann Ney. . e algnment
of the language model. It can be said that their de template approach to statistical machine translation. Com-

coder did not violate the ITG constraints but not putational Linguistics, 30:417 449.
that it observed the ITG. The ITG not only de-

. y Franz Josef Och, Ignacio Thayer, Daniel Marcu, Kevin
creases reorderings greatly but also makes reorder- Knight, Dragos Stefan Munteanu, Quamrul Tipu, Michel
ing hierarchical. Hierarchical reordering is more Galley, and Mark Hopkins. 2004. Arabic and Chinese MT
meaningful for languages which are organized hi- at USC/ISI. Presentation given at NIST Machine Transla-

. . . .. . tion Evaluation Workshop.
erarchically. From this point, our decoder is simi-
lar to the work by Chiang (2005). Heidi J. Fox. 2002. Phrasal cohesion and statistical machine

The future work is to investigate other valuable ~ansiation- IrProceedings of EMNLP 2002
features, e.g. binary features that explain blocks. R. Quinlan. 1993. C4.5: progarms for machine learning.
from the syntactical view. We think that there is Morgan Kaufmann Publishers.

still room for improvement if more contributing Kevin Knight. 1999. Decoding complexity in wordreplace-

features are used. ment translation models. Computational Linguistics,
Squibs & Discussion, 25(4).

Acknowledgements Liang Huang and David Chiang. 2005. Better k-best parsing.

. . . . In Proceedings of the Ninth International Workshop on

This work was supported in part by National High Parsing Technologyancouver, October, pages 58%4.

Technology Research and Development Program

under grant #2005AA114140 and National Nat-PniliPp Koehn, Franz Joseph Och, and Daniel Marcu. 2003.
Statistical Phrase-Based Translation. Aroceedings of

ural Science Foundation of China under grant HLT/NAACL

#60573188. Special thanks to Yajuaril lfor .

di . f th int of thi éDhlhpp Koehn. 2004. Pharach: a beam search decoder for
IScussions o € manuscript o IS paper an phrase-based statistical machine translation models. In

three anonymous reviewers who provided valuable Proceedings of the Sixth Conference of the Association for
comments. Machine Translation in the Americagages 115 124.

Philipp Koehn, Amittai Axelrod, Alexandra Birch Mayne,
Chris Callison-Burch, Miles Osborne and David Talbot.
References 2005. Edinburgh System Description for the 2005 IWSLT

. . . . Speech Translation Evaluation. International Work-
Ashish Venugopal, Stephan Vogel. 2005. Considerations in shop on Spoken Language Translation

Maximum Mutual Information and Minimum Classifica-

tion Error training for Statistical Machine Translation. In R zens, H. Ney, T. Watanabe, and E. Sumita. 2004. Re-
theProceedings of EAMT-0Budapest, Hungary May 30-  ordering Constraints for Phrase-Based Statistical Machine
3L Translation. InProceedings of ColLing 2004Geneva,

Christoph Tillmann. 2004. A block orientation model for Switzerland, pp. 205-211.

:/Ititisljigi! machine translation. HLT-NAACL, Boston, Robert Malouf. 2002. A comparison of algorithms for maxi-
' : mum entropy parameter estimation.Rroceedings of the

Christoph Tillmann and Tong Zhang. 2005. A Localized Sixth Conference on Natural Language Learning (CoNLL-
Prediction Model for statistical machine translation. In  2002)

Proceedings of ACL 200pages 557 564. Shankar Kumar and William Byrne. 2005. Local phrase
David Chiang. 2005. A hierarchical phrase-based model reordering models for statistical machine translation. In
for statistical machine translation. Rroceedings of ACL Proceedings of HLT-EMNLP

2005 pages 263 270. ) )
Ying Zhang, Stephan Vogel, and Alex Waibel. 2004. Inter-

Dekai Wu. 1996. A Polynomial-Time Algorithm for Statis- preting BLEU/NIST scores: How much improvement do
tical Machine Translation. IRroceedings of ACL 1996 we need to have a better system7Phceedings of LREC

. _ . . 2004 pages 205t 2054.
Dekai Wu. 1997. Stochastic inversion transduction gram-

mars and bilingual parsing of parallel corpora. Computa-
tional Linguistics, 23:377 404.

528



