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Abstract

Lexical classes, when tailored to the appli-
cation and domain in question, can provide
an effective means to deal with a num-
ber of natural language processing p)
tasks. While manual construction of such
classes is difficult, recent research shows
that it is possible to automatically induce
verb classes from cross-domain corpora
with promising accuracy. We report a
novel experiment where similar technol-
ogy is applied to the important, challeng-
ing domain of biomedicine. We show that
the resulting classification, acquired from
a corpus of biomedical journal articles,
is highly accurate and strongly domain-
specific. It can be used to amlo-NLP
directly or as useful material for investi-
gating the syntax and semantics of verbs
in biomedical texts.
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NLP systems can benefit from lexical classes
in many ways. Such classes define the mapping
from surface realization of arguments to predicate-
argument structure, and are therefore an impor-
tant component of any system which needs the
latter. As the classes can capture higher level
abstractions they can be used as a means to ab-
stract away from individual words when required.
They are also helpful in many operational contexts
where lexical information must be acquired from
small application-specific corpora. Their predic-
tive power can help compensate for lack of data
fully exemplifying the behavior of relevant words.

Lexical verb classes have been used to sup-
port various (multilingual) tasks, such as compu-
tational lexicography, language generation, ma-
chine translation, word sense disambiguation, se-
mantic role labeling, and subcategorization acqui-
sition (Dorr, 1997; Prescher et al., 2000; Korho-
nen, 2002). However, large-scale exploitation of
the classes in real-world or domain-sensitive tasks
has not been possible because the existing classi-

Lexical classes which capture the close relatiodications, e.g. (Levin, 1993), are incomprehensive
between the syntax and semantics of verbs hav@nd unsuitable for specific domains.

attracted considerable interestNop (Jackendoff,

While manual classification of large numbers of

1990; Levin, 1993; Dorr, 1997; Prescher et al..words has proved difficult and time-consuming,

2000). Such classes are useful for their ability tarecent research shows that it is possible to auto-
capture generalizations about a range of linguismatically induce lexical classes from corpus data
tic properties. For example, verbs which share thevith promising accuracy (Merlo and Stevenson,
meaning of ‘manner of motion’ (such dsavel, 2001; Brew and Schulte im Walde, 2002; Ko-
run, walk), behave similarly also in terms of rhonen et al., 2003). A number ofL methods
subcategorizationl (traveled/ran/walked | trav-  have been applied to classify words using features
eled/ran/walked to London traveled/ran/walked pertaining to mainly syntactic structure (e.g. sta-
five mile$. Although the correspondence betweentistical distributions of subcategorization frames
the syntax and semantics of words is not perfecscrs) or general patterns of syntactic behaviour,
and the classes do not provide means for full see.g. transitivity, passivisability) which have been
mantic inferencing, their predictive power is nev-extracted from corpora using e.g. part-of-speech
ertheless considerable. tagging or robust statistical parsing techniques.
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This research has been encouraging but it hasmient of NLP tools which can be used to automat-
so far concentrated on general language. Domairieally locate, organize and manage facts related to
specific lexical classification remains unexploredpublished experimental results.

although it is arguably important: existing clas- |n recent years, major progress has been made
sifications are unsuitable for domain-specific appn information retrieval and on the extraction of
plications and these often challenging applicationgpecific relations e.g. between proteins and cell
might benefit from improved performance by uti- types from biomedical texts (Hirschman et al.,
lizing lexical classes the most. 2002). Other tasks, such as the extraction of fac-
In this paper, we extend an existing approachual information, remain a bigger challenge. This
to lexical classification (Korhonen et al., 2003)is partly due to the challenging nature of biomedi-
and apply it (without any domain specific tun- cal texts. They are complex both in terms of syn-
ing) to the domain of biomedicine. We focus ontax and semantics, containing complex nominals,
biomedicine for several reasons: ()P is criti-  modal subordination, anaphoric links, etc.

cally needed to assist the processing, mining and Researchers have recently began to use deeper
extraction of knowledge from the rapidly growing , p techniques (e.g. statistical parsing) in the do-

literature in this area, (ii) the domain Iexigal '€ main because they are not challenged by the com-

sources (e.gumLs metathesaurus and 1exicdn  piey structures to the same extent than shallow

do not provide sufficient information about verbs e hpiques (e.g. regular expression patterns) are

and (iii) being linguistically challenging, the do- (| ease and Charniak, 2005). However, deeper

main provides a good test case for examining theechniques require richer domain-specific lexical

potential of automatic classification. _ information for optimal performance than is pro-
We report an experiment where a classificayiged by existing lexicons (e.giMLS). This is

tion is induced for 192 relatively frequent verbs naricularly important for verbs, which are central
from a corpus of 2230 biomedical journal articles.i; the structure and meaning of sentences.
The results, evaluated with domain experts, show . L .
) o Where the lexical information is absent, lexical
that the approach is capable of acquiring classeﬁ . . L
. . . . “Classes can compensate for it or aid in obtaining
with accuracy higher than that reported in previous, . . . . .
) it in the ways described in section 1. Consider
work on general language. We discuss reasons for

) : . e.g. theINDICATE and ACTIVATE verb classes in
this and show that the resulting classes differ sub: g

. i ) Figure 1. They capture the fact that their members
stantially from those in extant lexical resources. N .
are similar in terms of syntax and semantics: they

They constitute the first syntactic-semantic ver o .
e . . , ave similarscrs and selectional preferences, and
classification for the biomedical domain and could o .
they can be used to make similar statements which

beVLeaglly appllr(]ed;o Suppmno_.':."?' lated tdescribe similar events. Such information can be
€ discuss e domain-Speciiic ISSUes related fee 14 puild a richer lexicon capable of support-
our task in section 2. The approach to automati

ing key tasks such as parsing, predicate-argument

;:rllassmcat_lon 'i p;reselnteﬁl In section 3i. I?jef[alls O|dentification, event extraction and the identifica-
€ expenmental evalualion are supplied In S€Cq, ot hiomedical (e.g. interaction) relations.

tion 4. Section 5 provides discussion and section ,
While an abundance of work has been con-

6 concludes with directions for future work. ) e s s
ducted on semantic classification of biomedical
2  The Biomedical Domain and Our Task terms and nouns, Ie;s work ha_s been q_one_ on the
_ ~ (manual or automatic) semantic classification of
Recent years have seen a massive growth in thgrbs in the biomedical domain (Friedman et al.,
scientific literature in the domain of biomedicine. 2002; Hatzivassiloglou and Weng, 2002; Spasic et
For example, the1EDLINE databasgwhich cur-  al., 2005). No previous work exists in this domain
rently contains around 16M references to journabn the type ofexical (i.e. syntactic-semantic) verb
articles, expands with 0.5M new references eaclk|assification this paper focuses on.
year. Because future research in the biomedical |, get an initial idea about the differences be-
sciences depends.on making use of all this existing, aan our target classification and a general lan-
knowledge, there is a strong need for the developg,age classification, we examined the extent to

Lhttp://www.nim.nih.gov/research/umis which individual verbs and their frequencies dif-
2http://www.ncbi.nlm.nih.gov/PubMed/ fer in biomedical and general language texts. We
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INDIGATE PROTEINS: p53 ACTIVATE GENES: WAF1 pus data USing the comprehensive Schategoriza_
suggests ps3 activates WAF tion acquisition system of Briscoe and Carroll
T+ |demonstrates | ot | TP53 up-regulates CIP1 L .
ndicates Dmps3 induces | |p21 (1997) (Korhonen, 2002). The system incorpo-

ratesrRASP, a domain-independent robust statis-

tical parser (Briscoe and Carroll, 2002), which

Figure 1: Sample lexical classes tags, lemmatizes and parses data yielding com-
516 BNC plete though shallow parses andsaF classifier
show do which incorporates an extensive inventory of 163
suggest say verbal scrs®.  The scrs abstract over specific
iL:]Sdeicate Sg)ake lexically-governed particles and prepositions and
contain see specific predicate selectional preferences. In our
describe take work, we parameterized two high frequeregrs
piess k%itw for prepositionsgpandnp + PP sci). No filter-
require come ing of potentially noisyscrs was done to provide
]f?bzefve tﬁ!VE clustering with as much information as possible.

n n

determine use e

demonstrate  find 3.2 Classification

perform look The scFfrequency distributions constitute the in-
induce want

put data to automatic classification. We experi-
Table 1: The 15 most frequent verbs in thement with five clustering methods: the simple hard
biomedical data and in the BNC nearest neighbours method and four probabilis-
tic methods — two variants of Probabilistic Latent
ted £ 2230 bi dical i | arti Semantic Analysis and two information theoretic
created a corpus o lomedical journal artlr, o, g (the Information Bottleneck and the In-
cles (see section 4.1 for details) and compared th% - - -
N o : _ rmation Distortion).
distribution of verbs in this corpus with that in the
British National CorpusgNC) (Leech, 1992). We 3.2.1 Nearest Neighbours
calculated the Spearman rank correlation between The first method collects the nearest neighbours

the 1165 verbs which occurred in both corpora \y) of each verb. It (i) calculates the Jensen-

The result was only a weak correlation: 0.37  ghannon divergencas) between thescr distri-
0.03. When the scope was restricted to the 10@tions of each pair of verbs, (i) connects each
most frequent verbs in the biomedical data, thgerp with the most similar other verb, and finally
correlation was 0.12t 0.10 which is onlyl.2o i) finds all the connected components. Th
away from zero. The dissimilarity between the nethod is very simple. It outputs only one clus-

distributions is further indicated by the Kullback- tering configuration and therefore does not allow
Leibler distance of 0.97. Table 1 illustrates S0me&xyamining different cluster granularities.

of these big differences by showing the list of 15
most frequent verbs in the two corpora. 3.2.2 Probabilistic Latent Semantic Analysis
The Probabilistic Latent Semantic Analysis
(PLsA, Hoffman (2001)) assumes a generative
We extended the system of Korhonen et al. (2003model for the data, defined by selecting (i) a verb
with additional clustering techniques (introducedverb;, (i) a semantic classlassy from the dis-
in sections 3.2.2 and 3.2.4) and used it to obtribution p(Classes | verb;), and (i) aSCF scf;
tain the classification for the biomedical domain.from the distributionp(SCFs | classy). PLSA uses
The system (i) extracts features from corpus dat&xpectation Maximization (EM) to find the dis-
and (ii) clusters them using five different methods tribution p(scrs | Clusters, Verbs) which max-
These steps are described in the following two sedmises the likelihood of the observed counts. It

3 Approach

tions, respectively. does this by minimising the cost function
3.1 Feature Extraction F = —flog Likelihood(p | data) + H(p) .
We employ as features distributions ®€rs spe- 3See http://www.cl.cam.ac.uk/users/alk23/subcat/subcat.html

cific to given verbs. We extract them from cor- for further detail.
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For 8 = 1 minimising F is equivalent to the stan- ing journals in biomedicine: 1§enes & Devel-
dard EM procedure while fof < 1 the distri- opment(molecular biology, molecular genetics),
bution p tends to be more evenly spread. We use) Journal of Biological Chemistrybiochemistry
B = 1 (PLSAEM) and3 = 0.75 (PLSA3—¢.75). and molecular biology) and Jpurnal of Cell Bi-
We currently “harden” the output and assign eaclology (cellular structure and function). 2230 full-
verb to the most probable cluster ohly text articles from years 2003-2004 were used. The
: data included 11.5M words and 323,307 sentences
3.2.3 Information Bottleneck . : . )
, , in total. 192 medium to high frequency verbs (with

The Information Bottleneck (Tishby et al., {he minimum of 300 occurrences in the data) were
1999) (B) is an information-theoretic method gg|acted for experimentatidn This test set was
which controls the balance between: (i) theyiy enough to produce a useful classification but
loss of information by representing verbs as gmgai enough to enable thorough evaluation in this

clusters ((Clusters; Verbs)), which has to be ot attempt to classify verbs in the biomedical do-
minimal, and (ii) therelevanceof the output main.

clusters for representing thecr distribution

(I(Clusters; sCcFs)) which has to be maximal. 4.2 Processing the Data

The balance between these two quantities ensurghe data was first processed using the feature ex-
optimal compression of data through clusters. Theraction module. 233 (preposition-specifisiF
trade-off between the two constraints is realizedypes appeared in the resulting lexicon, 36 per verb

through minimising the cost function: on averagé®. The classification module was then
Lig = I(Clusters; Verbs) applied. NN producedC,,, = 42 clusters. From
— BI(Clusters; SCFs) , the other methods we request€d= 2 to 60 clus-

where 3 is a parameter that balances the coniers. We chose for evaluation the outputs corre-
straints. 1B takes three inputs: (icFverb dis- sPonding to the most informative values/of 20,
tributions, (ii) the desired number of clustes 33, 53 foris, and 17, 33, 53 fom.

and (i'ii)_ the initial value of3. It then looks fqr 4.3 Gold Standard

the minimal3 that decrease§,; compared to its
value with the initial, using the giveriC. 1B de-
livers as output the probabilitieg K|V'). It gives

Because no target lexical classification was avail-
able for the biomedical domain, human experts (4
an indication for the most informative number of d0main experts and 2 linguists) were used to cre-
output configurations: the ones for which the rele-2{€ the gold standard. They were asked to examine
vance information increases more sharply betweelhether the test verbs similar in terms of their syn-

K — 1 andK clusters than betwedd andk -+ 1. tactic properties (i.e. verbs with similacFdistri-
butions) are similar also in terms of semantics (i.e.

3.2.4 Information Distortion they share a common meaning). Where this was
The Information Distortion method (Dimitrov the case, a verb class was identified and named.
and Miller, 2001) (D) is otherwise similar tas The domain experts examined the 116 verbs
but £, differs from L,z by an additional term that whose analysis required domain knowledge

adds a bias towards clusters of similar size: (e.g. activate, solubilize, harvegtwhile the lin-
Lio = —H(Clusters| Verbs) guists analysed the remaining 76 general or scien-
— BI(Clusters; SCFs) tific text verbs (e.gdemonstrate, hypothesize, ap-

= Lig — H(Clusters). pear). The linguists used Levin (1993) classes as
ID yields more evenly divided clusters thamn gold standard classes whenever possible and cre-
ated novel ones when needed. The domain ex-

4 Experimental Evaluation perts used two purely semantic classifications of
41 Data biomedical verbs (Friedman et al., 2002; Spasic et

) al., 2005Y as a starting point where this was pos-
We downloaded the data for our experiment from————

5230 verbs were employed initially but 38 were dropped
theMEDLINE database, from three of the 10 lead later so that each (coarse-grained) class would have the min-

“The same approach was used with the information theolmum of 2 members in the gold standard.
retic methods. It made sense in this initial work on biomedi-  ®This number is high because no filtering of potentially
cal classification. In the future we could use soft clustering anoisy SCFs was done.
means to investigate polysemy. See http://www.cbr-masterclass.org.
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1 Have an effect on activity (BIO/29)

1.1 Activate /Inactivate

8 Physical Relation
Between Molecules (BIO/20)

1.1.1 Change activityactivate, inhibit
1.1.2 Suppressuppress, repress
1.1.3 Stimulatestimulate

1.1.4 Inactivatedelay, diminish

1.2 Affect

1.2.1 Modulatestabilize, modulate
1.2.2 Regulatecontrol, support

8.1 Binding: bind, attach

8.2 Translocate and Segregate
8.2.1 Translocateshift, switch
8.2.2 Segregatesegregate, export
8.3 Transmit

8.3.1 Transportdeliver, transmit
8.3.2 Link: connect, map

1.3 Increase/ decreasencrease, decrease|

9 Report (GEN/30)

1.4 Modify: modify, catalyze

2 Biochemical events (BIO/12)

2.1 Express:express, overexpress

2.2 Modification

2.2.1 Biochemical modification:
dephosphorylate, phosphorylate

2.2.2 Cleavecleave

2.3 Interact: react, interfere

3 Removal (BIO/6)

3.1 Omit: displace, deplete
3.2 Subtract: draw, dissect

9.1 Investigate
9.1.1 Examineevaluate, analyze
9.1.2 Establishtest, investigate
9.1.3 Confirm:verify, determine
9.2 Suggest
9.2.1 Presentational:
hypothesize, conclude
9.2.2 Cogpnitive:
consider, believe
9.3 Indicate: demonstrate, imply

10 Perform (GEN/10)

4 Experimental Procedures (BIO/30)

4.1 Prepare

4.1.1 Washwash, rinse

4.1.2 Mix: mix

4.1.3 Label:stain, immunoblot

4.1.4 Incubatepreincubate, incubate

4.1.5 Eluteelute

4.2 Precipitate: coprecipitate
coimmunoprecipitate

4.3 Solubilize: solubilize,lyse

4.4 Dissolve:homogenize, dissolve

4.5 Place:load, mount

10.1 Quantify

10.1.1 Quantitatequantify, measure
10.1.2 Calculatecalculate, record
10.1.3 Conductperform, conduct
10.2 Score:score, count

11 Release (BIO/4)detach, dissociate

12 Use (GEN/4)utilize, employ

13 Include (GEN/11)
13.1 Encompassencompass, span
13.2 Include: contain, carry

14 Call (GEN/3):name, designate

5 Move (GEN/12)

5 Process (BIO/5)linearize, overlap

6 Transfect (BIO/4)inject, microinject

7 Collect (BIO/6)

7.1 Collect: harvest, select

15.1 Proceed:
progress, proceed
15.2 Emerge:
arise, emerge

7.2 Processcentrifuge, recover

16 Appear (GEN/6)appear, occur

classification methods and which deliver a numer-
ical value easy to interpret.

The first measure, thadjusted pairwise preci-
sion, evaluates clusters in terms of verb pairs:

num. of correct pairs if;
num. of pairs ink;

K

APP= L3 e

APP is the average proportion of all within-
cluster pairs that are correctly co-assigned. Multi-
plied by a factor that increases with cluster size it
compensates for a bias towards small clusters.

The second measurensodified purity a global
measure which evaluates the mean precision of
clusters. Each cluster is associated with its preva-
lent class. The number of verbs in a cluskethat
take this class is denoted By, cyatent (/). Verbs
that do not take it are considered as errors. Clus-
ters wherenprevalent (/) = 1 are disregarded as
not to introduce a bias towards singletons:

Mprevalent (ki)
Nprevalent (Fi) =2

number of verbs

MmPUR =

Table 2. The gold standard classification with a
few example verbs per class

The third measure is theeighted class accu-
racy, the proportion of members of dominant clus-
tersDoM-CLUST; within all classes;.

sible (i.e. where they included our test verbs and
also captured their relevant sen$es)

The experts created a 3-level gold standard
which includes both broad and finer-grained mPUR can be seen to measure the precision of
classes. Only those classes / memberships wenusters andvcc the recall. We define af’ mea-
included which all the experts (in the two teams)sure as the harmonic mean:ePUR andAcCC:
agreed off. The resulting gold standard includ-
ing 16, 34 and 50 classes is illustrated in table 2
with 1-2 example verbs per class. The table in-

dicates which classes were created by domain ex- Th;: sbtatlstlcgl S'Qn'f'_cance of thehresults 'Sb mea-
perts 10) and which by linguists¢EN). Each Sured by ran omisation tests where verbs are

class was associated with 1-30 member Vibs swapped between the clusters and the resulting
The total number of verbs is indicated in the '[ableCIUSt(_ers are evaluated. The swapping is repeated
(e.g. 10 forPERFORMClass) 100 times for each output and the averaggyaps

e ’ and the standard deviatiof.ps iS measured.
The significance is the scaled differendeni f =

_ (result — avswaps)/Tswaps -

The clusters were evaluated against the gold stan- SRR

dard using measures which are applicable to allthd.5 Results from Quantitative Evaluation

el _ _ Table 3 shows the performance of the five clus-
Purely semantic classes tend to be finer-grained than le

ical classes and not necessarily syntactic in nature. Onlythegl,ermg methods fokKC = 42 clusters (as produced
two classifications were found to be similar enough to our tar-py the NN method) at the 3 levels of gold stan-

get classification to provide a useful starting point. Section 545, classification. Although the tweLSA vari-
includes a summary of the similarities/differences between . .
our gold standard and these other classifications. ants (particularlypLsAz—o.75) produce a fairly ac-

°Experts were allowed to discuss the problematic casesurate coarse grained classification, they perform

to obtain maximal accuracy - hence no inter-annotator agreep,grse than all the other methods at the finer-
ment is reported. . .

grained levels of gold standard, particularly ac-

'The minimum of 2 member verbs were required at the ) )
coarser-grained levels of 16 and 34 classes. cording to the global measures. Being based on

c .
s> verbs inbom-cLusT;
i=1

number of verbs

ACC =

2 - mPUR- ACC
F=——
mPUR 4+ ACC

4.4 Measures
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16 Classes 34 Classes 50 Classes
APP mPUR ACC F APP mPUR ACC F APP mPUR ACC F
NN 81 86 39 53 64 74 62 67 54 67 73 69
B 74 88 47 61 61 76 74 75 55 69 87 76
ID 79 89 37 52 63 78 65 70 53 70 77 73
PLSA/EM 55 72 49 58 43 53 61 57 35 47 66 55
PLSA3=0.75 65 71 68 70 53 48 76 58 41 34 77 47

Table 3: The performance of tha\, PLSA, 1B andiD methods withC,,,, = 42 clusters

16 Classes 34 Classes 50 Classes

K APP mPUR ACC F APP mPUR ACC F APP mPUR ACC F

20 1B 74 77 66 71 60 56 86 67 54 48 93 63

17 1D 67 76 60 67 43 56 81 66 34 46 91 61

33 B 78 87 52 65 69 75 81 77 61 67 93 77
ID 81 88 43 57 65 75 70 72 54 67 82 73

53 B 71 87 41 55 61 78 66 71 54 72 79 75
ID 79 89 33 48 66 79 55 64 53 72 68 69

Table 4: The performance a& andiD for the 3 levels of class hierarchy for informative valuekof

pairwise similaritiesNN shows mostly better per- than our random baseline. The significance of the
formance thans andib on the pairwise measure results with respect to two swaps was at the
APP but the global measures are betterifoand level, corresponding to a 97% confidence that the
ID. The differences are smallerinPUR (yet sig- results are above random.

nificant: 20 betweenNnN andiB and3c between o _

NN and iD) but more notable imcc (which is 46 Qualitative Evaluation

e.g. 8 — 12% better forie than forNN). Also  We performed further, qualitative analysis of clus-
the I results suggest that the two information the-ters produced by the best performing methed
oretic methods are better overall than the simple€onsider the following clusters:

NN method. . _—
A: inject, transfect, microinfect, contransfgé)
1B andiD also have the advantage (ovwey) that B

- ] . harvest, select, colle¢?.1)
they can be used to produce a hierarchical verb  centrifuge, process, recovét.2)
classification. Table 4 shows the resultsi®iand C: wash, rinsg4.1.1)

ID for the informative values of. The bold font immunobloi(4.1.3)

- overlap(5)

indicates the results when the match between the

values of/C and the number of classes at the par- D: activate(1.1.1)
ticular level of the gold standard is the closest. When looking at coarse-grained outputs, in-
IB is clearly better thamp at all levels of gold terestingly, £ as low as 8 learned the broad
standard. It yields its best results at the mediungistinction between biomedical and general lan-
level (34 classes) withC = 33: ' = 77 andAPP  guage verbs (the two verb types appeared only
= 69 (the results forp are ' = 72 andAPP = rarely in the same clusters) and produced large se-
65). At the most fine-grained level (50 classes)mantically meaningful groups of classes (e.g. the
1B is equally good according t&' with £ = 33,  coarse-grained classe&xPERIMENTAL PROCE
but APPis 8% lower. AlthoughiD is occasion- puRrES TRANSFECTandCOLLECT were mapped
ally better thaniB according toAPP andmPUR  together). K = 12 was sufficient to iden-
(see e.g. the results for 16 classes with= 53)  tify several classes with very particular syntax
this never happens in the case where the corrédne of them wasTRANSFECT (see A above)
spondence between the number of gold standaf@hose members were distinguished easily be-
classes and the valuesdfis the closest. In other cause of their typicalscrs (e.g. inject /trans-
words, the informative values d€ prove really fect/microinfect/contransfedt with/intoY).

informative foriB. The lower performance ab On the other hand, evéa = 53 could not iden-
seems to be due to its tendency to create evenlyfy classes with very similar (yet un-identical)
sized clusters. syntax. These included many semantically similar

All the methods perform significantly better sub-classes (e.g. the two sub-classes@iLECT
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shown inB whose members take similar and annotated data (or a comprehensive list of verb
PP scmk). However, also a few semantically dif- senses) exists for the domain. However, exami-
ferent verbs clustered wrongly because of this reanation of a number of corpus instances suggests
son, such as the ones exemplifieddnin C, im-  that the use of verbs is fairly conventionalized in
munoblot(from theLABEL class) is still somewhat our datd®. Where verbs show less sense varia-
related tovashandrinse(thewasH class) because tion, they show lesscFvariation, which aids the
they all belong to the largerxPERIMENTAL PRO-  discovery of verb classes. Korhonen et al. (2003)
CEDURESclass, butoverlap (from the PROCESS observed the opposite with general language data.
class) shows up in the cluster merely because of We examined, class by class, to what extent our
syntactic idiosyncracy. domain-specific gold standard differs from the re-
While parser errors caused by the challenglated general (Levin, 1993) and domain classifica-
ing biomedical texts were visible in sonmscrs  tions (Spasic et al., 2005; Friedman et al., 2002)
(e.g. looking at a sample aofcrs, some adjunct (recall that the latter were purely semantic clas-
instances were listed in the argument slots of thaifications as no lexical ones were available for
frames), the cases where this resulted in incorrediiomedicine):
classification were not numerdds 33 (of the 50) classes in the gold standard are
One representative singleton resulting frombiomedical. Only 6 of these correspond (fully or
these errors is exemplified iD. Activate ap- mostly) to the semantic classes in the domain clas-
pears in relatively complicated sentence strucsifications. 17 are unrelated to any of the classes in
tures, which gives rise to incorrestrs. For ex- Levin (1993) while 16 bear vague resemblance to
ample, MECs cultured on 2D planar substrates them (e.g. OUITRANSPORT verbs are also listed
transiently activate MAP kinase in response to under Levin’'sSEND verbs) but are too different
EGF, whereas..gets incorrectly analysed acF  (semantically and syntactically) to be combined.
NP-NP, while The effect of the constitutivebc- 17 (of the 50) classes are general (scientific)
tivated ARF6-Q67L mutant was investigatede-  classes. 4 of these are absent in Levin (@LAN-
ceives the incorredcranalysisN\P-SsCOMP. Most  TITATE). 13 are included in Levin, but 8 of them
parser errors are caused by unknown domainkave a more restricted sense (and fewer members)

specific words and phrases. than the corresponding Levin class. Only the re-
_ _ maining 5 classes are identical (in terms of mem-
5 Discussion bers and their properties) to Levin classes.

Due to differences in the task and experimental These results highlight the importance of build-

. . . Ing or tuning lexical resources specific to different
setup, direct comparison of our results with pre- ,
. ) . ) domains, and demonstrate the usefulness of auto-
viously published ones is impossible. The clos

. . L ‘matic lexical acquisition for this work.
est possible comparison point is (Korhonen et al.,

2003) which reported 50-59%PUrR and 15-19%
APPon usingis to assign 110 polysemous (gen-
eral language) verbs into 34 classes. Our resultShis paper has shown that current domain-
are substantially better, although we made no efindependentiLp andMmL technology can be used
fort to restrict our scope to monosemous véfbs to automatically induce a relatively high accu-
and although we focussed on a linguistically chal+acy verb classification from a linguistically chal-
lenging domain. lenging corpus of biomedical texts. The lexical
It seems that our better result is largely dueclassification resulting from our work is strongly
to the higher uniformity of verb senses in thedomain-specific (it differs substantially from pre-
biomedical domain. We could not investigate thisvious ones) and it can be readily used to Bid-
effect systematically because no manually senseLP. It can provide useful material for investigat-

ing the syntax and semantics of verbs in biomed-

UThis is partly because the mistakes of the parser ar . ‘o :
somewhat consistent (similar for similar verbs) and partly beffcal data or for supplementing existing domain

cause thescrs gather data from hundreds of corpus instanceslexical resources with additional information (e.g.
many of which are analysed correctly.

2Most of our test verbs are polysemous according to *The different sub-domains of the biomedical domain
WordNet (vN) (Miller, 1990), but this is not a fully reliable may, of course, be even more conventionalized (Friedman et
indication becaus#N is not specific to this domain. al., 2002).

6 Conclusion
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semantic classifications with additional memberV. Hatzivassiloglou and W. Weng. 2002. Learning an-

verbs). Lexical resources enriched with verb class chor verbs for biological interaction patterns from

information can, in turn, better benefit practical PuPlished text articles. Intermational Journal of
o P : ... Medical Inf, 67:19-32.

tasks such as parsing, predicate-argument identifi-

cation, event extraction, identification of biomedi- L. Hirschman, J. C. Park, J. Tsujii, L. Wong, and C. H.
cal relation patterns, among others. Wu. 2002. Accomplishments and challenges in lit-

. erature data mining for biologyJournal of Bioin-
In the future, we plan to improve the accu- formatics 18(12):1553-1561.

racy of automatic classification by seeding it with _ .
domain-specific information (e.g. using named en- Hoffman. 2001. Unsupervised learning by proba-
. g L . bilistic latent semantic analysi#lachine Learning
tity recognition and anaphoric linking techniques 42(1):177-196
similar to those of Vlachos et al. (2006)). We also _
plan to conduct a bigger experiment with a largeR- Jackgr)goff. 199059;1“3”“0 StructuresMIIT Press,
number of verbs and demonstrate the usefulness of C2MPridge, Massachusetts.
the bigger classification for practicalo-NLP ap-  A. Korhonen, Y. Krymolowski, and Z. Marx. 2003.
plication tasks. In addition, we plan to apply sim- Clu'sterlng polysemlc subcategquzatlon frame distri-
ilar technology to other interesting domains (e.g. Putions semantically. IRroceedings of the 41st An-

. . ; nual Meeting of the Association for Computational
tourism, law, astr'onomy).' This will not qnly en- | inguistics pages 64—71, Sapporo, Japan.
able us to experiment with cross-domain lexical o o
class variation but also help to determine whethef* F'fr?g‘otr;]ig-is zgﬁsérss‘ftbcg?;r%ﬁgog AUCQU'S'“O”
automatic acquisition techniques benefit, in gen- o ' y ge, LR

eral, from domain-specific tuning. M. Lease and E. Charniak. 2005. Parsing biomedical
literature. InSecond International Joint Conference
Acknowledgement on Natural Language Processingages 58—-69.
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