
Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the ACL, pages 425–432,
Sydney, July 2006.c©2006 Association for Computational Linguistics

A Fast, Accurate Deterministic Parser for Chinese

Mengqiu Wang Kenji Sagae Teruko Mitamura
Language Technologies Institute

School of Computer Science
Carnegie Mellon University

{mengqiu,sagae,teruko}@cs.cmu.edu

Abstract

We present a novel classifier-based deter-
ministic parser for Chinese constituency
parsing. Our parser computes parse trees
from bottom up in one pass, and uses
classifiers to make shift-reduce decisions.
Trained and evaluated on the standard
training and test sets, our best model (us-
ing stacked classifiers) runs in linear time
and has labeled precision and recall above
88% using gold-standard part-of-speech
tags, surpassing the best published re-
sults. Our SVM parser is 2-13 times faster
than state-of-the-art parsers, while produc-
ing more accurate results. Our Maxent
and DTree parsers run at speeds 40-270
times faster than state-of-the-art parsers,
but with 5-6% losses in accuracy.

1 Introduction and Background

Syntactic parsing is one of the most fundamental
tasks in Natural Language Processing (NLP). In
recent years, Chinese syntactic parsing has also
received a lot of attention in the NLP commu-
nity, especially since the release of large collec-
tions of annotated data such as the Penn Chi-
nese Treebank (Xue et al., 2005). Corpus-based
parsing techniques that are successful for English
have been applied extensively to Chinese. Tradi-
tional statistical approaches build models which
assign probabilities to every possible parse tree
for a sentence. Techniques such as dynamic pro-
gramming, beam-search, and best-first-search are
then employed to find the parse tree with the high-
est probability. The massively ambiguous nature
of wide-coverage statistical parsing,coupled with
cubic-time (or worse) algorithms makes this ap-
proach too slow for many practical applications.

Deterministic parsing has emerged as an attrac-
tive alternative to probabilistic parsing, offering

accuracy just below the state-of-the-art in syn-
tactic analysis of English, but running in linear
time (Sagae and Lavie, 2005; Yamada and Mat-
sumoto, 2003; Nivre and Scholz, 2004). Encour-
aging results have also been shown recently by
Cheng et al. (2004; 2005) in applying determin-
istic models to Chinese dependency parsing.

We present a novel classifier-based determin-
istic parser for Chinese constituency parsing. In
our approach, which is based on the shift-reduce
parser for English reported in (Sagae and Lavie,
2005), the parsing task is transformed into a suc-
cession of classification tasks. The parser makes
one pass through the input sentence. At each parse
state, it consults a classifier to make shift/reduce
decisions. The parser then commits to a decision
and enters the next parse state. Shift/reduce deci-
sions are made deterministically based on the lo-
cal context of each parse state, and no backtrack-
ing is involved. This process can be viewed as a
greedy search where only one path in the whole
search space is considered. Our parser produces
both dependency and constituent structures, but in
this paper we will focus on constituent parsing.

By separating the classification task from the
parsing process, we can take advantage of many
machine learning techniques such as classifier en-
semble. We conducted experiments with four
different classifiers: support vector machines
(SVM), Maximum-Entropy (Maxent), Decision
Tree (DTree) and memory-based learning (MBL).
We also compared the performance of three differ-
ent classifier ensemble approaches (simple voting,
classifier stacking and meta-classifier).

Our best model (using stacked classifiers) runs
in linear time and has labeled precision and
recall above 88% using gold-standard part-of-
speech tags, surpassing the best published results
(see Section 5). Our SVM parser is 2-13 times
faster than state-of-the-art parsers, while produc-

425



ing more accurate results. Our Maxent and DTree
parsers are 40-270 times faster than state-of-the-
art parsers, but with 5-6% losses in accuracy.

2 Deterministic parsing model

Like other deterministic parsers, our parser as-
sumes input has already been segmented and
tagged with part-of-speech (POS) information
during a preprocessing step1. The main data struc-
tures used in the parsing algorithm are a queue and
a stack. The input word-POS pairs to be processed
are stored in the queue. The stack holds the partial
parse trees that are built during parsing. A parse
state is represented by the content of the stack and
queue.

The classifier makes shift/reduce decisions
based on contextual features that represent the
parse state. A shift action removes the first item
on the queue and puts it onto the stack. A reduce
action is in the form of Reduce-{Binary|Unary}-
X, where{Binary|Unary} denotes whether one or
two items are to be removed from the stack, and X
is the label of a new tree node that will be domi-
nating the removed items. Because a reduction is
either unary or binary, the resulting parse tree will
only have binary and/or unary branching nodes.

Parse trees are also lexicalized to produce de-
pendency structures. For lexicalization, we used
the same head-finding rules reported in (Bikel,
2004). With this additional information, reduce
actions are now in the form of Reduce-{Binary
|Unary}-X-Direction. The “Direction” tag gives
information about whether to take the head-node
of the left subtree or the right subtree to be the
head of the new tree, in the case of binary reduc-
tion. A simple transformation process as described
in (Sagae and Lavie, 2005) is employed to con-
vert between arbitrary branching trees and binary
trees. This transformation breaks multi-branching
nodes down into binary-branching nodes by in-
serting temporary nodes; temporary nodes are col-
lapsed and removed when we transform a binary
tree back into a multi-branching tree.

The parsing process succeeds when all the items
in the queue have been processed and there is only
one item (the final parse tree) left on the stack.
If the classifier returns a shift action when there
are no items left on the queue, or a reduce ac-
tion when there are no items on the stack, the

1We constructed our own POS tagger based on SVM; see
Section 3.3.

parser fails. In this case, the parser simply com-
bines all the items on the stack into one IP node,
and outputs this as a partial parse. Sagae and
Lavie (2005) have shown that this algorithm has
linear time complexity, assuming that classifica-
tion takes constant time. The next example il-
lustrates the process for the input “Y� (Brown)
6¯ (visits)Þ0 (Shanghai)” that is tagged with
the POS sequence “NR (Proper Noun) VV (Verb)
NR (Proper Noun)”.

1. In the initial parsing state, the stack (S) is
empty, and the queue (Q) holds word and
POS tag pairs for the input sentence.
(S): Empty

(Q): NR

Y�

VV

6¯

NR

Þ0

2. The first action item that the classifier gives
is a shift action.
(S): NR

Y�

(Q): VV

6¯

NR

Þ0

3. The next action is a reduce-Unary-NP, which
means reducing the first item on the stack to a
NP node. Node (NRY�) becomes the head
of the new NP node and this information is
marked by brackets. The new parse state is:
(S): NP (NRY�)

NR

Y�

(Q): VV

6¯

NR

Þ0

4. The next action is shift.
(S): NP (NRY�)

NR

Y�

VV

6¯

(Q): NR

Þ0

5. The next action is again shift.
(S): NP (NRY�)

NR

Y�

VV

6¯

NR

Þ0

(Q): Empty

6. The next action is reduce-Unary-NP.
(S): NP (NRY�)

NR

Y�

VV

6¯

NP (NRÞ0)

NR

Þ0
(Q): Empty

7. The next action is reduce-Binary-VP-Left.
The node (VV6¯) will be the head of the

426



new VP node.
(S): NP (NRY�)

NR

Y�

VP (VV 6¯)

VV

6¯

NP (NRÞ0)

NR

Þ0
(Q): Empty

8. The next action is reduce-Binary-IP-Right.
Since after the action is performed, there will
be only one tree node(IP) left on the stack and
no items on the queue, this is the final action.
The final state is:
(S): IP (VV 6¯)

NP (NRY�)

NR

Y�

VP (VV 6¯)

VV

6¯

NP (NRÞ0)

NR

Þ0
(Q): Empty

3 Classifiers and Feature Selection

Classification is the key component of our parsing
model. We conducted experiments with four dif-
ferent types of classifiers.

3.1 Classifiers

Support Vector Machine: Support Vector Ma-
chine is a discriminative classification technique
which solves the binary classification problem by
finding a hyperplane in a high dimensional space
that gives the maximum soft margin, based on
the Structural Risk Minimization Principle. We
used the TinySVM toolkit (Kudo and Matsumoto,
2000), with a degree 2 polynomial kernel. To train
a multi-class classifier, we used the one-against-all
scheme.

Maximum-Entropy Classifier : In a
Maximum-entropy model, the goal is to esti-
mate a set of parameters that would maximize
the entropy over distributions that satisfy certain
constraints. These constraints will force the model
to best account for the training data (Ratnaparkhi,
1999). Maximum-entropy models have been used
for Chinese character-based parsing (Fung et al.,
2004; Luo, 2003) and POS tagging (Ng and Low,
2004). In our experiments, we used Le’s Maxent
toolkit (Zhang, 2004). This implementation uses
the Limited-Memory Variable Metric method for
parameter estimation. We trained all our models
using 300 iterations with no event cut-off, and
a Gaussian prior smoothing value of 2. Maxent
classifiers output not only a single class label, but

also a number of possible class labels and their
associated probability estimate.

Decision Tree Classifier: Statistical decision
tree is a classic machine learning technique that
has been extensively applied to NLP. For exam-
ple, decision trees were used in the SPATTER sys-
tem (Magerman, 1994) to assign probability dis-
tribution over the space of possible parse trees.
In our experiment, we used the C4.5 decision
tree classifier, and ignored lexical features whose
counts were less than 7.

Memory-Based Learning: Memory-Based
Learning approaches the classification problem
by storing training examples explicitly in mem-
ory, and classifying the current case by finding
the most similar stored cases (using k-nearest-
neighbors). We used the TiMBL toolkit (Daele-
mans et al., 2004) in our experiment, withk = 5.

3.2 Feature selection

For each parse state, a set of features are
extracted and fed to each classifier. Fea-
tures are distributionally-derived or linguistically-
based, and carry the context of a particular parse
state. When input to the classifier, each feature is
treated as a contextual predicate which maps an
outcome and a context totrue, false value.

The specific features used with the classifiers
are listed in Table 1.

Sun and Jurafsky (2003) studied the distribu-
tional property of rhythm in Chinese, and used the
rhythmic feature to augment a PCFG model for
a practical shallow parsing task. This feature has
the value 1, 2 or 3 for monosyllabic, bi-syllabic or
multi-syllabic nouns or verbs. For noun and verb
phrases, the feature is defined as the number of
words in the phrase. Sun and Jurafsky found that
in NP and VP constructions there are strong con-
straints on the word length for verbs and nouns
(a kind of rhythm), and on the number of words
in a constituent. We employed these same rhyth-
mic features to see whether this property holds for
the Penn Chinese Treebank data, and if it helps in
the disambiguation of phrase types. Experiments
show that this feature does increase classification
accuracy of the SVM model by about 1%.

In both Chinese and English, there are punctu-
ation characters that come in pairs (e.g., parenthe-
ses). In Chinese, such pairs are more frequent
(quotes, single quotes, and book-name marks).
During parsing, we note how many opening punc-

427



1 A Boolean feature indicates if a closing punctuation is expected or not.
2 A Boolean value indicates if the queue is empty or not.
3 A Boolean feature indicates whether there is a comma separating S(1) andS(2) or not.
4 Last action given by the classifier, and number of words in S(1) and S(2).
5 Headword and its POS of S(1), S(2), S(3) and S(4), and word and POS of Q(1), Q(2), Q(3) and Q(4).
6 Nonterminal label of the root of S(1) and S(2), and number of punctuations in S(1) and S(2).
7 Rhythmic features and the linear distance between the head-words of the S(1) and S(2).
8 Number of words found so far to be dependents of the head-words ofS(1) and S(2).
9 Nonterminal label, POS and headword of the immediate left and right child of the root of S(1) and S(2).
10 Most recently found word and POS pair that is to the left of the head-wordof S(1) and S(2).
11 Most recently found word and POS pair that is to the right of the head-word of S(1) and S(2).

Table 1: Features for classification

tuations we have seen on the stack. If the number
is odd, then feature 2 will have value 1, otherwise
0. A boolean feature is used to indicate whether or
not an odd number of opening punctuations have
been seen and a closing punctuation is expected;
in this case the feature gives a strong hint to the
parser that all the items in the queue before the
closing punctuation, and the items on the stack
after the opening punctuation should be under a
common constituent node which begins and ends
with the two punctuations.

3.3 POS tagging

In our parsing model, POS tagging is treated as
a separate problem and it is assumed that the in-
put has already been tagged with POS. To com-
pare with previously published work, we evaluated
the parser performance on automatically tagged
data. We constructed a simple POS tagger using
an SVM classifier. The tagger makes two passes
over the input sentence. The first pass extracts fea-
tures from the two words and POS tags that came
before the current word, the two words follow-
ing the current word, and the current word itself
(the length of the word, whether the word con-
tains numbers, special symbols that separates for-
eign first and last names, common Chinese family
names, western alphabets or dates). Then the tag
is assigned to the word according to SVM classi-
fier’s output. In the second pass, additional fea-
tures such as the POS tags of the two words fol-
lowing the current word, and the POS tag of the
current word (assigned in the first pass) are used.
This tagger had a measured precision of 92.5% for
sentences≤ 40 words.

4 Experiments

We performed experiments using the Penn Chi-
nese Treebank. Sections 001-270 (3484 sentences,
84,873 words) were used for training, 271-300

(348 sentences, 7980 words) for development, and
271-300 (348 sentences, 7980 words) for testing.
The whole dataset contains 99629 words, which is
about 1/10 of the size of the English Penn Tree-
bank. Standard corpus preparation steps were
done prior to parsing, so that empty nodes were
removed, and the resulting A over A unary rewrite
nodes are collapsed. Functional labels of the non-
terminal nodes are also removed, but we did not
relabel the punctuations, unlike in (Jiang, 2004).
Bracket scoring was done by the EVALB pro-
gram2, and preterminals were not counted as con-
stituents. In all our experiments, we used labeled
recall (LR), labeled precision (LP) and F1 score
(harmonic mean of LR and LP) as our evaluation
metrics.

4.1 Results of different classifiers

Table 2 shows the classification accuracy and pars-
ing accuracy of the four different classifiers on the
development set for sentences≤ 40 words, with
gold-standard POS tagging. The runtime (Time)
of each model and number of failed parses (Fail)
are also shown.

Classification Parsing Accuracy
Model Accuracy LR LP F1 Fail Time
SVM 94.3% 86.9% 87.9% 87.4% 0 3m 19s
Maxent 92.6% 84.1%85.2%84.6% 5 0m 21s
DTree1 92.0% 78.8%80.3%79.5% 42 0m 12s
DTree2 N/A 81.6%83.6%82.6% 30 0m 18s
MBL 90.6% 74.3%75.2%74.7% 2 16m 11s

Table 2: Comparison of different classifier mod-
els’ parsing accuracies on development set for sen-
tences≤ 40 words, with gold-standard POS

For the DTree learner, we experimented with
two different classification strategies. In our first
approach, the classification is done in a single
stage (DTree1). The learner is trained for a multi-

2http://nlp.cs.nyu.edu/evalb/

428



class classification problem where the class labels
include shift and all possible reduce actions. But
this approach yielded a lot of parse failures (42 out
of 350 sentences failed during parsing, and par-
tial parse tree was returned). These failures were
mostly due to false shift actions in cases where
the queue is empty. To alleviate this problem, we
broke the classification process down to two stages
(DTree2). A first stage classifier makes a binary
decision on whether the action is shift or reduce.
If the output is reduce, a second-stage classifier de-
cides which reduce action to take. Results showed
that breaking down the classification task into two
stages increased overall accuracy, and the number
of failures was reduced to 30.

The SVM model achieved the highest classifi-
cation accuracy and the best parsing results. It
also successfully parsed all sentences. The Max-
ent model’s classification error rate (7.4%) was
30% higher than the error rate of the SVM model
(5.7%), and its F1 (84.6%) was 3.2% lower than
SVM model’s F1 (87.4%). But Maxent model was
about 9.5 times faster than the SVM model. The
DTree classifier achieved 81.6% LR and 83.6%
LP. The MBL model did not perform well; al-
though MBL and SVM differed in accuracy by
only about 3 percent, the parsing results showed
a difference of more than 10 percent. One pos-
sible explanation for the poor performance of
the MBL model is that all the features we used
were binary features, and memory-based learner
is known to work better with multivalue features
than binary features in natural language learning
tasks (van den Bosch and Zavrel, 2000).

In terms of speed and accuracy trade-off, there
is a 5.5% trade-off in F1 (relative to SVM’s F1)
for a roughly 14 times speed-up between SVM
and two-stage DTree. Maxent is more balanced
in the sense that its accuracy was slightly lower
(3.2%) than SVM, and was just about as fast as the
two-stage DTree on the development set. The high
speed of the DTree and Maxent models make them
very attractive in applications where speed is more
critical than accuracy. While the SVM model
takes more CPU time, we show in Section 5 that
when compared to existing parsers, SVM achieves
about the same or higher accuracy but is at least
twice as fast.

Using gold-standard POS tagging, the best clas-
sifier model (SVM) achieved LR of 87.2% and LP
of 88.3%, as shown in Table 4. Both measures sur-

pass the previously known best results on parsing
using gold-standard tagging. We also tested the
SVM model using data automatically tagged by
our POS tagger, and it achieved LR of 78.1% and
LP of 81.1% for sentences≤ 40 words, as shown
in Table 3.

4.2 Classifier Ensemble Experiments

Classifier ensemble by itself has been a fruitful
research direction in machine learning in recent
years. The basic idea in classifier ensemble is
that combining multiple classifiers can often give
significantly better results than any single classi-
fier alone. We experimented with three different
classifier ensemble strategies: classifier stacking,
meta-classifier, and simple voting.

Using the SVM classifier’s results as a baseline,
we tested these approaches on the development
set. In classifier stacking, we collect the outputs
from Maxent, DTree and TiMBL, which are all
trained on a separate dataset from the training set
(section 400-650 of the Penn Chinese Treebank,
smaller than the original training set). We use their
classification output as features, in addition to the
original feature set, to train a new SVM model
on the original training set. We achieved LR of
90.3% and LP of 90.5% on the development set,
a 3.4% and 2.6% improvement in LR and LP, re-
spectively. When tested on the test set, we gained
1% improvement in F1 when gold-standard POS
tagging is used. When tested with automatic tag-
ging, we achieved a 0.5% improvement in F1. Us-
ing Bikel’s significant tester with 10000 times ran-
dom shuffle, the p-value for LR and LP are 0.008
and 0.457, respectively. The increase in recall
is statistically significant, and it shows classifier
stacking can improve performance.

On the other hand, we did not find meta-
classification and simple voting very effective. In
simple voting, we make the classifiers to vote in
each step for every parse action. The F1 of sim-
ple voting method is downgraded by 5.9% rela-
tive to SVM model’s F1. By analyzing the inter-
agreement among classifiers, we found that there
were no cases where Maxent’s top output and
DTree’s output were both correct and SVM’s out-
put was wrong. Using the top output from Maxent
and DTree directly does not seem to be comple-
mentary to SVM.

In the meta-classifier approach, we first col-
lect the output from each classifier trained on sec-

429



MODEL ≤ 40 words ≤ 100 words Unlimited
LR LP F1 POS LR LP F1 POS LR LP F1 POS

Bikel & Chiang 2000 76.8%77.8%77.3% - 73.3%74.6%74.0% - - - - -
Levy & Manning 2003 79.2%78.4%78.8% - - - - - - - - -
Xiong et al. 2005 78.7%80.1%79.4% - - - - - - - - -
Bikel’s Thesis 2004 78.0%81.2%79.6% - 74.4%78.5%76.4% - - - - -
Chiang & Bikel 2002 78.8%81.1%79.9% - 75.2%78.0%76.6% - - - - -
Jiang’s Thesis 2004 80.1%82.0%81.1%92.4% - - - - - - - -
Sun & Jurafsky 2004 85.5% 86.4% 85.9% - - - - - 83.3% 82.2% 82.7% -
DTree model 71.8%76.9%74.4%92.5% 69.2%74.5%71.9%92.2% 68.7%74.2%71.5%92.1%
SVM model 78.1%81.1%79.6%92.5% 75.5%78.5% 77.0%92.2% 75.0%78.0%76.5%92.1%
Stacked classifier model79.2%81.1%80.1%92.5% 76.7% 78.4%77.5% 92.2% 76.2%78.0%77.1%92.1%

Table 3: Comparison with related work on the test set using automatically generated POS

tion 1-210 (roughly 3/4 of the entire training set).
Then specifically for Maxent, we collected the top
output as well as its associated probability esti-
mate. Then we used the outputs and probabil-
ity estimate as features to train an SVM classifier
that makes a decision on which classifier to pick.
Meta-classifier results did not change at all from
our baseline. In fact, the meta-classifier always
picked SVM as its output. This agrees with our
observation for the simple voting case.

5 Comparison with Related Work

Bikel and Chiang (2000) constructed two parsers
using a lexicalized PCFG model that is based on
Collins’ model 2 (Collins, 1999), and a statisti-
cal Tree-adjoining Grammar(TAG) model. They
used the same train/development/test split, and
achieved LR/LP of 76.8%/77.8%. In Bikel’s the-
sis (2004), the same Collins emulation model
was used, but with tweaked head-finding rules.
Also a POS tagger was used for assigning tags
for unseen words. The refined model achieved
LR/LP of 78.0%/81.2%. Chiang and Bikel (2002)
used inside-outside unsupervised learning algo-
rithm to augment the rules for finding heads, and
achieved an improved LR/LP of 78.8%/81.1%.
Levy and Manning (2003) used a factored model
that combines an unlexicalized PCFG model with
a dependency model. They achieved LR/LP
of 79.2%/78.4% on a different test/development
split. Xiong et al. (2005) used a similar model to
the BBN’s model in (Bikel and Chiang, 2000),
and augmented the model by semantic categori-
cal information and heuristic rules. They achieved
LR/LP of 78.7%/80.1%. Hearne and Way (2004)
used a Data-Oriented Parsing (DOP) approach
that was optimized for top-down computation.
They achieved F1 of 71.3 on a different test and
training set. Jiang (2004) reported LR/LP of

80.1%/82.0% on sentences≤ 40 words (results
not available for sentences≤ 100 words) by ap-
plying Collins’ parser to Chinese. In Sun and
Jurafsky (2004)’s work on Chinese shallow se-
mantic parsing, they also applied Collin’s parser
to Chinese. They reported up-to-date the best
parsing performance on Chinese Treebank. They
achieved LR/LP of 85.5%/86.4% on sentences≤
40 words, and LR/LP of 83.3%/82.2% on sen-
tences≤ 100 words, far surpassing all other pre-
viously reported results. Luo (2003) and Fung et
al. (2004) addressed the issue of Chinese text seg-
mentation in their work by constructing character-
based parsers. Luo integrated segmentation, POS
tagging and parsing into one maximum-entropy
framework. He achieved a F1 score of 81.4% in
parsing. But the score was achieved using 90% of
the 250K-CTB (roughly 2.5 times bigger than our
training set) for training and 10% for testing. Fung
et al.(2004) also took the maximum-entropy mod-
eling approach, but augmented by transformation-
based learning. They used the standard training
and testing split. When tested with gold-standard
segmentation, they achieved a F1 score of 79.56%,
but POS-tagged words were treated as constituents
in their evaluation.

In comparison with previous work, our parser’s
accuracy is very competitive. Compared to Jiang’s
work and Sun and Jurafsky’s work, the classifier
ensemble model of our parser is lagging behind by
1% and 5.8% in F1, respectively. But compared
to all other works, our classifier stacking model
gave better or equal results for all three measures.
In particular, the classifier ensemble model and
SVM model of our parser achieved second and
third highest LP, LR and F1 for sentences≤ 100
words as shown in Table 3. (Sun and Jurafsky did
not report results on sentences≤ 100 words, but
it is worth noting that out of all the test sentences,

430



only 2 sentences have length> 100).
Jiang (2004) and Bikel (2004)3 also evaluated

their parsers on the test set for sentences≤ 40
words, using gold-standard POS tagged input. Our
parser gives significantly better results as shown
in Table 4. The implication of this result is two-
fold. On one hand, it shows that if POS tagging
accuracy can be increased, our parser is likely to
benefit more than the other two models; on the
other hand, it also indicates that our deterministic
model is less resilient to POS errors. Further de-
tailed analysis is called for, to study the extent to
which POS tagging errors affects the deterministic
parsing model.

Model LR LP F1
Bikel’s Thesis 2004 80.9%84.5%82.7%
Jiang’s Thesis 2004 84.5%88.0%86.2%
DTree model 80.5%83.9%82.2%
Maxent model 81.4%82.8%82.1%
SVM model 87.2%88.3% 87.8%
Stacked classifier model88.3% 88.1%88.2%

Table 4: Comparison with related work on the test
set for sentence≤ 40 words, using gold-standard
POS

To measure efficiency, we ran two publicly
available parsers (Levy and Manning’s PCFG
parser (2003) and Bikel’s parser (2004)) on
the standard test set and compared the run-
time4. The runtime of these parsers are shown
in minute:second format in Table 5. Our SVM
model is more than 2 times faster than Levy and
Manning’s parser, and more than 13 times faster
than Bikel’s parser. Our DTree model is 40 times
faster than Levy and Manning’s parser, and 270
times faster than Bikel’s parser. Another advan-
tage of our parser is that it does not take as much
memory as these other parsers do. In fact, none
of the models except MBL takes more than 60
megabytes of memory at runtime. In compari-
son, Levy and Manning’s PCFG parser requires
more than 400 mega-bytes of memory when pars-
ing long sentences (70 words or longer).

6 Discussion and future work

One unique attraction of this deterministic pars-
ing framework is that advances in machine learn-
ing field can be directly applied to parsing, which

3Bikel’s parser used gold-standard POS tags for unseen
words only. Also, the results are obtained from a parser
trained on 250K-CTB, about 2.5 times bigger than CTB 1.0.

4All the experiments were conducted on a Pentium IV
2.4GHz machine with 2GB of RAM.

Model runtime
Bikel 54m 6s
Levy & Manning 8m 12s
Our DTree model 0m 14s
Our Maxent model0m 24s
Our SVM model 3m 50s

Table 5: Comparison of parsing speed

opens up lots of possibilities for continuous im-
provements, both in terms of accuracy and effi-
ciency. For example, in this paper we experi-
mented with one method of simple voting. An al-
ternative way of doing simple voting is to let the
parsers vote on membership of constituents after
each parser has produced its own parse tree (Hen-
derson and Brill, 1999), instead of voting at each
step during parsing.

Our initial attempt to increase the accuracy of
the DTree model by applying boosting techniques
did not yield satisfactory results. In our exper-
iment, we implemented the AdaBoost.M1 (Fre-
und and Schapire, 1996) algorithm using re-
sampling to vary the training set distribution.
Results showed AdaBoost suffered severe over-
fitting problems and hurts accuracy greatly, even
with a small number of samples. One possible
reason for this is that our sample space is very
unbalanced across the different classes. A few
classes have lots of training examples while a large
number of classes are rare, which could raise the
chance of overfitting.

In our experiments, SVM model gave better re-
sults than the Maxent model. But it is important
to note that although the same set of features were
used in both models, a degree 2 polynomial ker-
nel was used in the SVM classifier while Maxent
only has degree 1 features. In our future work, we
will experiment with degree 2 features and L1 reg-
ularization in the Maxent model, which may give
us closer performance to the SVM model with a
much faster speed.

7 Conclusion

In this paper, we presented a novel determinis-
tic parser for Chinese constituent parsing. Us-
ing gold-standard POS tags, our best model (us-
ing stacked classifiers) runs in linear time and has
labeled recall and precision of 88.3% and 88.1%,
respectively, surpassing the best published results.
And with a trade-off of 5-6% in accuracy, our
DTree and Maxent parsers run at speeds 40-270
times faster than state-of-the-art parsers. Our re-

431



sults have shown that the deterministic parsing
framework is a viable and effective approach to
Chinese parsing. For future work, we will fur-
ther improve the speed and accuracy of our mod-
els, and apply them to more Chinese and multi-
lingual natural language applications that require
high speed and accurate parsing.

Acknowledgment

This work was supported in part by ARDA’s
AQUAINT Program. We thank Eric Nyberg for
his help during the final preparation of this paper.

References

Daniel M. Bikel and David Chiang. 2000. Two sta-
tistical parsing models applied to the Chinese Tree-
bank. InProceedings of the Second Chinese Lan-
guage Processing Workshop, ACL ’00.

Daniel M. Bikel. 2004. On the Parameter Space of
Generative Lexicalized Statistical Parsing Models.
Ph.D. thesis, University of Pennsylvania.

Yuchang Cheng, Masayuki Asahara, and Yuji Mat-
sumoto. 2004. Deterministic dependency structure
analyzer for Chinese. InProceedings of IJCNLP
’04.

Yuchang Cheng, Masayuki Asahara, and Yuji Mat-
sumoto. 2005. Machine learning-based dependency
analyzer for Chinese. InProceedings of ICCC ’05.

David Chiang and Daniel M. Bikel. 2002. Recovering
latent information in treebanks. InProceedings of
COLING ’02.

Michael John Collins. 1999.Head-driven Statistical
Models for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania.

Walter Daelemans, Jakub Zavrel, Ko van der Sloot, and
Antal van den Bosch. 2004. Timbl version 5.1 ref-
erence guide. Technical report, Tilburg University.

Yoav Freund and Robert E. Schapire. 1996. Experi-
ments with a new boosting algorithm. InProceed-
ings of ICML ’96.

Pascale Fung, Grace Ngai, Yongsheng Yang, and Ben-
feng Chen. 2004. A maximum-entropy Chinese
parser augmented by transformation-based learning.
ACM Transactions on Asian Language Information
Processing, 3(2):159–168.

Mary Hearne and Andy Way. 2004. Data-oriented
parsing and the Penn Chinese Treebank. InProceed-
ings of IJCNLP ’04.

John Henderson and Eric Brill. 1999. Exploiting di-
versity in natural language processing: Combining
parsers. InProceedings of EMNLP ’99.

Zhengping Jiang. 2004. Statistical Chinese parsing.
Honours thesis, National University of Singapore.

Taku Kudo and Yuji Matsumoto. 2000. Use of support
vector learning for chunk identification. InProceed-
ings of CoNLL and LLL ’00.

Roger Levy and Christopher D. Manning. 2003. Is it
harder to parse Chinese, or the Chinese Treebank?
In Proceedings of ACL ’03.

Xiaoqiang Luo. 2003. A maximum entropy Chinese
character-based parser. InProceedings of EMNLP
’03.

David M. Magerman. 1994.Natural Language Pars-
ing as Statistical Pattern Recognition. Ph.D. thesis,
Stanford University.

Hwee Tou Ng and Jin Kiat Low. 2004. Chinese part-
of-speech tagging: One-at-a-time or all-at-once?
word-based or character-based? InProceedings of
EMNLP ’04.

Joakim Nivre and Mario Scholz. 2004. Deterministic
dependency parsing of English text. InProceedings
of COLING ’04.

Adwait Ratnaparkhi. 1999. Learning to parse natural
language with maximum entropy models.Machine
Learning, 34(1-3):151–175.

Kenji Sagae and Alon Lavie. 2005. A classifier-based
parser with linear run-time complexity. InProceed-
ings of the IWPT ’05.

Honglin Sun and Daniel Jurafsky. 2003. The effect of
rhythm on structural disambiguation in Chinese. In
Proceedings of SIGHAN Workshop ’03.

Honglin Sun and Daniel Jurafsky. 2004. Shallow se-
mantic parsing of Chinese. InProceedings of the
HLT/NAACL ’04.

Antal van den Bosch and Jakub Zavrel. 2000. Un-
packing multi-valued symbolic features and classes
in memory-based language learning. InProceedings
of ICML ’00.

Deyi Xiong, Shuanglong Li, Qun Liu, Shouxun Lin,
and Yueliang Qian. 2005. Parsing the Penn Chinese
Treebank with semantic knowledge. InProceedings
of IJCNLP ’05.

Nianwen Xue, Fei Xia, Fu-Dong Chiou, and Martha
Palmer. 2005. The Penn Chinese Treebank: Phrase
structure annotation of a large corpus.Natural Lan-
guage Engineering, 11(2):207–238.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. InProceedings of IWPT ’03.

Le Zhang, 2004.Maximum Entropy Modeling Toolkit
for Python and C++. Reference Manual.

432


