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Abstract specifically targeting the analysis obordination
andverb groupstwo very common constructions
that pose special problems for dependency-based
approaches. The basic idea is that we can facili-
tate learning by transforming the training data for
the parser and that we can subsequently recover

that similar transformations can give sub- the original representations by applying an inverse

stantial improvements also in data-driven ~ transformation to the parser's output.
dependency parsing. Experiments on the The data used in the experiments come from
Prague Dependency Treebank show that the Prague Dependency Treebank (PDT) (8aji

systematic transformations of coordinate ~ 1998; Hajt et al., 2001), the largest avail-
structures and verb groups result in a  able dependency treebank, annotated according to

10% error reduction for a deterministic  the theory of Functional Generative Description
data-driven dependency parser. Combin- (FGD) (Sgall et al., 1986). The parser used is
ing these transformations with previously ~ MaltParser (Nivre and Hall, 2005; Nivre et al.,
proposed techniques for recovering non-  2006), a freely available system that combines a
projective dependencies leads to state-of- deterministic parsing strategy with discriminative
the-art accuracy for the given data set. classifiers for predicting the next parser action.

The paper is structured as follows. Section 2
provides the necessary background, including a
It has become increasingly clear that the choicelefinition of dependency graphs, a discussion of
of suitable internal representations can be a verdifferent approaches to the analysis of coordina-
important factor in data-driven approaches to syntion and verb groups in dependency grammar, as
tactic parsing, and that accuracy can often be imwell as brief descriptions of PDT, MaltParser and
proved by internal transformations of a given kindsome related work. Section 3 introduces a set
of representation. This is well illustrated by the of dependency graph transformations, specifically
Collins parser (Collins, 1997; Collins, 1999), scru-defined to deal with the dependency annotation
tinized by Bikel (2004), where several transforma-found in PDT, which are experimentally evaluated
tions are applied in order to improve the analy-in section 4. While the experiments reported in
sis of noun phrases, coordination and punctuatiorsection 4.1 deal with pure treebank transforma-
Other examples can be found in the work of Johntions, in order to establish an upper bound on what
son (1998) and Klein and Manning (2003), whichcan be achieved in parsing, the experiments pre-
show that well-chosen transformations of syntacsented in section 4.2 examine the effects of differ-
tic representations can greatly improve the parsingnt transformations on parsing accuracy. Finally,
accuracy obtained with probabilistic context-freein section 4.3, we combine these transformations
grammars. with previously proposed techniques in order to

In this paper, we apply essentially the sameoptimize overall parsing accuracy. We conclude
technigues to data-driven dependency parsingn section 5.

Transforming syntactic representations in
order to improve parsing accuracy has
been exploited successfully in statistical
parsing systems using constituency-based
representations. In this paper, we show

1 Introduction
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2 Background the conjuncts, and instead let the conjuncts
have a direct dependency relation to the same
head (Tesmire, 1959; Hudson, 1990). Another
The basic idea in dependency parsing is that thgpproach is to make the conjunction the head and
syntactic analysis consists in establishing typediet the conjuncts depend on the conjunction. This
binary relations, calledependenciebetween the analysis, which appears well motivated on seman-
words of a sentence. This kind of analysis can bgic grounds, is adopted in the FGD framework and
represented by a labeled directed graph, defined & therefore be called Prague style (PS). It is
follows: exemplified in figure 1, where the conjunctian
(and) is the head of the conjundisjovnost and
tvrdost. A different solution is to adopt a more
hierarchical analysis, where the conjunction de-
e A dependency graph for a string of words pends on the first conjunct, while the second con-
W = w;...w, is a labeled directed graph junct depends on the conjunction. In cases of
G = (W, A), where: multiple coordination, this can be generalized to a
chain, where each element except the first depends
on the preceding one. This more syntactically
oriented approach has been advocated notably by
Mel’ €uk (1988) and will be called Matuk style
(MS). It is illustrated in figure 2, which shows a
transformed version of the dependency graph in
o A dependency grapli = (W, A) is well- figure 1, where the elements of the coordination
form a chain with the first conjuncbjovnost) as
the topmost head. Lombardo and Lesmo (1998)
conjecture that MS is more suitable than PS for
We will use the notationv; — w; to symbolize incremental dependency parsing.
that (w;,7,w;) € A, wherew; is referred to as  The difference between the more semantically
the headand w; as thedependent We say that oriented PS and the more syntactically oriented
an arc isprojectiveiff, for every wordw; occur- MS is seen also in the analysis of verb groups,
ring betweenw; andwy, (i.e., w; < w; < wg  where the former treats the main verb as the head,
orw; > w; > wy), there is a path fromw; to  since it is the bearer of valency, while the latter
w;. A graph is projective iff all its arcs are pro- treats the auxiliary verb as the head, since it is the
jective. Figure 1 shows a well-formed (projective)finite element of the clause. Without questioning
dependency graph for a sentence from the Praguge theoretical validity of either approach, we can
Dependency Treebank. again ask which analysis is best suited to achieve
high accuracy in parsing.

2.1 Dependency Graphs

e LetR = {ry,...,r,} beasetof dependency
types (arc labels).

— W is the set of nodes, i.e. word tokens
in the input string, ordered by a linear
precedence relation.

— Alis aset of labeled ardsv;, r, w;), w;,

w; € W,r € R.

formed iff it is acyclic and no node has an
in-degree greater than 1.

2.2 Coordination and Verb Groups

Dependency grammar assumes that syntactié-3 PDT

structure consists of lexical nodes linked by binaryPDT (Hajic, 1998; Hajt et al., 2001) consists of
dependencies. Dependency theories are thus bestM words of newspaper text, annotated in three
suited for binary syntactic constructions, wherelayers: morphological, analytical and tectogram-
one element can clearly be distinguished as thenatical. In this paper, we are only concerned
syntactic head. The analysis of coordination iswith the analytical layer, which contains a surface-
problematic in this respect, since it normally in- syntactic dependency analysis, involving a set of
volves at least one conjunction and two conjuncts28 dependency types, and not restricted to projec-
The verb group, potentially consisting of a wholetive dependency grapisThe annotation follows
chain of verb forms, is another type of construc-FGD, which means that it involves a PS analysis of
tion where the syntactic relation between elementgoth coordination and verb groups. Whether better
is not clear-cut in dependency terms. parsing accuracy can be obtained by transforming

Several solutions have been proposed to the—; _ —
About 2% of all dependencies are non-projective and

prOblem of cgordlnatlon. One a_ltemat“/e ISabout25%0fal|sentenceshaveanon-projectivedependency
to avoid creating dependency relations betweegraph (Nivre and Nilsson, 2005).
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Coord

Obj_Co
¢ Atr ! Obj_Co | Atr J:Aux'l’| | Sb HAtr¢
A7 N7 J A7 N7 P4 Vp N2 N2
Velkou bojovnost a netekanou tvrdosf se vyznatovalo finale turnaje
great fighting-spirit and unexpected hardness itself distinguished final  of-the-tournament

(“The final of the tournament was distinguished by great fighspirit and unexpected hardness”)
Figure 1: Dependency graph for a Czech sentence from thei® gpendency Treebank

Obj
Obj
Atr Coord Atr AuxT Sb Atr
,0{7 l\||7I JL A7 N7 F¢’4 IV[L l\¢l|2 I\¢I2
Velkou bojovnost a netekanou tvrdosi se  vyznaovalo finale turnaje
great fighting-spirit and unexpected hardness itself distinguished final  of-the-tournament

(“The final of the tournament was distinguished by great fighspirit and unexpected hardness”)
Figure 2: Transformed dependency graph for a Czech sentemmdhe Prague Dependency Treebank

this to MS is one of the hypotheses explored in thdorm the dependency structure for coordination

experimental study below. but does not present any results.
Graph transformations in dependency parsing
2.4 MaltParser have also been used in order to recover non-

MaltParser (Nivre and Hall, 2005; Nivre et al., projective dependencies together with parsers that
2006) is a data-driven parser-generator, which ca@'® restricted to projective dependency graphs.
induce a dependency parser from a treebank, anthus. Nivre and Nilsson (2005) improve parsing
which supports several parsing algorithms andccuracy for MaltParser by projectivizing training
learning algorithms. In the experiments below wedata and applying an inverse transformation to the
use the algorithm of Nivre (2003), which con- output of the parser, while Hall and Nak (2005)
structs a labeled dependency graph in one left@PPly post-processing to the output of Charniak’s
to-right pass over the input. Classifiers that preParser (Charniak, 2000). In the final experi-
dict the next parser action are constructed througf'ents below, we combine these techniques with
memory-based learning (MBL), using theMBL the transformations investigated in this paper.
software package (Daelemans and Van den Bosch,
2005), and support vector machines (SVM), usin

LIBSVM (Chang and Lin, 2005). In this section, we describe algorithms for trans-
forming dependency graphs in PDT from PS to
MS and back, starting with coordination and con-
Other ways of improving parsing accuracy withtinuing with verb groups.

respect to coordination include learning patterns o

of morphological and semantical information for 3-1 ~ Coordination

the conjuncts (Park and Cho, 2000). More specifiThe PS-to-MS transformation for coordination
cally for PDT, Collins et al. (1999) relabel coordi- will be designated.(A), whereA is a data set.
nated phrases after converting dependency strudhe transformation begins with the identification
tures to phrase structures, and Zeman (2004) use$ a base conjunctionbased on its dependency
a kind of pattern matching, based on frequencietype (Coord) and/or its part-of-speechl7). For

of the parts-of-speech of conjuncts and conjuncexample, the wora@ (and) in figure 1 is identified
tions. Zeman also mentions experiments to transas a base conjunction.

Dependency Graph Transformations

2.5 Related Work
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Before the actual transformation, the base conThe dependency typeof eachw, € D can be re-
junction and all its dependents need to be classiplaced by a completely new dependency tyge
fied into three different categories. First, the basde.g., Atr+), theoretically increasing the number
conjunction is categorized assaparator(S). If  of dependency types @ |R)|.
the coordination consists of more than two con- The inverse transformations,1(A), again
juncts, it normally has one or more commas sepstarts by identifying base conjunctions, using the
arating conjuncts, in addition to the base conjuncsame conditions as before. For each identified
tion. These are identified by looking at their de-base conjunction, it calls a procedure that per-
pendency type (mostlkxuxX) and are also catego- forms the inverse transformation by traversing
rized asS. The coordination in figure 1 contains the chain of conjuncts and separators “upwards”
no commas, so only the woedwill belong to S. (right-to-left), collecting conjunctg{), separators

The remaining dependents of the base conjund.S) andpotentialconjunction dependentd),:).
tion need to be divided into conjunct€’ and When this is done, the former head of the left-
other dependentslY). To make this distinction, most conjunct(’';) becomes the head of the right-
the algorithm again looks at the dependency typenost (base) conjunctionS,, ,). In figure 2,

In principle, the dependency type of a conjunctthe leftmost conjunct isojovnost, with the head
has the suffixCo, although special care has to bevyzn&ovalg and the rightmost (and only) con-
taken for coordinated prepositional cases and enjunction isa, which will then havevyzn&ovaloas
bedded clauses (Bmo\a et al., 2003). The words its new head. All conjuncts in the chain become
bojovnostandtvrdosi in figure 1, both having the dependents of the rightmost conjunction, which
dependency typ®Dbj_Co, belong to the category means that the structure is converted back to the
C. Since there are no other dependents,athe  one depicted in figure 1.

coordination contains no instances of the category As mentioned above, the original structure in
D. figure 1 did not have any coordination dependents,

Given this classification of the words involved but Velkoue D,,;. The last step of the inverse
in a coordination, the transformation.(A) is transformation is therefore to sort out conjunction

straightforward and basically connects all the arc§lependents from conjunct dependents, where the
in a chain. LetC,, ..., C, be the elements af, former will attach to the base conjunction. Four
ordered by linear precedence, anddet . . . , S, versions have been implemented, two of which
be the separators occurring betwegrandC; . 1. take into account the fact that the dependency
Then everyC; becomes the head &f ..., S,,,, YPe€SAUXG AuxX AuxY, andPred are the only
S,., becomes the head ¢f;, ;, andC; becomes dependency types that are more frequent as con-
the only dependent of the original head of the baséinction dependentsZ{) than as conjunct depen-
conjunction. The dependency types of the condents in the training data set:

juncts are truncated by removing the suff®o.?
Also, each word invy € D becomes a dependent
of the conjunct closest to its left, and if such a word
does not existyg will depend on the leftmostcon- o 7..: Do not extend arc labels in. Attach all

junct. After the transformation.(A), every coor- words with labelAuxG AuxX AuxY or Pred
dination forms a left-headed chain, as illustrated  to the base conjunction iy .

in figure 2.

This new representation creates a problem, ® 7e+: Extend arc labels from to r+ for D
however. Itis no longer possible to distinguish the ~ €léments inr.. Attach all words with label
dependents i from other dependents of the con- "+ 10 the base conjunction (and change the
juncts. For example, the wordelkouin figure 2 label tor) in 7.7
?s not distinguishable_from a possible dependent | 7o1+1 Extend arc labels from to r+ for D
in D, which is an obvious drawback when trans- elements inr., except for the label&uxG

forming back to PS. One way of distinguishiny AuxX AuxYandPred Attach all words with
elements is to extend the set of dependency types. label 7+, AuxG AuxX AuxY, or Pred to the

o . . _ base conjunction (and change the label ib
Preliminary results indicated that this increases parsing N
accuracy. necessary) im; .

e 7.. DO not extend arc labels in.. Leave all
words inD,, in place in7, 1.
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3.2 Verb Groups Data ‘ #S #W %S %C %A

Ay 73088 1256k 39 7.7 13
Ag 7319 126k 4.0 78 14
A, 7507 126k 3.8 73 14

To transform verb groups from PS to MS, the
transformation algorithmg, (A), starts by identi-
fying all auxiliary verbs in a sentence. These will
belong to the sel and are processed from left to Table 1: PDT data sets; S = sentence, W = word:;
right. A word way, € A iff wnain Auzy Weuz, S = Separator, C = conjunct, A = auxiliary verb

wherew,,qin is the main verb. The transformation

into MS reverses the relation between the verbs, T AS

i.€e., Waux Auzly Wmain, and the former head of Te 97.8
Wmain DECOMES the new head of,,,. The main Tex 98.6
verb can be located on either side of the auxiliary Tet 99.6
verb and can have other dependents (whereas aux- Terr | 99.4
iliary verbs never have dependents), which means Tv 100.0

that dependency relations to other dependents of i i
Wimaim May become non-projective through theTable 2: Transformations; T = tranlsformatlon;
transformation. To avoid this, all dependents toAS = attachment score (unlabeled)rof(7(A:))
the left of the rightmost verb will depend on the compared tah;

leftmost verb, whereas the others will depend on

the rightmost verb. MaltParser is used with the parsing algorithm of
Performing the inverse transformation for verbjvre (2003) together with the feature model used
groups, 7, '(A), is quite simple and essentially for parsing Czech by Nivre and Nilsson (2005).
the same procedure inverted. Each sentence is trgy section 4.2 we use MBL, again with the same
versed from right to left looking for arcs of the settings as Nivre and Nilsson (20053nd in sec-
type wauz Avcy Wmain- FOr every such arc, the tion 4.2 we use SVM with a polynomial kernel of
head ofwg., will be the new head ofv,,..in, and  degree 2 The metrics for evaluation are the at-
Wmain the new head ofv,,,. Furthermore, since tachment score (AS) (labeled and unlabeled), i.e.,
wauz dOes not have dependents in PS, all deperthe proportion of words that are assigned the cor-

dents ofwg,, i MS will become dependents of rect head, and the exact match (EM) score (labeled

Winain IN PS. and unlabeled), i.e., the proportion of sentences
that are assigned a completely correct analysis.
4 Experiments All tokens, including punctuation, are included in

_ ~theevaluation scores. Statistical significance is as-
All experiments are based on PDT 1.0, which isgessed using McNemar's test.

divided into three data sets, a training sAt), a
development test sef\(;), and an evaluation test 4.1 Experiment 1: Transformations
set (A.). Table 1 shows the size of each data set, ashe algorithms are fairly simple. In addition, there
well as the relative frequency of the specific con-will always be a small proportion of syntactic con-
structions that are in focus here. Only 1.3% of allstructions that do not follow the expected pattern.
words in the training data are identified as auxil-Hence, the transformation and inverse transforma-
iary verbs (), whereas coordinationS(and C)  tion will inevitably result in some distortion. In
is more common in PDT. This implies that coor- order to estimate the expected reduction in pars-
dination transformations are more likely to haveing accuracy due to this distortion, we first con-
a greater impact on overall accuracy compared tgider a pure treebank transformation experiment,
the verb group transformations. where we compare ! (7(A;)) to Ay, for all the

In the parsing experiments reported in sectionglifferent transformations defined in the previous
4.1-4.2, we usé\; for training,A, for tuning, and  section. The results are shown in table 2.
A, for the final evaluation. The part-of-speech We see that, even though coordination is more
tagging used (both in training and testing) is thefrequent, verb groups are easier to hartdi€he
HMM t.agging distributed with the tregbank, with " 3TIMBL parameters: k5 -mM -L3 w0 -dID.
a tagging accuracy of 94.1%, and with the tagset 4 gsvm parameters: -s0 -1 -d2 -g0.12 -r0 -c1 -€0.1.
compressed to 61 tags as in Collins et al. (1999). S5The resultis rounded to 100.0% but the transformed tree-
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coordination version with the least loss of infor- AS EM

mation (.. ) fails to recover the correct head for T U L U L

0.4% of all words inA;. None 79.08 72.83 28.99 21.15
The difference between.; andr. is expected. Te 80.55 74.06 30.08 21.27

However, in the next section this will be contrasted 7 80.90 74.41 30.56 21.42

with the increased burden on the parser for, Tet 80.58 74.07 30.42 21.17

since it is also responsible for selecting the correct  7c++ 80.87 74.36 30.89 21.38

dependency type for each arc among as many as 7y 79.28 7297 29.53 21.38

2 - |R| types instead ofR). TvoTet» | 81.01 7451 31.02 21.57

4.2 Experiment 2: Parsing Table 3: Parsing accuracy (MBIA.); T = trans-

Parsing experiments are carried out in four stepg’rm""t.ion;_AS = attachment score, EM = exact
(for a given transformation): match; U = unlabeled, L = labeled

1. Transform the training data set int6A,). ASA. |90.1 836 705 595 459
2. Train a parsep on7(A;). Length: 1 23 46 7-10 11-

3. Parse a test sét usingp with outputp(A). rAt(A) 24112 ggi 13? gg 22
c t . . . . .

4. Transform the parser output into! (p(A)). (A, | 529 292 107 42 2.9

Table 3 presents the results for a selection of trans.l--able 4: Baseline labeled AS per arc length/on
formations using MaltParser with MBL, tested ON (10w 1).' proportion of arcs per arc length i,

the evaluation test seX. with the untransformed (rows 3-5)
data as baseline. Rows 2-5 show that transform-
ing coordinate structures to MS improves parsing

accuracy compared to the baseline, regardless ghort arcs, but that accuracy drops quite rapidly
which transformation and inverse transformationgs the arcs get longer. This can be related to the
are used. Moreover, the parser benefits from thenean arc length im\;, which is 2.59 in the un-
verb group transformation, as seen in row 6. transformed version, 2.40 in.(A;) and 2.54 in
The final row shows the best combination of ar, (A,). Rows 3-5 in table 4 show the distribution
coordination transformation with the verb groupof arcs for different arc lengths in different ver-
transformation, which amounts to an improvemensijons of the data set. Both and 7, make arcs

of roughly two percentage points, or a ten percenshorter on average, which may facilitate the task
overall error reduction, for unlabeled accuracy. for the parser.

All improvements over the baseline are statis- Another possible explanation is that learning is
tically significant (McNemar’s test) with respect facilitated if similar constructions are represented
to attachment score (labeled and unlabeled) angimilarly. For instance, it is probable that learning
unlabeled exact match, with < 0.01 except for js made more difficult when a unit has different

the unlabeled exact match score of the verb groupeads depending on whether it is part of a coordi-
transformation, wheré.01 < p < 0.05. For the  nation or not.

labeled exact match, no differences are significant. . o
The experimental results indicate that MS is4.3 Experiment 3: Optimization

more suitable than PS as the target representatign this section we combine the best results from
for deterministic data-driven dependency parsingthe previous section with the graph transforma-
A relevant question is of course why this is thetions proposed by Nivre and Nilsson (2005) to re-
case. A partial explanation may be found in thecover non-projective dependencies. We write
“short-dependency preference” exhibited by mostor the projectivization of training data ang! for
parsers (Eisner and Smith, 2005), with MaltParsethe inverse transformation applied to the parser’s
being no exception. The first row of table 4 showsoutput® In addition, we replace MBL with SVM,
the accuracy of the parser for different arc lengths learning algorithm that tends to give higher accu-

under the baseline condition (i.e., with no transracy in classifier-based parsing although it is more
formations). We see that it performs very well on

5More precisely, we use the variant calledrR in Nivre
bank contains 19 erroneous heads. and Nilsson (2005).
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AS EM
T LA U L U L
None MBL | 79.08 72.83 28.99 21.15
Tp MBL | 80.79 74.39 31.54 2253
TpoTyoTe.4+ MBL | 8293 76.31 34.17 23.01
None SVM| 81.09 75.68 32.24 25.02
Tp SVM | 8293 77.28 35.99 27.05
TpoTyoTe4+ SVM | 8455 78.82 37.63 27.69

Table 5: Optimized parsing results (SVM,.); T = transformation; LA = learning algorithm; AS =
attachment score, EM = exact match; U = unlabeled, L = labeled

T \ P:S R:S \ PC R:C \ P:A RA | P:M R:M
None 52.63 72.35 55.15 67.03 82.17 82.21] 69.95 69.07
TpOTyOTeyx 63.73 82.10| 63.20 75.14| 90.89 92.79 80.02 81.40

Table 6: Detailed results for SVM; T = transformation; P =ab#led precision, R = unlabeled recall

costly to train (Sagae and Lavie, 2005). ing a corrective model to the output of Charniak’s
Table 5 shows the results, for both MBL and parser; McDonald and Pereira (2006) achieve a
SVM, of the baseline, the pure pseudo-projectivescore of 85.2% using a second-order spanning tree
parsing, and the combination of pseudo-projectivaalgorithm. Using ensemble methods and a pool of
parsing with PS-to-MS transformations. We sedlifferent parsers, Zeman anthbokrtsk (2005)
that pseudo-projective parsing brings a very conattain a top score of 87.0%. For unlabeled exact
sistent increase in accuracy of at least 1.5 percentnatch, our results are better than any previously
age points, which is more than that reported byreported results, including those of McDonald and
Nivre and Nilsson (2005), and that the additionPereira (2006). (For the labeled scores, we are not
of the PS-to-MS transformations increases accuaware of any comparable results in the literature.)
racy with about the same margin. We also see that
SVM outperforms MBL by about two percentage5 Conclusion
points across the board, and that the positive effect
of the graph transformations is most pronounced he results presented in this paper confirm that
for the unlabeled exact match score, where th€hoosing the right representation is important
improvement is more than five percentage point$n parsing. By systematically transforming the
overall for both MBL and SVM. representation of coordinate structures and verb
Table 6 gives a more detailed analysis of thegroups in PDT, we achieve a 10% error reduc-
parsing results for SVM, comparing the optimaltion for a data-driven dependency parser. Adding
parser to the baseline, and considering specificallgraph transformations for non-projective depen-
the (unlabeled) precision and recall of the catedency parsing gives a total error reduction of
gories involved in coordination (separatdtsand ~ about 20% (even more for unlabeled exact match).
conjunctsC) and verb groups (auxiliary verbgé  In this way, we achieve state-of-the-art accuracy
and main verbs\/). All figures indicate, with- with a deterministic, classifier-based dependency
out exception, that the transformations result inparser.
higher precision and recall for all directly involved
words. (All differences are significant beyond theAcknowledgements
0.01 level.) It is worth noting that the error reduc-
tion is actually higher ford and)M than forS and ~ The research presented in this paper was partially
C, although the former are less frequent. supported by the Swedish Research Council. We
With respect to unlabeled attachment score, th@re grateful to Jan Hajiand Daniel Zeman for
results of the optimized parser are slightly belowhelp with the Czech data and to three anonymous
the best published results for a single parser. Hafleviewers for helpful comments and suggestions.
and Nowak (2005) report a score of 85.1%, apply-
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