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Abstract

Lexical classes, when tailored to the appli-
cation and domain in question, can provide
an effective means to deal with a num-
ber of natural language processing (NLP)
tasks. While manual construction of such
classes is difficult, recent research shows
that it is possible to automatically induce
verb classes from cross-domain corpora
with promising accuracy. We report a
novel experiment where similar technol-
ogy is applied to the important, challeng-
ing domain of biomedicine. We show that
the resulting classification, acquired from
a corpus of biomedical journal articles,
is highly accurate and strongly domain-
specific. It can be used to aidBIO-NLP

directly or as useful material for investi-
gating the syntax and semantics of verbs
in biomedical texts.

1 Introduction

Lexical classes which capture the close relation
between the syntax and semantics of verbs have
attracted considerable interest inNLP (Jackendoff,
1990; Levin, 1993; Dorr, 1997; Prescher et al.,
2000). Such classes are useful for their ability to
capture generalizations about a range of linguis-
tic properties. For example, verbs which share the
meaning of ‘manner of motion’ (such astravel,
run, walk), behave similarly also in terms of
subcategorization (I traveled/ran/walked, I trav-
eled/ran/walked to London, I traveled/ran/walked
five miles). Although the correspondence between
the syntax and semantics of words is not perfect
and the classes do not provide means for full se-
mantic inferencing, their predictive power is nev-
ertheless considerable.

NLP systems can benefit from lexical classes
in many ways. Such classes define the mapping
from surface realization of arguments to predicate-
argument structure, and are therefore an impor-
tant component of any system which needs the
latter. As the classes can capture higher level
abstractions they can be used as a means to ab-
stract away from individual words when required.
They are also helpful in many operational contexts
where lexical information must be acquired from
small application-specific corpora. Their predic-
tive power can help compensate for lack of data
fully exemplifying the behavior of relevant words.

Lexical verb classes have been used to sup-
port various (multilingual) tasks, such as compu-
tational lexicography, language generation, ma-
chine translation, word sense disambiguation, se-
mantic role labeling, and subcategorization acqui-
sition (Dorr, 1997; Prescher et al., 2000; Korho-
nen, 2002). However, large-scale exploitation of
the classes in real-world or domain-sensitive tasks
has not been possible because the existing classi-
fications, e.g. (Levin, 1993), are incomprehensive
and unsuitable for specific domains.

While manual classification of large numbers of
words has proved difficult and time-consuming,
recent research shows that it is possible to auto-
matically induce lexical classes from corpus data
with promising accuracy (Merlo and Stevenson,
2001; Brew and Schulte im Walde, 2002; Ko-
rhonen et al., 2003). A number ofML methods
have been applied to classify words using features
pertaining to mainly syntactic structure (e.g. sta-
tistical distributions of subcategorization frames
(SCFs) or general patterns of syntactic behaviour,
e.g. transitivity, passivisability) which have been
extracted from corpora using e.g. part-of-speech
tagging or robust statistical parsing techniques.
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This research has been encouraging but it has
so far concentrated on general language. Domain-
specific lexical classification remains unexplored,
although it is arguably important: existing clas-
sifications are unsuitable for domain-specific ap-
plications and these often challenging applications
might benefit from improved performance by uti-
lizing lexical classes the most.

In this paper, we extend an existing approach
to lexical classification (Korhonen et al., 2003)
and apply it (without any domain specific tun-
ing) to the domain of biomedicine. We focus on
biomedicine for several reasons: (i)NLP is criti-
cally needed to assist the processing, mining and
extraction of knowledge from the rapidly growing
literature in this area, (ii) the domain lexical re-
sources (e.g.UMLS metathesaurus and lexicon1)
do not provide sufficient information about verbs
and (iii) being linguistically challenging, the do-
main provides a good test case for examining the
potential of automatic classification.

We report an experiment where a classifica-
tion is induced for 192 relatively frequent verbs
from a corpus of 2230 biomedical journal articles.
The results, evaluated with domain experts, show
that the approach is capable of acquiring classes
with accuracy higher than that reported in previous
work on general language. We discuss reasons for
this and show that the resulting classes differ sub-
stantially from those in extant lexical resources.
They constitute the first syntactic-semantic verb
classification for the biomedical domain and could
be readily applied to supportBIO-NLP.

We discuss the domain-specific issues related to
our task in section 2. The approach to automatic
classification is presented in section 3. Details of
the experimental evaluation are supplied in sec-
tion 4. Section 5 provides discussion and section
6 concludes with directions for future work.

2 The Biomedical Domain and Our Task

Recent years have seen a massive growth in the
scientific literature in the domain of biomedicine.
For example, theMEDLINE database2 which cur-
rently contains around 16M references to journal
articles, expands with 0.5M new references each
year. Because future research in the biomedical
sciences depends on making use of all this existing
knowledge, there is a strong need for the develop-

1http://www.nlm.nih.gov/research/umls
2http://www.ncbi.nlm.nih.gov/PubMed/

ment ofNLP tools which can be used to automat-
ically locate, organize and manage facts related to
published experimental results.

In recent years, major progress has been made
on information retrieval and on the extraction of
specific relations e.g. between proteins and cell
types from biomedical texts (Hirschman et al.,
2002). Other tasks, such as the extraction of fac-
tual information, remain a bigger challenge. This
is partly due to the challenging nature of biomedi-
cal texts. They are complex both in terms of syn-
tax and semantics, containing complex nominals,
modal subordination, anaphoric links, etc.

Researchers have recently began to use deeper
NLP techniques (e.g. statistical parsing) in the do-
main because they are not challenged by the com-
plex structures to the same extent than shallow
techniques (e.g. regular expression patterns) are
(Lease and Charniak, 2005). However, deeper
techniques require richer domain-specific lexical
information for optimal performance than is pro-
vided by existing lexicons (e.g.UMLS). This is
particularly important for verbs, which are central
to the structure and meaning of sentences.

Where the lexical information is absent, lexical
classes can compensate for it or aid in obtaining
it in the ways described in section 1. Consider
e.g. theINDICATE and ACTIVATE verb classes in
Figure 1. They capture the fact that their members
are similar in terms of syntax and semantics: they
have similarSCFs and selectional preferences, and
they can be used to make similar statements which
describe similar events. Such information can be
used to build a richer lexicon capable of support-
ing key tasks such as parsing, predicate-argument
identification, event extraction and the identifica-
tion of biomedical (e.g. interaction) relations.

While an abundance of work has been con-
ducted on semantic classification of biomedical
terms and nouns, less work has been done on the
(manual or automatic) semantic classification of
verbs in the biomedical domain (Friedman et al.,
2002; Hatzivassiloglou and Weng, 2002; Spasic et
al., 2005). No previous work exists in this domain
on the type oflexical(i.e. syntactic-semantic) verb
classification this paper focuses on.

To get an initial idea about the differences be-
tween our target classification and a general lan-
guage classification, we examined the extent to
which individual verbs and their frequencies dif-
fer in biomedical and general language texts. We
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PROTEINS: p53


p53

Tp53

Dmp53

...


ACTIVATE


suggests

demonstrates

indicates

implies...


GENES: WAF1


WAF1

CIP1

p21

...


It


INDICATE


that


activates

up-regulates

induces

stimulates...


...


Figure 1: Sample lexical classes

BIO BNC
show do
suggest say
use make
indicate go
contain see
describe take
express get
bind know
require come
observe give
find think
determine use
demonstrate find
perform look
induce want

Table 1: The 15 most frequent verbs in the
biomedical data and in the BNC

created a corpus of 2230 biomedical journal arti-
cles (see section 4.1 for details) and compared the
distribution of verbs in this corpus with that in the
British National Corpus (BNC) (Leech, 1992). We
calculated the Spearman rank correlation between
the 1165 verbs which occurred in both corpora.
The result was only a weak correlation: 0.37±
0.03. When the scope was restricted to the 100
most frequent verbs in the biomedical data, the
correlation was 0.12± 0.10 which is only1.2σ
away from zero. The dissimilarity between the
distributions is further indicated by the Kullback-
Leibler distance of 0.97. Table 1 illustrates some
of these big differences by showing the list of 15
most frequent verbs in the two corpora.

3 Approach

We extended the system of Korhonen et al. (2003)
with additional clustering techniques (introduced
in sections 3.2.2 and 3.2.4) and used it to ob-
tain the classification for the biomedical domain.
The system (i) extracts features from corpus data
and (ii) clusters them using five different methods.
These steps are described in the following two sec-
tions, respectively.

3.1 Feature Extraction

We employ as features distributions ofSCFs spe-
cific to given verbs. We extract them from cor-

pus data using the comprehensive subcategoriza-
tion acquisition system of Briscoe and Carroll
(1997) (Korhonen, 2002). The system incorpo-
ratesRASP, a domain-independent robust statis-
tical parser (Briscoe and Carroll, 2002), which
tags, lemmatizes and parses data yielding com-
plete though shallow parses and aSCF classifier
which incorporates an extensive inventory of 163
verbal SCFs3. The SCFs abstract over specific
lexically-governed particles and prepositions and
specific predicate selectional preferences. In our
work, we parameterized two high frequencySCFs
for prepositions (PPandNP + PP SCFs). No filter-
ing of potentially noisySCFs was done to provide
clustering with as much information as possible.

3.2 Classification

The SCF frequency distributions constitute the in-
put data to automatic classification. We experi-
ment with five clustering methods: the simple hard
nearest neighbours method and four probabilis-
tic methods – two variants of Probabilistic Latent
Semantic Analysis and two information theoretic
methods (the Information Bottleneck and the In-
formation Distortion).

3.2.1 Nearest Neighbours

The first method collects the nearest neighbours
(NN) of each verb. It (i) calculates the Jensen-
Shannon divergence (JS) between theSCF distri-
butions of each pair of verbs, (ii) connects each
verb with the most similar other verb, and finally
(iii) finds all the connected components. TheNN

method is very simple. It outputs only one clus-
tering configuration and therefore does not allow
examining different cluster granularities.

3.2.2 Probabilistic Latent Semantic Analysis

The Probabilistic Latent Semantic Analysis
(PLSA, Hoffman (2001)) assumes a generative
model for the data, defined by selecting (i) a verb
verbi, (ii) a semantic classclassk from the dis-
tribution p(Classes | verbi), and (iii) a SCF scfj

from the distributionp(SCFs | classk). PLSA uses
Expectation Maximization (EM) to find the dis-
tribution p̃(SCFs |Clusters, V erbs) which max-
imises the likelihood of the observed counts. It
does this by minimising the cost function

F = −β log Likelihood(p̃ | data) + H(p̃) .

3See http://www.cl.cam.ac.uk/users/alk23/subcat/subcat.html
for further detail.
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Forβ = 1 minimisingF is equivalent to the stan-
dard EM procedure while forβ < 1 the distri-
bution p̃ tends to be more evenly spread. We use
β = 1 (PLSA/EM) andβ = 0.75 (PLSAβ=0.75).
We currently “harden” the output and assign each
verb to the most probable cluster only4.

3.2.3 Information Bottleneck

The Information Bottleneck (Tishby et al.,
1999) (IB) is an information-theoretic method
which controls the balance between: (i) the
loss of information by representing verbs as
clusters (I(Clusters; V erbs)), which has to be
minimal, and (ii) the relevanceof the output
clusters for representing theSCF distribution
(I(Clusters; SCFs)) which has to be maximal.
The balance between these two quantities ensures
optimal compression of data through clusters. The
trade-off between the two constraints is realized
through minimising the cost function:

LIB = I(Clusters; V erbs)

− βI(Clusters; SCFs) ,

where β is a parameter that balances the con-
straints. IB takes three inputs: (i)SCF-verb dis-
tributions, (ii) the desired number of clustersK,
and (iii) the initial value ofβ. It then looks for
the minimalβ that decreasesLIB compared to its
value with the initialβ, using the givenK. IB de-
livers as output the probabilitiesp(K|V ). It gives
an indication for the most informative number of
output configurations: the ones for which the rele-
vance information increases more sharply between
K − 1 andK clusters than betweenK andK + 1.

3.2.4 Information Distortion

The Information Distortion method (Dimitrov
and Miller, 2001) (ID) is otherwise similar toIB
butLID differs fromLIB by an additional term that
adds a bias towards clusters of similar size:

LID = −H(Clusters |V erbs)

− βI(Clusters; SCFs)

= LIB −H(Clusters) .

ID yields more evenly divided clusters thanIB.

4 Experimental Evaluation

4.1 Data

We downloaded the data for our experiment from
the MEDLINE database, from three of the 10 lead-

4The same approach was used with the information theo-
retic methods. It made sense in this initial work on biomedi-
cal classification. In the future we could use soft clustering a
means to investigate polysemy.

ing journals in biomedicine: 1)Genes & Devel-
opment(molecular biology, molecular genetics),
2) Journal of Biological Chemistry(biochemistry
and molecular biology) and 3)Journal of Cell Bi-
ology (cellular structure and function). 2230 full-
text articles from years 2003-2004 were used. The
data included 11.5M words and 323,307 sentences
in total. 192 medium to high frequency verbs (with
the minimum of 300 occurrences in the data) were
selected for experimentation5. This test set was
big enough to produce a useful classification but
small enough to enable thorough evaluation in this
first attempt to classify verbs in the biomedical do-
main.

4.2 Processing the Data

The data was first processed using the feature ex-
traction module. 233 (preposition-specific)SCF

types appeared in the resulting lexicon, 36 per verb
on average.6 The classification module was then
applied. NN producedKnn = 42 clusters. From
the other methods we requestedK = 2 to 60 clus-
ters. We chose for evaluation the outputs corre-
sponding to the most informative values ofK: 20,
33, 53 forIB, and 17, 33, 53 forID.

4.3 Gold Standard

Because no target lexical classification was avail-
able for the biomedical domain, human experts (4
domain experts and 2 linguists) were used to cre-
ate the gold standard. They were asked to examine
whether the test verbs similar in terms of their syn-
tactic properties (i.e. verbs with similarSCFdistri-
butions) are similar also in terms of semantics (i.e.
they share a common meaning). Where this was
the case, a verb class was identified and named.

The domain experts examined the 116 verbs
whose analysis required domain knowledge
(e.g. activate, solubilize, harvest), while the lin-
guists analysed the remaining 76 general or scien-
tific text verbs (e.g.demonstrate, hypothesize, ap-
pear). The linguists used Levin (1993) classes as
gold standard classes whenever possible and cre-
ated novel ones when needed. The domain ex-
perts used two purely semantic classifications of
biomedical verbs (Friedman et al., 2002; Spasic et
al., 2005)7 as a starting point where this was pos-

5230 verbs were employed initially but 38 were dropped
later so that each (coarse-grained) class would have the min-
imum of 2 members in the gold standard.

6This number is high because no filtering of potentially
noisySCFs was done.

7See http://www.cbr-masterclass.org.
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1 Have an effect on activity (BIO/29) 8 Physical Relation
1.1 Activate / Inactivate Between Molecules (BIO/20)
1.1.1 Change activity:activate, inhibit 8.1 Binding: bind, attach
1.1.2 Suppress:suppress, repress 8.2 Translocate and Segregate
1.1.3 Stimulate:stimulate 8.2.1 Translocate:shift, switch
1.1.4 Inactivate:delay, diminish 8.2.2 Segregate:segregate, export
1.2 Affect 8.3 Transmit
1.2.1 Modulate:stabilize, modulate 8.3.1 Transport:deliver, transmit
1.2.2 Regulate:control, support 8.3.2 Link:connect, map
1.3 Increase / decrease:increase, decrease 9 Report (GEN/30)
1.4 Modify: modify, catalyze 9.1 Investigate
2 Biochemical events (BIO/12) 9.1.1 Examine:evaluate, analyze
2.1 Express:express, overexpress 9.1.2 Establish:test, investigate
2.2 Modification 9.1.3 Confirm:verify, determine
2.2.1 Biochemical modification: 9.2 Suggest

dephosphorylate, phosphorylate 9.2.1 Presentational:
2.2.2 Cleave:cleave hypothesize, conclude
2.3 Interact: react, interfere 9.2.2 Cognitive:
3 Removal (BIO/6) consider, believe
3.1 Omit: displace, deplete 9.3 Indicate: demonstrate, imply
3.2 Subtract: draw, dissect 10 Perform (GEN/10)
4 Experimental Procedures (BIO/30) 10.1 Quantify
4.1 Prepare 10.1.1 Quantitate:quantify, measure
4.1.1 Wash:wash, rinse 10.1.2 Calculate:calculate, record
4.1.2 Mix: mix 10.1.3 Conduct:perform, conduct
4.1.3 Label:stain, immunoblot 10.2 Score:score, count
4.1.4 Incubate:preincubate, incubate 11 Release (BIO/4):detach, dissociate
4.1.5 Elute:elute 12 Use (GEN/4):utilize, employ
4.2 Precipitate: coprecipitate 13 Include (GEN/11)

coimmunoprecipitate 13.1 Encompass:encompass, span
4.3 Solubilize:solubilize,lyse 13.2 Include: contain, carry
4.4 Dissolve:homogenize, dissolve 14 Call (GEN/3):name, designate
4.5 Place:load, mount 15 Move (GEN/12)
5 Process (BIO/5):linearize, overlap 15.1 Proceed:
6 Transfect (BIO/4):inject, microinject progress, proceed
7 Collect (BIO/6) 15.2 Emerge:
7.1 Collect: harvest, select arise, emerge
7.2 Process:centrifuge, recover 16 Appear (GEN/6):appear, occur

Table 2: The gold standard classification with a
few example verbs per class

sible (i.e. where they included our test verbs and
also captured their relevant senses)8.

The experts created a 3-level gold standard
which includes both broad and finer-grained
classes. Only those classes / memberships were
included which all the experts (in the two teams)
agreed on.9 The resulting gold standard includ-
ing 16, 34 and 50 classes is illustrated in table 2
with 1-2 example verbs per class. The table in-
dicates which classes were created by domain ex-
perts (BIO) and which by linguists (GEN). Each
class was associated with 1-30 member verbs10.
The total number of verbs is indicated in the table
(e.g. 10 forPERFORMclass).

4.4 Measures

The clusters were evaluated against the gold stan-
dard using measures which are applicable to all the

8Purely semantic classes tend to be finer-grained than lex-
ical classes and not necessarily syntactic in nature. Only these
two classifications were found to be similar enough to our tar-
get classification to provide a useful starting point. Section 5
includes a summary of the similarities/differences between
our gold standard and these other classifications.

9Experts were allowed to discuss the problematic cases
to obtain maximal accuracy - hence no inter-annotator agree-
ment is reported.

10The minimum of 2 member verbs were required at the
coarser-grained levels of 16 and 34 classes.

classification methods and which deliver a numer-
ical value easy to interpret.

The first measure, theadjusted pairwise preci-
sion, evaluates clusters in terms of verb pairs:

APP= 1
K

K∑
i=1

num. of correct pairs inki

num. of pairs inki
· |ki|−1
|ki|+1

APP is the average proportion of all within-
cluster pairs that are correctly co-assigned. Multi-
plied by a factor that increases with cluster size it
compensates for a bias towards small clusters.

The second measure ismodified purity, a global
measure which evaluates the mean precision of
clusters. Each cluster is associated with its preva-
lent class. The number of verbs in a clusterK that
take this class is denoted bynprevalent(K). Verbs
that do not take it are considered as errors. Clus-
ters wherenprevalent(K) = 1 are disregarded as
not to introduce a bias towards singletons:

mPUR =

∑
nprevalent(ki)≥2

nprevalent(ki)

number of verbs

The third measure is theweighted class accu-
racy, the proportion of members of dominant clus-
tersDOM-CLUSTi within all classesci.

ACC =

C∑
i=1

verbs inDOM-CLUSTi

number of verbs

mPUR can be seen to measure the precision of
clusters andACC the recall. We define anF mea-
sure as the harmonic mean ofmPUR andACC:

F =
2 ·mPUR · ACC

mPUR + ACC

The statistical significance of the results is mea-
sured by randomisation tests where verbs are
swapped between the clusters and the resulting
clusters are evaluated. The swapping is repeated
100 times for each output and the averageavswaps

and the standard deviationσswaps is measured.
The significance is the scaled differencesignif =
(result− avswaps)/σswaps .

4.5 Results from Quantitative Evaluation

Table 3 shows the performance of the five clus-
tering methods forK = 42 clusters (as produced
by the NN method) at the 3 levels of gold stan-
dard classification. Although the twoPLSA vari-
ants (particularlyPLSAβ=0.75) produce a fairly ac-
curate coarse grained classification, they perform
worse than all the other methods at the finer-
grained levels of gold standard, particularly ac-
cording to the global measures. Being based on
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16 Classes 34 Classes 50 Classes
APP mPUR ACC F APP mPUR ACC F APP mPUR ACC F

NN 81 86 39 53 64 74 62 67 54 67 73 69
IB 74 88 47 61 61 76 74 75 55 69 87 76
ID 79 89 37 52 63 78 65 70 53 70 77 73

PLSA/EM 55 72 49 58 43 53 61 57 35 47 66 55
PLSAβ=0.75 65 71 68 70 53 48 76 58 41 34 77 47

Table 3: The performance of theNN, PLSA, IB andID methods withKnn = 42 clusters

16 Classes 34 Classes 50 Classes
K APP mPUR ACC F APP mPUR ACC F APP mPUR ACC F
20 IB 74 77 66 71 60 56 86 67 54 48 93 63
17 ID 67 76 60 67 43 56 81 66 34 46 91 61
33 IB 78 87 52 65 69 75 81 77 61 67 93 77

ID 81 88 43 57 65 75 70 72 54 67 82 73
53 IB 71 87 41 55 61 78 66 71 54 72 79 75

ID 79 89 33 48 66 79 55 64 53 72 68 69

Table 4: The performance ofIB andID for the 3 levels of class hierarchy for informative values ofK

pairwise similarities,NN shows mostly better per-
formance thanIB and ID on the pairwise measure
APPbut the global measures are better forIB and
ID. The differences are smaller inmPUR (yet sig-
nificant: 2σ betweenNN and IB and3σ between
NN and ID) but more notable inACC (which is
e.g. 8 − 12% better for IB than for NN). Also
theF results suggest that the two information the-
oretic methods are better overall than the simple
NN method.

IB andID also have the advantage (overNN) that
they can be used to produce a hierarchical verb
classification. Table 4 shows the results forIB and
ID for the informative values ofK. The bold font
indicates the results when the match between the
values ofK and the number of classes at the par-
ticular level of the gold standard is the closest.

IB is clearly better thanID at all levels of gold
standard. It yields its best results at the medium
level (34 classes) withK = 33: F = 77 andAPP
= 69 (the results forID areF = 72 andAPP =
65). At the most fine-grained level (50 classes),
IB is equally good according toF with K = 33,
but APP is 8% lower. AlthoughID is occasion-
ally better thanIB according toAPP andmPUR

(see e.g. the results for 16 classes withK = 53)
this never happens in the case where the corre-
spondence between the number of gold standard
classes and the values ofK is the closest. In other
words, the informative values ofK prove really
informative for IB. The lower performance ofID
seems to be due to its tendency to create evenly
sized clusters.

All the methods perform significantly better

than our random baseline. The significance of the
results with respect to two swaps was at the2σ
level, corresponding to a 97% confidence that the
results are above random.

4.6 Qualitative Evaluation

We performed further, qualitative analysis of clus-
ters produced by the best performing methodIB.
Consider the following clusters:

A: inject, transfect, microinfect, contransfect(6)

B: harvest, select, collect(7.1)
centrifuge, process, recover(7.2)

C: wash, rinse(4.1.1)
immunoblot(4.1.3)
overlap(5)

D: activate(1.1.1)

When looking at coarse-grained outputs, in-
terestingly, K as low as 8 learned the broad
distinction between biomedical and general lan-
guage verbs (the two verb types appeared only
rarely in the same clusters) and produced large se-
mantically meaningful groups of classes (e.g. the
coarse-grained classesEXPERIMENTAL PROCE-
DURES, TRANSFECTandCOLLECT were mapped
together). K = 12 was sufficient to iden-
tify several classes with very particular syntax
One of them wasTRANSFECT (see A above)
whose members were distinguished easily be-
cause of their typicalSCFs (e.g. inject /trans-
fect/microinfect/contransfectX with/intoY).

On the other hand, evenK = 53 could not iden-
tify classes with very similar (yet un-identical)
syntax. These included many semantically similar
sub-classes (e.g. the two sub-classes ofCOLLECT
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shown inB whose members take similarNP and
PP SCFs). However, also a few semantically dif-
ferent verbs clustered wrongly because of this rea-
son, such as the ones exemplified inC. In C, im-
munoblot(from theLABEL class) is still somewhat
related towashandrinse(theWASH class) because
they all belong to the largerEXPERIMENTAL PRO-
CEDURES class, butoverlap (from the PROCESS

class) shows up in the cluster merely because of
syntactic idiosyncracy.

While parser errors caused by the challeng-
ing biomedical texts were visible in someSCFs
(e.g. looking at a sample ofSCFs, some adjunct
instances were listed in the argument slots of the
frames), the cases where this resulted in incorrect
classification were not numerous11.

One representative singleton resulting from
these errors is exemplified inD. Activate ap-
pears in relatively complicated sentence struc-
tures, which gives rise to incorrectSCFs. For ex-
ample, MECs cultured on 2D planar substrates
transiently activate MAP kinase in response to
EGF, whereas...gets incorrectly analysed asSCF

NP-NP, while The effect of the constitutivelyac-
tivated ARF6-Q67L mutant was investigated...re-
ceives the incorrectSCFanalysisNP-SCOMP. Most
parser errors are caused by unknown domain-
specific words and phrases.

5 Discussion

Due to differences in the task and experimental
setup, direct comparison of our results with pre-
viously published ones is impossible. The clos-
est possible comparison point is (Korhonen et al.,
2003) which reported 50-59%mPUR and 15-19%
APP on usingIB to assign 110 polysemous (gen-
eral language) verbs into 34 classes. Our results
are substantially better, although we made no ef-
fort to restrict our scope to monosemous verbs12

and although we focussed on a linguistically chal-
lenging domain.

It seems that our better result is largely due
to the higher uniformity of verb senses in the
biomedical domain. We could not investigate this
effect systematically because no manually sense

11This is partly because the mistakes of the parser are
somewhat consistent (similar for similar verbs) and partly be-
cause theSCFs gather data from hundreds of corpus instances,
many of which are analysed correctly.

12Most of our test verbs are polysemous according to
WordNet (WN) (Miller, 1990), but this is not a fully reliable
indication becauseWN is not specific to this domain.

annotated data (or a comprehensive list of verb
senses) exists for the domain. However, exami-
nation of a number of corpus instances suggests
that the use of verbs is fairly conventionalized in
our data13. Where verbs show less sense varia-
tion, they show lessSCF variation, which aids the
discovery of verb classes. Korhonen et al. (2003)
observed the opposite with general language data.

We examined, class by class, to what extent our
domain-specific gold standard differs from the re-
lated general (Levin, 1993) and domain classifica-
tions (Spasic et al., 2005; Friedman et al., 2002)
(recall that the latter were purely semantic clas-
sifications as no lexical ones were available for
biomedicine):

33 (of the 50) classes in the gold standard are
biomedical. Only 6 of these correspond (fully or
mostly) to the semantic classes in the domain clas-
sifications. 17 are unrelated to any of the classes in
Levin (1993) while 16 bear vague resemblance to
them (e.g. ourTRANSPORT verbs are also listed
under Levin’sSEND verbs) but are too different
(semantically and syntactically) to be combined.

17 (of the 50) classes are general (scientific)
classes. 4 of these are absent in Levin (e.g.QUAN-
TITATE). 13 are included in Levin, but 8 of them
have a more restricted sense (and fewer members)
than the corresponding Levin class. Only the re-
maining 5 classes are identical (in terms of mem-
bers and their properties) to Levin classes.

These results highlight the importance of build-
ing or tuning lexical resources specific to different
domains, and demonstrate the usefulness of auto-
matic lexical acquisition for this work.

6 Conclusion

This paper has shown that current domain-
independentNLP andML technology can be used
to automatically induce a relatively high accu-
racy verb classification from a linguistically chal-
lenging corpus of biomedical texts. The lexical
classification resulting from our work is strongly
domain-specific (it differs substantially from pre-
vious ones) and it can be readily used to aidBIO-
NLP. It can provide useful material for investigat-
ing the syntax and semantics of verbs in biomed-
ical data or for supplementing existing domain
lexical resources with additional information (e.g.

13The different sub-domains of the biomedical domain
may, of course, be even more conventionalized (Friedman et
al., 2002).
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semantic classifications with additional member
verbs). Lexical resources enriched with verb class
information can, in turn, better benefit practical
tasks such as parsing, predicate-argument identifi-
cation, event extraction, identification of biomedi-
cal relation patterns, among others.

In the future, we plan to improve the accu-
racy of automatic classification by seeding it with
domain-specific information (e.g. using named en-
tity recognition and anaphoric linking techniques
similar to those of Vlachos et al. (2006)). We also
plan to conduct a bigger experiment with a larger
number of verbs and demonstrate the usefulness of
the bigger classification for practicalBIO-NLP ap-
plication tasks. In addition, we plan to apply sim-
ilar technology to other interesting domains (e.g.
tourism, law, astronomy). This will not only en-
able us to experiment with cross-domain lexical
class variation but also help to determine whether
automatic acquisition techniques benefit, in gen-
eral, from domain-specific tuning.
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