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Abstract

We present a novel classifier-based deter-
ministic parser for Chinese constituency

parsing. Our parser computes parse trees
from bottom up in one pass, and uses

classifiers to make shift-reduce decisions.

Trained and evaluated on the standard
training and test sets, our best model (us-
ing stacked classifiers) runs in linear time

and has labeled precision and recall above
88% using gold-standard part-of-speech

tags, surpassing the best published re-
sults. Our SVM parser is 2-13 times faster

than state-of-the-art parsers, while produc-

ing more accurate results. Our Maxent

and DTree parsers run at speeds 40-270
times faster than state-of-the-art parsers,
but with 5-6% losses in accuracy.

1 Introduction and Background

accuracy just below the state-of-the-art in syn-
tactic analysis of English, but running in linear
time (Sagae and Lavie, 2005; Yamada and Mat-
sumoto, 2003; Nivre and Scholz, 2004). Encour-
aging results have also been shown recently by
Cheng et al. (2004; 2005) in applying determin-
istic models to Chinese dependency parsing.

We present a novel classifier-based determin-
istic parser for Chinese constituency parsing. In
our approach, which is based on the shift-reduce
parser for English reported in (Sagae and Lavie,
2005), the parsing task is transformed into a suc-
cession of classification tasks. The parser makes
one pass through the input sentence. At each parse
state, it consults a classifier to make shift/reduce
decisions. The parser then commits to a decision
and enters the next parse state. Shift/reduce deci-
sions are made deterministically based on the lo-
cal context of each parse state, and no backtrack-
ing is involved. This process can be viewed as a

Syntactic parsing is one of the most fundamentagréedy search where only one path in the whole
tasks in Natural Language Processing (NLP). Irséarch space is considered. Our parser produces
recent years, Chinese syntactic parsing has aldePfth dependency and constituent structures, but in
received a lot of attention in the NLP commu- this paper we will focus on constituent parsing.
nity, especially since the release of large collec- By separating the classification task from the
tions of annotated data such as the Penn Chparsing process, we can take advantage of many
nese Treebank (Xue et al., 2005). Corpus-base@achine learning techniques such as classifier en-
parsing techniques that are successful for Engliseemble. We conducted experiments with four
have been applied extensively to Chinese. Tradidifferent classifiers: support vector machines
tional statistical approaches build models which(SVM), Maximum-Entropy (Maxent), Decision
assign probabilities to every possible parse tredree (DTree) and memory-based learning (MBL).
for a sentence. Techniques such as dynamic proMe also compared the performance of three differ-
gramming, beam-search, and best-first-search agt classifier ensemble approaches (simple voting,
then employed to find the parse tree with the highclassifier stacking and meta-classifier).
est probability. The massively ambiguous nature Our best model (using stacked classifiers) runs
of wide-coverage statistical parsing,coupled within linear time and has labeled precision and
cubic-time (or worse) algorithms makes this ap-recall above 88% using gold-standard part-of-
proach too slow for many practical applications. speech tags, surpassing the best published results
Deterministic parsing has emerged as an attragsee Section 5). Our SVM parser is 2-13 times
tive alternative to probabilistic parsing, offering faster than state-of-the-art parsers, while produc-
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ing more accurate results. Our Maxent and DTregarser fails. In this case, the parser simply com-

parsers are 40-270 times faster than state-of-thdsines all the items on the stack into one IP node,
art parsers, but with 5-6% losses in accuracy.  and outputs this as a partial parse. Sagae and

Lavie (2005) have shown that this algorithm has

2 Deterministic parsing model linear time complexity, assuming that classifica-
Like other deterministic parsers, our parser aspon takes constant time. The next example il-
: jujstrates the process for the inpufifi (Brown)

) I
sumes mput has already been segmented_ ar{ (A (visits) ¥ (Shanghai)” that is tagged with
tagged with part-of-speech (POS) information “

> . . the POS sequence “NR (Proper Noun) VV (Verb)
during a preprocessing stefrhe main data struc- .
. : . R (Proper Noun)”.
tures used in the parsing algorithm are a queue an’g
a stack. The input word-POS pairs to be processed 1. In the initial parsing state, the stack (S) is
are stored in the queue. The stack holds the partial  empty, and the queue (Q) holds word and
parse trees that are built during parsing. A parse  POS tag pairs for the input sentence.
state is represented by the content of the stack and  (s): empty
queue. (Q: NR wW NR
The classifier makes shift/reduce decisions N
based on contextual features that represent the, The first action item that the classifier gives
parse state. A shift action removes the first item is a shift action.
on the queue and puts it onto the stack. A reduce

Co . (S:  NR
action is in the form of ReducéBinaryUnary}- \
. i
X, where{Binary|Unary} denotes whether one or @Q: W AR
two items are to be removed from the stack, and X iﬁ‘m L\ﬁ

IS the Iart]ael of a ne(;/v_ tree ncI;de that will b; dqml-' 3. The next action is a reduce-Unary-NP, which
hating the removed items. Because a reduction s means reducing the first item on the stack to a

either unary or binary, the resulting parse tree will NP node. Node (NRf ) becomes the head
only have binary and/or unary branching nodes. of the new NP node and this information is

Parse trees are also IeX|ca!|zeq tq produce de- marked by brackets. The new parse state is:
pendency structures. For lexicalization, we used _
L . ; (S): NP (NR7iH)
the same head-finding rules reported in (Bikel, Je
2004). With this additional information, reduce ‘
actions are now in the form of Redu¢&inary QW b NR
|Unary}-X-Direction. The “Direction” tag gives ‘ﬁ‘n L‘K@
. : i ‘
information about whether to take the head-node 4 Th ion is shift
of the left subtree or the right subtree to be the ™ e next action is shift.

head of the new tree, in the case of binary reduc- & P (N'fmﬁ) W

tion. A simple transformation process as described N‘R VIl
in (Sagae and Lavie, 2005) is employed to con- T

vert between arbitrary branching trees and binary @

trees. This transformation breaks multi-branching L&

nodes down into binary-branching nodes by in- 5. The nextaction is again shift.

serting temporary nodes; temporary nodes are col- () NP(NRfil) VW NR

lapsed and removed when we transform a binary NR W b

tree back into a multi-branching tree. T
The parsing process succeeds when all the items ~ (?:-EmpY

in the queue have been processed and there is only6. The next action is reduce-Unary-NP.

one item (the final parse tree) left on the stack. (S NP(NRTif) W NP (NR.Lif)

If the classifier returns a shift action when there NR e NR

are no items left on the queue, or a reduce ac- ﬁ\gﬁ L\ﬁ

tion when there are no items on the stack, the  (Q:Empy

'We constructed our own POS tagger based on SVM; see 7. The next aCti\O‘n\ is rgduce-Binary-VP-Left.
Section 3.3. The node (VViJiin]) will be the head of the
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new VP node. also a number of possible class labels and their

(S): NP (NRTiEH) VP (VV i) associated probability estimate.
NR va i) Decision Tree Classifier Statistical decision
. ol s tree is a classic machine learning technique that
il

) has been extensively applied to NLP. For exam-
i ple, decision trees were used in the SPATTER sys-
tem (Magerman, 1994) to assign probability dis-
tribution over the space of possible parse trees.
n our experiment, we used the C4.5 decision
ree classifier, and ignored lexical features whose
counts were less than 7.

Memory-Based Learning Memory-Based
Learning approaches the classification problem
NP (NETTED) VP (W 1) by storing training examples explicitly in mem-

R ‘ ory, and classifying the current case by finding

\ W NP‘N‘RL@) the most similar stored cases (using k-nearest-

(Q): Empty

8. The next action is reduce-Binary-IP-Right.
Since after the action is performed, there will
be only one tree node(IP) left on the stack anol
no items on the queue, this is the final action.
The final state is:
(S): IP (VV J[])

e Vile] N‘R neighbors). We used the TiMBL toolkit (Daele-
i mans et al., 2004) in our experiment, with= 5.
(Q): Empty
3 Classifiers and Feature Selection 3.2 Feature selection

Classification is the key component of our parsindzor each parse state, a set of features are

model. We conducted experiments with four dif-€xtracted and fed to each classifier.  Fea-
ferent types of classifiers. tures are distributionally-derived or linguistically-

based, and carry the context of a particular parse
3.1 Classifiers state. When input to the classifier, each feature is

Support Vector Machine: Support Vector Ma- treated as a contextual predicate which maps an
chine is a discriminative classification technique@Utcome and a context toue, false value.
which solves the binary classification problem by The specific features used with the classifiers
finding a hyperplane in a high dimensional spacedre listed in Table 1.
that gives the maximum soft margin, based on Sun and Jurafsky (2003) studied the distribu-
the Structural Risk Minimization Principle. We tional property of rhythm in Chinese, and used the
used the TinySVM toolkit (Kudo and Matsumoto, rhythmic feature to augment a PCFG model for
2000), with a degree 2 polynomial kernel. To traina practical shallow parsing task. This feature has
a multi-class classifier, we used the one-against-athe value 1, 2 or 3 for monosyllabic, bi-syllabic or
scheme. multi-syllabic nouns or verbs. For noun and verb
Maximum-Entropy  Classifier: In a phrases, the feature is defined as the number of
Maximum-entropy model, the goal is to esti- words in the phrase. Sun and Jurafsky found that
mate a set of parameters that would maximizén NP and VP constructions there are strong con-
the entropy over distributions that satisfy certainstraints on the word length for verbs and nouns
constraints. These constraints will force the mode(a kind of rhythm), and on the number of words
to best account for the training data (Ratnaparkhiin a constituent. We employed these same rhyth-
1999). Maximum-entropy models have been usedhic features to see whether this property holds for
for Chinese character-based parsing (Fung et althe Penn Chinese Treebank data, and if it helps in
2004; Luo, 2003) and POS tagging (Ng and Low,the disambiguation of phrase types. Experiments
2004). In our experiments, we used Le's Maxentshow that this feature does increase classification
toolkit (Zhang, 2004). This implementation usesaccuracy of the SVM model by about 1%.
the Limited-Memory Variable Metric method for  In both Chinese and English, there are punctu-
parameter estimation. We trained all our modelstion characters that come in pairs (e.g., parenthe-
using 300 iterations with no event cut-off, andses). In Chinese, such pairs are more frequent
a Gaussian prior smoothing value of 2. Maxent(quotes, single quotes, and book-name marks).
classifiers output not only a single class label, buDuring parsing, we note how many opening punc-
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A Boolean feature indicates if a closing punctuation is expected or not.

A Boolean value indicates if the queue is empty or not.

A Boolean feature indicates whether there is a comma separating S($)2nok not.

Last action given by the classifier, and number of words in S(1) aBg S(

Headword and its POS of S(1), S(2), S(3) and S(4), and word ai®id?Q(1), Q(2), Q(3) and Q(4).
Nonterminal label of the root of S(1) and S(2), and number of patitins in S(1) and S(2).
Rhythmic features and the linear distance between the head-words diijren8 S(2).

Number of words found so far to be dependents of the head-woiggLlpand S(2).

Nonterminal label, POS and headword of the immediate left and right chilleaoot of S(1) and S(2)
Most recently found word and POS pair that is to the left of the head-ob&{1) and S(2).

Most recently found word and POS pair that is to the right of the headhab®(1) and S(2).

2 O] 0O N| O U] B[ W[ N[

O

Table 1: Features for classification

tuations we have seen on the stack. If the numbg348 sentences, 7980 words) for development, and
is odd, then feature 2 will have value 1, otherwise271-300 (348 sentences, 7980 words) for testing.
0. A boolean feature is used to indicate whether off he whole dataset contains 99629 words, which is
not an odd number of opening punctuations havabout 1/10 of the size of the English Penn Tree-
been seen and a closing punctuation is expectethank. Standard corpus preparation steps were
in this case the feature gives a strong hint to th&lone prior to parsing, so that empty nodes were
parser that all the items in the queue before theemoved, and the resulting A over A unary rewrite
closing punctuation, and the items on the stackodes are collapsed. Functional labels of the non-
after the opening punctuation should be under @&erminal nodes are also removed, but we did not
common constituent node which begins and endeelabel the punctuations, unlike in (Jiang, 2004).
with the two punctuations. Bracket scoring was done by the EVALB pro-

) gran?, and preterminals were not counted as con-
3.3 POStagging stituents. In all our experiments, we used labeled
In our parsing model, POS tagging is treated asecall (LR), labeled precision (LP) and F1 score
a separate problem and it is assumed that the itharmonic mean of LR and LP) as our evaluation
put has already been tagged with POS. To commetrics.
pare with previously published work, we evaluated
the parser performance on automatically tagged-1 Results of different classifiers

data. We constructed a simple POS tagger usingable 2 shows the classification accuracy and pars-
an SVM classifier. The tagger makes two passefhg accuracy of the four different classifiers on the
over the input sentence. The first pass extracts fe@-evelopment set for sentences40 words, with
tures from the two words and POS tags that camgold-standard POS tagging. The runtime (Time)
before the current word, the two words follow- of each model and number of failed parses (Fail)
ing the current word, and the current word itselfgre also shown.

(the length of the word, whether the word con- o _

tains numbers, special symbols that separates for-y Cfiig'r;it;,m E?{rs'n?ﬁccu{:‘a‘fypan —

eign first and last names, common Chinese family svm 94.3% |86.9%687.9%687.26 0 |3m 195
names, western alphabets or dates). Then the tagMaxent  92.6% |84.1%85.29%84.6% 5 | Om 21s

is assigned to the word according to SVM classi- nggé 9,3]}0A% gf;gﬂﬁgg;gﬁj;g;gﬁj gé 82 ﬁz

fier's output. In the second pass, additional fea- mBL 90.6% |74.39%475.29474.7% 2 |16m 11s
tures such as the POS tags of the two words fol-

lowing the current word, and the POS tag of thelable 2: Comparison of different classifier mod-

current word (assigned in the first pass) are used'S’ Parsing accuracies on development set for sen-
This tagger had a measured precision of 92.5% foleNces< 40 words, with gold-standard POS
sentences: 40 words.

For the DTree learner, we experimented with
4 Experiments two different classification strategies. In our first
We pertmed esperimens using te pem ChEPPIACT: 19 dessiaton s e 2 sl
nese Treebank. Sections 001-270 (3484 sentences, 9 '

84,873 words) were used for training, 271-300 Zhttp://nip.cs.nyu.edu/evalo/
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class classification problem where the class labelpass the previously known best results on parsing
include shift and all possible reduce actions. Butusing gold-standard tagging. We also tested the
this approach yielded a lot of parse failures (42 ouSVM model using data automatically tagged by
of 350 sentences failed during parsing, and pareur POS tagger, and it achieved LR of 78.1% and
tial parse tree was returned). These failures werkP of 81.1% for sentences 40 words, as shown
mostly due to false shift actions in cases wherén Table 3.
the queue is empty. To alleviate this problem, we
broke the classification process down to two staged.2 Classifier Ensemble Experiments

DTree2). A first stage classifier makes a binar . . .
( . ) g o . YClassifier ensemble by itself has been a fruitful
decision on whether the action is shift or reduce. T . .
. e research direction in machine learning in recent
If the output is reduce, a second-stage classifier de- . . i .

. ) . ears. The basic idea in classifier ensemble is
cides which reduce action to take. Results showet at combining multinle classifiers can often qive
that breaking down the classification task into two 9 b 9

: significantly better results than any single classi-
stages increased overall accuracy, and the numb ) . :

. ier alone. We experimented with three different
of failures was reduced to 30.

_ _ __ classifier ensemble strategies: classifier stacking,

cation accuracy and the best parsing results. It Using the SVM classifier's results as a baseline,

also successfully parsed all sentences. The Maxye tosted these approaches on the development
ent model's classification error rate (7.4%) wasget |y classifier stacking, we collect the outputs
30% higher than the error rate of the SVM modelfrom Maxent. DTree and TiMBL. which are all
(5.7%), and, its F1 (840'6%) was 3.2% lower thanygined on a separate dataset from the training set
SVM model's F1 (87.4%). But Maxent model was (qoction 400-650 of the Penn Chinese Treebank,

about 9.5 times faster than thGOSVM model. Tr;esmaller than the original training set). We use their
DTree classifier achieved 81.6% LR and 83.6%y,sification output as features, in addition to the

LP. The MBL model did not perform well; al- iqina| feature set, to train a new SVM model
though MBL and SVM differed in accuracy by on the original training set. We achieved LR of

only about 3 percent, the parsing results showedy 304 and LP of 90.5% on the development set,
a difference of more than 10 percent. One posy 3 404 and 2.6% improvement in LR and LP, re-

sible explanation for the poor performance ofg,ecfively. When tested on the test set, we gained
the MB_L model is that all the features we usedl% improvement in F1 when gold-standard POS
were binary features, and memory-based leamegqing is used. When tested with automatic tag-
is known to work better with multivalue features ging, we achieved a 0.5% improvement in F1. Us-
than binary features in natural language learning, ‘gjxers significant tester with 10000 times ran-
tasks (van den Bosch and Zavrel, 2000). dom shuffle, the p-value for LR and LP are 0.008
In terms of speed and accuracy trade-off, therand 0.457, respectively. The increase in recall
is a 5.5% trade-off in F1 (relative to SVM’s F1) is statistically significant, and it shows classifier
for a roughly 14 times speed-up between SVMstacking can improve performance.
and two-stage DTree. Maxent is more balanced On the other hand, we did not find meta-
in the sense that its accuracy was slightly lower|assification and simple voting very effective. In
(3.2%) than SVM, and was just about as fast as thgimple voting, we make the classifiers to vote in
two-stage DTree on the development set. The higbach step for every parse action. The F1 of sim-
speed of the DTree and Maxent models make thergle voting method is downgraded by 5.9% rela-
very attractive in applications where speed is morgjve to SVM model’s F1. By analyzing the inter-
critical than accuracy. While the SVM model agreement among classifiers, we found that there
takes more CPU time, we show in Section 5 thaWere no cases where Maxent's top output and
when compared to existing parsers, SVM achievepTree’s output were both correct and SVM's out-
about the same or higher accuracy but is at leagut was wrong. Using the top output from Maxent
twice as fast. and DTree directly does not seem to be comple-
Using gold-standard POS tagging, the best clagnentary to SVM.
sifier model (SVM) achieved LR of 87.2% and LP  In the meta-classifier approach, we first col-
of 88.3%, as shown in Table 4. Both measures sutect the output from each classifier trained on sec-
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MODEL < 40 words < 100 words Unlimited

LR LP F1 | POS|| LR LP F1 | POS|| LR LP F1 | POS
Bikel & Chiang 2000 |[76.8%477.8%77.3% - 73.3%74.6%74.09 - - - -
Levy & Manning 2003([79.29478.4%78.8% - - - -
Xiong et al. 2005 78.7%80.1%79.4% - - - - - - -
Bikel's Thesis 2004 78.0%81.2%79.6% - 74.4%78.59%76.4% - - - -
Chiang & Bikel 2002 |[78.8%481.1%479.9% - 75.2%78.09%76.6% - - - -
Jiang’s Thesis 2004 |{80.1%82.0%81.1%92.4%| - - - - - -
Sun & Jurafsky 2004 |(85.3%(86.446|85.9%6 - - - - - 83.30/82.26|82. 06 -
DTree model 71.8%76.9%74.49%92.5%(69.29%74.5%71.9%92.2%|68.7%74.2%71.5%92.1%
SVM model 78.1%81.1%79.69%492.5%)|75.5%78.3%|77.0%92.2%|75.0%78.0%76.5%92.1%
Stacked classifier mod&19.2%481.1%480.1%92.5%|76.®%6|78.4%77.5/4(92.2%)|76.2%78.0%77.1%492.1%

Table 3: Comparison with related work on the test set using automaticallyagjedd?OS

tion 1-210 (roughly 3/4 of the entire training set). 80.1%/82.0% on sentences 40 words (results
Then specifically for Maxent, we collected the topnot available for sentences 100 words) by ap-
output as well as its associated probability estiplying Collins’ parser to Chinese. In Sun and
mate. Then we used the outputs and probabildJurafsky (2004)'s work on Chinese shallow se-
ity estimate as features to train an SVM classifiemantic parsing, they also applied Collin’s parser
that makes a decision on which classifier to pickto Chinese. They reported up-to-date the best
Meta-classifier results did not change at all fromparsing performance on Chinese Treebank. They
our baseline. In fact, the meta-classifier alwaysachieved LR/LP of 85.5%/86.4% on sentenges
picked SVM as its output. This agrees with our40 words, and LR/LP of 83.3%/82.2% on sen-

observation for the simple voting case. tences< 100 words, far surpassing all other pre-
_ _ viously reported results. Luo (2003) and Fung et
5 Comparison with Related Work al. (2004) addressed the issue of Chinese text seg-

mentation in their work by constructing character-

B|I_<el and C_hla.ng (2000) constructed .“’VO Parsersy, ased parsers. Luo integrated segmentation, POS
using a lexicalized PCFG model that is based or%agging and parsing into one maximum-entropy

COIII_'PrS mc()jdellmi ((é)rmrrfrh 1?32)6 arr:]dc? ISta_IE'rS]t" framework. He achieved a F1 score of 81.4% in
cal Tree-adjoining Grammar( ) model. They arsing. But the score was achieved using 90% of

used the same train/development/test split, an i . .
achieved LRILP of 76.8%/77.8%. In Bikel's the- ¢ 2°0K-CTB (roughly 2.5 times bigger than our
training set) for training and 10% for testing. Fung

sis (2004), the same Collins emulation model g

. - et al.(2004) also took the maximum-entropy mod-
was used, but with tweaked head-finding ruIeS'elin approach, but augmented by transformation-
Also a POS tagger was used for assigning tag gapp ’ g y

for unseen words. The refined model achieve ased learning.  They used the standard training

. . and testing split. When tested with gold-standard
LRILP of 78.0%/81.2%. Chiang and Bikel (2002) segmentation, they achieved a F1 score of 79.56%,

u_sed inside-outside unsuperwged_ leaming alg but POS-tagged words were treated as constituents
rithm to augment the rules for finding heads, an . :
in their evaluation.

achieved an improved LR/LP of 78.8%/81.1%.

Levy and Manning (2003) used a factored model In comparison with previous work, our parser’s
that combines an unlexicalized PCFG model withaccuracy is very competitive. Compared to Jiang’s
a dependency model. They achieved LR/LPwork and Sun and Jurafsky’s work, the classifier
of 79.2%/78.4% on a different test/developmentensemble model of our parser is lagging behind by
split. Xiong et al. (2005) used a similar model to 1% and 5.8% in F1, respectively. But compared
the BBN’s model in (Bikel and Chiang, 2000), to all other works, our classifier stacking model
and augmented the model by semantic categorigave better or equal results for all three measures.
cal information and heuristic rules. They achievedn particular, the classifier ensemble model and
LR/LP of 78.7%/80.1%. Hearne and Way (2004)SVM model of our parser achieved second and
used a Data-Oriented Parsing (DOP) approacthird highest LP, LR and F1 for sentences100
that was optimized for top-down computation.words as shown in Table 3. (Sun and Jurafsky did
They achieved F1 of 71.3 on a different test andchot report results on sentencgs100 words, but
training set. Jiang (2004) reported LR/LP ofitis worth noting that out of all the test sentences,
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only 2 sentences have length100). Model runtime

Jiang (2004) and Bikel (200%glso evaluated E'eligl& Manning anmlgi

their parsers on the test set for sentenged0 Our DTree modellom 14s
words, using gold-standard POS tagged input. Our Our Maxent modegDm 24s

. L Our SVM model |3m 50s
parser gives significantly better results as shown

fold. On one hand, it shows that if POS tagging
accuracy can be increased, our parser is likely to N i _
benefit more than the other two models: on the’PeNS UP lots of possibilities for continuous im-

other hand, it also indicates that our deterministico_rovements’ both in terms of accuracy and effi-

model is less resilient to POS errors. Further de®'®"%Y: For example, in this paper we experi-

tailed analysis is called for, to study the extent tomented with one method of simple voting. An al-

which POS tagging errors affects the deterministid®rnative way of doing smple voting 'S (o let the
parsing model. parsers vote on membership of constituents after

each parser has produced its own parse tree (Hen-

Mﬁdlel A LR LP| F1 derson and Brill, 1999), instead of voting at each
Bikel's Thesis 2004  |80.99%484.5%82.7% ; .
Jiang's Thesis 2004 |84.5%88.0%486.2% step during parsing.

DTree modal 80 59463 99462 2% Our initial attempt to increase th_e accuracy of
Maxent model 81.4%82.8%482.1% the DTree model by applying boosting techniques
SVM model 87.2%88.3//87.8% did not yield satisfactory results. In our exper-

Stacked classifier mod8B.3%|88.1%88.20

iment, we implemented the AdaBoost.M1 (Fre-
Table 4: Comparison with related work on the testund and Schapire, 1996) algorithm using re-
set for sentencel 40 words, using gold-standard sampling to vary the training set distribution.
POS Results showed AdaBoost suffered severe over-
o _ fitting problems and hurts accuracy greatly, even

To measure efficiency, we ran two publicly yith a small number of samples. One possible
available parsers (Levy and Manning's PCFGreason for this is that our sample space is very
parser (2003) and Bikel's parser (2004)) onyppajanced across the different classes. A few

the standard test set and compared the runsasses have lots of training examples while a large
pme"‘. The runtime of these parsers are showrymper of classes are rare, which could raise the
in minute:second format in Table 5. Our SVM  chance of overfitting.

model is more than 2 times faster than Levy and | oyr experiments, SVM model gave better re-

Manning's parser, and more than 13 times fasteg|is than the Maxent model. But it is important

than Bikel's parser. Our DTree model is 40 times;q note that although the same set of features were
faster than Levy and Manning's parser, and 27Q,seq in both models, a degree 2 polynomial ker-
times faster than Bikel's parser. Another advany,e| was used in the SVM classifier while Maxent
tage of our parser is that it does not take as mucp|y has degree 1 features. In our future work, we
memory as these other parsers do. In fact, nong;| experiment with degree 2 features and L1 reg-
of the models except MBL takes more than 60y|arization in the Maxent model, which may give

megabytes of memory at runtime. In compari-ys closer performance to the SVM model with a
son, Levy and Manning's PCFG parser requiresch faster speed.

more than 400 mega-bytes of memory when pars-
ing long sentences (70 words or longer). 7 Conclusion

6 Discussion and future work In this paper, we presented a novel determinis-
tic parser for Chinese constituent parsing. Us-

One unique attraction of this deterministic Pars-ng gold-standard POS tags, our best model (us-

ing framework is that advances in machine léar;, g stacked classifiers) runs in linear time and has

ing field can be directly applied to parsing, which 3peed recall and precision of 88.3% and 88.1%,
3Bikel's parser used gold-standard POS tags for unseetiespectively, surpassing the best published results.
words only. Also, the results are obtained from a parser, i - 6% i
trained on 250K-CTB, about 2.5 times bigger than CTB 1.0. And with a trade-off of 5-6% in accuracy, our
DTree and Maxent parsers run at speeds 40-270

“All the experiments were conducted on a Pentium IV -
2.4GHz machine with 2GB of RAM. times faster than state-of-the-art parsers. Our re-
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sults have shown that the deterministic parsingZhengping Jiang. 2004. Statistical Chinese parsing.
framework is a viable and effective approach to Honours thesis, National University of Singapore.

Chin_ese parsing. For future work, we will fur- 5y, kudo and Yuji Matsumoto. 2000. Use of support
ther improve the speed and accuracy of our mod- vector learning for chunk identification. Proceed-
els, and apply them to more Chinese and multi- ingsof CoNLL and LLL '00.

lingual natural language applications that reqUirq?oger Levy and Christopher D. Manning. 2003. Is it

high speed and accurate parsing. harder to parse Chinese, or the Chinese Treebank?
In Proceedings of ACL ' 03.
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