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Abstract

This paper proposes a framework for train-
ing Conditional Random Fields (CRFs)
to optimize multivariate evaluation mea-
sures, including non-linear measures such
as F-score. Our proposed framework is
derived from an error minimization ap-
proach that provides a simple solution for
directly optimizing any evaluation mea-
sure. Specifically focusing on sequential
segmentation tasks, i.e. text chunking and
named entity recognition, we introduce a
loss function that closely reflects the tar-
get evaluation measure for these tasks,
namely, segmentation F-score. Our ex-
periments show that our method performs
better than standard CRF training.

1 Introduction

Conditional random fields (CRFs) are a recently
introduced formalism (Lafferty et al., 2001) for
representing a conditional model p(y|x), where
both a set of inputs, «, and a set of outputs,
y, display non-trivial interdependency. CRFs are
basically defined as a discriminative model of
Markov random fields conditioned on inputs (ob-
servations) x. Unlike generative models, CRFs
model only the output y’s distribution over x. This
allows CRFs to use flexible features such as com-
plicated functions of multiple observations. The
modeling power of CRFs has been of great ben-
efit in several applications, such as shallow pars-
ing (Sha and Pereira, 2003) and information ex-
traction (McCallum and Li, 2003).

Since the introduction of CRFs, intensive re-
search has been undertaken to boost their effec-
tiveness. The first approach to estimating CRF pa-
rameters is the maximum likelihood (ML) criterion
over conditional probability p(y|x) itself (Laf-
ferty et al., 2001). The ML criterion, however,
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is prone to over-fitting the training data, espe-
cially since CRFs are often trained with a very
large number of correlated features. The maximum
a posteriori (MAP) criterion over parameters, A,
given x and y is the natural choice for reducing
over-fitting (Sha and Pereira, 2003). Moreover,
the Bayes approach, which optimizes both MAP
and the prior distribution of the parameters, has
also been proposed (Qi et al., 2005). Furthermore,
large margin criteria have been employed to op-
timize the model parameters (Taskar et al., 2004;
Tsochantaridis et al., 2005).

These training criteria have yielded excellent re-
sults for various tasks. However, real world tasks
are evaluated by task-specific evaluation mea-
sures, including non-linear measures such as F-
score, while all of the above criteria achieve op-
timization based on the linear combination of av-
erage accuracies, or error rates, rather than a given
task-specific evaluation measure. For example, se-
quential segmentation tasks (SSTs), such as text
chunking and named entity recognition, are gener-
ally evaluated with the segmentation F-score. This
inconsistency between the objective function dur-
ing training and the task evaluation measure might
produce a suboptimal result.

In fact, to overcome this inconsistency, an
SVM-based multivariate optimization method has
recently been proposed (Joachims, 2005). More-
over, an F-score optimization method for logis-
tic regression has also been proposed (Jansche,
2005). In the same spirit as the above studies, we
first propose a generalization framework for CRF
training that allows us to optimize directly not
only the error rate, but also any evaluation mea-
sure. In other words, our framework can incor-
porate any evaluation measure of interest into the
loss function and then optimize this loss function
as the training objective function. Our proposed
framework is fundamentally derived from an ap-
proach to (smoothed) error rate minimization well
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known in the speech and pattern recognition com-
munity, namely the Minimum Classification Er-
ror (MCE) framework (Juang and Katagiri, 1992).
The framework of MCE criterion training supports
the theoretical background of our method. The ap-
proach proposed here subsumes the conventional
ML/MAP criteria training of CRFs, as described
in the following.

After describing the new framework, as an ex-
ample of optimizing multivariate evaluation mea-
sures, we focus on SSTs and introduce a segmen-
tation F-score loss function for CRFs.

2 CRFsand Training Criteria

Given an input (observation) z€ X’ and parameter
vector A = {A1,..., Ay}, CRFs define the con-
ditional probability p(y|x) of a particular output
y € ) as being proportional to a product of po-
tential functions on the cliques of a graph, which
represents the interdependency of y and . That
is:

1
Zx(x)

T ey

ceC(y,x)

p(yle; A) =

where ®.(y, x; A) is a non-negative real value po-
tential function on aclique c € C(y, x). Zx(x)=
> gey leec(g,z) Pc(y,x; A) is a normalization
factor over all output values, ).

Following the definitions of (Sha and Pereira,
2003), a log-linear combination of weighted fea-
tures, ®.(y,z;A) = exp(A- f.(y,x)), is used
as individual potential functions, where f,_ rep-
resents a feature vector obtained from the corre-
sponding clique c. That is, [[.co(y.0) Pc(y, ) =
exp(A-F(y, x)), where F(y, x) =2 fely,x)is
the CRF’s global feature vector for x and y.

The most probable output ¢ is given by y =
arg max,cy p(y|z; X). However Z (z) never af-
fects the decision of ¢ since Z,(x) does not de-
pend on y. Thus, we can obtain the following dis-
criminant function for CRFs:

9 = argmax X - F(y, ). (@)
yey

The maximum (log-)likelihood (ML) of the
conditional probability p(y|x;A) of training
data {(x*,y**)}Y_, wrt.  parameters X is
the most basic CRF training criterion, that is,
arg maxy > log p(y**|z¥; X), where y** is the
correct output for the given x*. Maximizing
the conditional log-likelihood given by CRFs is
equivalent to minimizing the log-loss function,

S — log p(y**|z*; X). We minimize the follow-
ing loss function for the ML criterion training of
CRFs:

Xt = Z[—A CF(y** xb) +10gZ)‘(:vk)]
k

To reduce over-fitting, the Maximum a
Posteriori (MAP) criterion of parameters
A, that is, argmaxy Y, logp(Aly*™*, z*) o
Sy log p(y**|x®; A)p(N), is now the most widely
used CRF training criterion.  Therefore, we
minimize the following loss function for the MAP
criterion training of CRFs:

L3 = L8 —logp(A). @)

There are several possible choices when selecting
a prior distribution p(A). This paper only con-
siders Lg-norm prior, p(X) oc exp(—||A[|?/4C),
which becomes a Gaussian prior when ¢=2. The
essential difference between ML and MAP is sim-
ply that MAP has this prior term in the objective
function. This paper sometimes refers to the ML
and MAP criterion training of CRFs as ML/MAP.

In order to estimate the parameters A\, we seek a
zero of the gradient over the parameters :

VLY = —Vlogp(A) + > [—F(y*"} z")
k

)]

3
yeyk

The gradient of ML is Eq. 3 without the gradient
term of the prior, —V log p(\).

The details of actual optimization procedures
for linear chain CRFs, which are typical CRF ap-
plications, have already been reported (Sha and
Pereira, 2003).

3 MCE Criterion Training for CRFs

The Minimum Classification Error (MCE) frame-
work first arose out of a broader family of ap-
proaches to pattern classifier design known as
Generalized Probabilistic Descent (GPD) (Kata-
giri et al., 1991). The MCE criterion minimizes
an empirical loss corresponding to a smooth ap-
proximation of the classification error. This MCE
loss is itself defined in terms of a misclassifica-
tion measure derived from the discriminant func-
tions of a given task. Via the smoothing parame-
ters, the MCE loss function can be made arbitrarily
close to the binary classification error. An impor-
tant property of this framework is that it makes it
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possible in principle to achieve the optimal Bayes
error even under incorrect modeling assumptions.
It is easy to extend the MCE framework to use
evaluation measures other than the classification
error, namely the linear combination of error rates.
Thus, it is possible to optimize directly a variety of
(smoothed) evaluation measures. This is the ap-
proach proposed in this article.

We first introduce a framework for MCE crite-
rion training, focusing only on error rate optimiza-
tion. Sec. 4 then describes an example of mini-
mizing a different multivariate evaluation measure
using MCE criterion training.

3.1 Brief Overview of MCE

Let x € X be an input, and y € ) be an output.
The Bayes decision rule decides the most probable
output ¢ for x, by using the maximum a posteriori
probability, ¢y = arg max,cy p(y|z; X). In gen-
eral, p(y|x; A) can be replaced by a more general
discriminant function, that is,
9 = argmax g(y, z, A). 4)
Yyey
Using the discriminant functions for the possi-
ble output of the task, the misclassification mea-
sure d() is defined as follows:
dy* e, N)=—g(y*x, ) + max g(y,x,\). (5)
YEV\yY*
where y* is the correct output for . Here it can
be noted that, for a given x, d() >0 indicates mis-
classification. By using d(), the minimization of
the error rate can be rewritten as the minimization
of the sum of 0-1 (step) losses of the given training
data. That is, arg miny £ where

Lr=Y 8(dy™,z" N). )
k

o(r) is a step function returning 0 if »<0 and 1 oth-
erwise. That is, ¢ is 0 if the value of the discrimi-
nant function of the correct output g(y**, ¥, A) is
greater than that of the maximum incorrect output
g(y*, x¥ X), and ¢ is 1 otherwise.

Eq. 5 is not an appropriate function for op-
timization since it is a discontinuous function
w.r.t. the parameters A. One choice of contin-
uous misclassification measure consists of sub-
stituting ‘max’ with ‘soft-max’, maxgr, =
log Y"1 exp(ry). As aresult

1
dy @A) =—g" +log |4 > exp(wg)] (M

YEV\Y*

where ¢*=g(y*,x,A), g=9g(y,x, ), and A=
Djl%l. ¥ is a positive constant that represents -
norm. When ) approaches oo, EQ. 7 converges to
Eg. 5. Note that we can design any misclassifi-
cation measure, including non-linear measures for
d(). Some examples are shown in the Appendices.

Of even greater concern is the fact that the step
function ¢ is discontinuous; minimization of Eq.
6 is therefore NP-complete. In the MCE formal-
ism, &() is replaced with an approximated 0-1 loss
function, (), which we refer to as a smoothing
function. A typical choice for () is the sigmoid
function, {%¢(), which is differentiable and pro-
vides a good approximation of the 0-1 loss when
the hyper-parameter « is large (see Eq. 8). An-
other choice is the (regularized) logistic function,
['9(), that gives the upper bound of the 0-1 loss.
Logistic loss is used as a conventional CRF loss
function and provides convexity while the sigmoid
function does not. These two smoothing functions
can be written as follows:

189 — (1 + exp(foz . d(y*, T, )\) - ﬂ))71

o9 — o1 -log(1 + exp(a-d(y",z,A) + 3)), ®)

where o and 3 are the hyper-parameters of the
training.

We can introduce a regularization term to re-
duce over-fitting, which is derived using the same
sense as in MAP, Eqg. 2. Finally, the objective func-
tion of the MCE criterion with the regularization
term can be rewritten in the following form:

(I

L8 = Fragan [{@F y™ 0| + 5

9)

Then, the objective function of the MCE criterion
that minimizes the error rate is Eq. 9 and

N
1 *
Fliga =5 2 ldy™ 2" X))  (0)
k=1
is substituted for 7; 4, x. Since NV is constant, we

can eliminate the term 1/ in actual use.

3.2 Formalization
We simply substitute the discriminant function of
the CRFs into that of the MCE criterion:

gy, z,A) =logp(y|lz; \) oc A - F(y,z)  (11)

Basically, CRF training with the MCE criterion
optimizes Eq. 9 with Eq. 11 after the selection of
an appropriate misclassification measure, d(), and
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smoothing function, (). Although there is no re-
striction on the choice of d() and [(), in this work
we select sigmoid or logistic functions for /() and
Eq. 7 for d().
The gradient of the loss function Eq. 9 can be
decomposed by the following chain rule:
OF() ol() 0d()

v LMCE _ , , N 12
A () ad() oA c

The derivatives of /() w.r.t. d() given in Eq.
8 are written as: 0159/0d = «-1%9-(1—1%9) and
o8 /od=1%°.

The derivative of d() of Eq. 7 w.r.t. parameters
A is written in this form:

%()__ Z)\(iL',i/J) . *
A~ I v) o) LY
o) 1 @

+2 Zn@, 0)—oxp(Bgr) |
yey

where g = X- F(y,x), ¢* = XA- F(y*,z), and
Zx(z, 1/))221,631 exp(¢g).

Note that we can obtain exactly the same loss
function as ML/MAP with appropriate choices of
F(), I() and d(). The details are provided in the
Appendices. Therefore, ML/MAP can be seen as
one special case of the framework proposed here.
In other words, our method provides a generalized
framework of CRF training.

3.3 Optimization Procedure

With linear chain CRFs, we can calculate the ob-
jective function, Eg. 9 combined with Eq. 10,
and the gradient, Eq. 12, by using the variant of
the forward-backward and Viterbi algorithm de-
scribed in (Sha and Pereira, 2003). Moreover, for
the parameter optimization process, we can simply
exploit gradient descent or quasi-Newton methods
such as L-BFGS (Liu and Nocedal, 1989) as well
as ML/MAP optimization.

If we select v = oo for EQ. 7, we only need
to evaluate the correct and the maximum incor-
rect output. As we know, the maximum output
can be efficiently calculated with the Viterbi al-
gorithm, which is the same as calculating Eq. 1.
Therefore, we can find the maximum incorrect
output by using the A* algorithm (Hart et al.,
1968), if the maximum output is the correct out-
put, and by using the Viterbi algorithm otherwise.
It may be feared that since the objective func-
tion is not differentiable everywhere for ) = oo,
problems for optimization would occur. How-
ever, it has been shown (Le Roux and McDer-

mott, 2005) that even simple gradient-based (first-
order) optimization methods such as GPD and (ap-
proximated) second-order methods such as Quick-
Prop (Fahlman, 1988) and BFGS-based methods
have yielded good experimental optimization re-
sults.

4 Multivariate Evaluation Measures

Thus far, we have discussed the error rate ver-
sion of MCE. Unlike ML/MAP, the framework of
MCE criterion training allows the embedding of
not only a linear combination of error rates, but
also any evaluation measure, including non-linear
measures.

Several non-linear objective functions, such as
F-score for text classification (Gao et al., 2003),
and BLEU-score and some other evaluation mea-
sures for statistical machine translation (Och,
2003), have been introduced with reference to the
framework of MCE criterion training.

4.1 Sequential Segmentation Tasks (SSTs)

Hereafter, we focus solely on CRFs in sequences,
namely the linear chain CRF. We assume that x
and y have the same length: x=(z1,...,z,) and
y=(y1,...,yn). Inalinear chain CRF, y; depends
only on y;_1.

Sequential segmentation tasks (SSTs), such as
text chunking (Chunking) and named entity recog-
nition (NER), which constitute the shared tasks
of the Conference of Natural Language Learn-
ing (CoNLL) 2000, 2002 and 2003, are typical
CRF applications. These tasks require the extrac-
tion of pre-defined segments, referred to as tar-
get segments, from given texts. Fig. 1 shows typ-
ical examples of SSTs. These tasks are gener-
ally treated as sequential labeling problems incor-
porating the 10B tagging scheme (Ramshaw and
Marcus, 1995). The IOB tagging scheme, where
we only consider the IOB2 scheme, is also shown
in Fig. 1. B-X, I-X and O indicate that the word
in question is the beginning of the tag ‘X’, inside
the tag ‘X’, and outside any target segment, re-
spectively. Therefore, a segment is defined as a
sequence of a few outputs.

4.2 Segmentation F-score Loss for SSTs
The standard evaluation measure of SSTs is the
segmentation F-score (Sang and Buchholz, 2000):

(V> +1)-TP
F, = 1
T N2.FN+FP+(y2+1)-TP (13)
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Text Chunking
Seg.: NP[ VP I NP I VP JPP[ NP

X:lHe
Y. BNP BVP BNP I-NP I-NP

reckons | the current account deficit [will narrow] to

only # 1.8 hillion].
I-NP  B-VP I-VP B-PP B-NPI-NPI-NP I-NP O

Named Entity Recognition
Seg.: ORG

United Nation Ekeus Smith} heads for | Baghdad).
Y. B-ORG I-ORG B-PER I-PER O 0 B-LOC O

Dep: [y j—{y.] IIIII

PER LOC

official

Figure 1. Examples of sequential segmentation tasks (SSTs): text chunking (Chunking) and named entity

recognition (NER).

where TP, F'P and F'N represent true positive,
false positive and false negative counts, respec-
tively.

The individual evaluation units used to calcu-
late TP, FFN and PN, are not individual outputs
; Or output sequences y, but rather segments. We
need to define a segment-wise loss, in contrast to
the standard CRF loss, which is sometimes re-
ferred to as an (entire) sequential loss (Kakade
et al., 2002; Altun et al., 2003). First, we con-
sider the point-wise decision w.r.t. Eq. 1, that is,
y; = argmaxy,cy, 9(y,x, i, X). The point-wise
discriminant function can be written as follows:

g(y7 x, iv )‘) = max A F(y/7 (D) (14)

Y €Yy lyil

where )); represents a set of all y whose length
is 7, and YV[y;| represents a set of all y that con-
tain y; in the 7’th position. Note that the same
output ¢ can be obtained with Egs. 1 and 14,
that is, ¥y = (91,...,9n). This point-wise dis-
criminant function is different from that described
in (Kakade et al., 2002; Altun et al., 2003), which
is calculated based on marginals.

Let y,, be an output sequence correspond-
ing to the j-th segment of y, where s; repre-
sents a sequence of indices of y, that is, s; =
(8j,15-+-+8j)s;))- An example of the Chunk-
ing data shown in Fig. 1, y,, is (B-VP, I-VP)
where s, = (7,8). Let Y[y, ] be a set of all
outputs whose positions from s;; to s, | are
Yo, = (Us;ns- -+ Ys;y,, ). Then, we can define a
segment-wise discriminant function w.r.t. Eq. 1.
That is,

g(y,:ll,Sj,A): max AF‘(y/7m) (15)

!
Y'Yy sl

Note again that the same output ¢ can be obtained
using Egs. 1 and 15, as with the piece-wise dis-
criminant function described above. This property
is needed for evaluating segments since we do not
know the correct segments of the test data; we can
maintain consistency even if we use Eq. 1 for test-
ing and Eqg. 15 for training. Moreover, Eg. 15 ob-

viously reduces to Eq. 14 if the length of all seg-
ments is 1. Then, the segment-wise misclassifica-
tion measure d(y*, x, s;, A) can be obtained sim-
ply by replacing the discriminant function of the
entire sequence g(y,x, A) with that of segment-
wise g(y, x, s;, A) inEq. 7.

Let s** be a segment sequence corresponding to
the correct output y** for a given x*, and S(x*)
be all possible segments for a given . Then, ap-
proximated evaluation functions of TP, F'P and
F'N can be defined as follows:

TP = ZZ[—W@/ £ 2k, 55, 0)] (55

k 87 *e8*k

T DD SR

k s’ €S(xk)\8*k

=Y Yty

ksesl‘

@, 55, X))-8(s5)

75]7A))'5(S;)

where 4(s;) returns 1 if segment s is a target seg-
ment, and returns O otherwise. For the NER data
shown in Fig. 1, ‘ORG’, ‘PER’ and ‘LOC"’ are the
target segments, while segments that are labeled
‘O’ in y are not. Since TP, should not have a
value of less than zero, we select sigmoid loss as
the smoothing function ().

The second summation of TP, and F'N; per-
forms a summation over correct segments s*. In
contrast, the second summation in F' P, takes all
possible segments into account, but excludes the
correct segments s*. Although an efficient way to
evaluate all possible segments has been proposed
in the context of semi-Markov CRFs (Sarawagi
and Cohen, 2004), we introduce a simple alter-
native method. If we select ¢» = oo for d() in
Eq. 7, we only need to evaluate the segments cor-
responding to the maximum incorrect output g to

calculate F'Fy. Thatis, s; € S(x*)\s** can be

reduced to s; € 3*, where 5" represents segments
corresponding to the maximum incorrect output g.
In practice, this reduces the calculation cost and so
we used this method for our experiments described
in the next section.

Maximizing the segmentation F,-score, Eq. 13,
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y2-FN+FP

is equivalent to minimizing E) TP since Eq.
H _ 1
13 canalso be writtenas F., = ———~—+. Thus,
(vZ+1)-TP

an objective function closely reflecting the seg-
mentation F-score based on the MCE criterion
can be written as Eq. 9 while replacing 7 4 4 x

with:
mcer 7 - FNi+FP,

Pl = "7 51770 (16)

The derivative of Eq. 16 w.r.t. [() is given by the
following equation:

ol() L "otherwise

OFNiah _ [ B+ g i 86 =1
Zp’

where Zy and Zp represent the numerator and de-
nominator of Eq. 16, respectively.

In the optimization process of the segmentation
F-score objective function, we can efficiently cal-
culate Eq. 15 by using the forward and backward
Viterbi algorithm, which is almost the same as
calculating Eq. 3 with a variant of the forward-
backward algorithm (Sha and Pereira, 2003). The
same numerical optimization methods described
in Sec. 3.3 can be employed for this optimization.

5 Experiments

We used the same Chunking and ‘English’ NER
task data used for the shared tasks of CoNLL-
2000 (Sang and Buchholz, 2000) and CoNLL-
2003 (Sang and De Meulder, 2003), respectively.

Chunking data was obtained from the Wall
Street Journal (WSJ) corpus: sections 15-18 as
training data (8,936 sentences and 211,727 to-
kens), and section 20 as test data (2,012 sentences
and 47,377 tokens), with 11 different chunk-tags,
such as NP and VP plus the ‘O’ tag, which repre-
sents the outside of any target chunk (segment).

The English NER data was taken from the
Reuters Corpuszl. The data consists of 203,621,
51,362 and 46,435 tokens from 14,987, 3,466
and 3,684 sentences in training, development and
test data, respectively, with four named entity
tags, PERSON, LOCATION, ORGANIZATION
and MISC, plus the ‘O’ tag.

5.1 Comparison Methods and Parameters

For ML and MAP, we performed exactly the same
training procedure described in (Sha and Pereira,
2003) with L-BFGS optimization. For MCE, we

http://trec.nist.gov/data/reuters/reuters.html

only considered d() with ¢ = oo as described in
Sec. 4.2, and used QuickProp optimization?.

For MAP, MCE and MCE-F, we used the Lo-
norm regularization. We selected a value of C
from 1.0 x 10™ where n takes a value from -5to 5
in intervals 1 by development data®. The tuning of
smoothing function hyper-parameters is not con-
sidered in this paper; that is, a=1 and =0 were
used for all the experiments.

We evaluated the performance by Eq. 13 with
~ =1, which is the evaluation measure used in
CoNLL-2000 and 2003. Moreover, we evaluated
the performance by using the average sentence ac-
curacy, since the conventional ML/MAP objective
function reflects this sequential accuracy.

5.2 Features

As regards the basic feature set for Chunking, we
followed (Kudo and Matsumoto, 2001), which is
the same feature set that provided the best result
in CoNLL-2000. We expanded the basic features
by using bigram combinations of the same types
of features, such as words and part-of-speech tags,
within window size 5.

In contrast to the above, we used the original
feature set for NER. We used features derived only
from the data provided by CoNLL-2003 with the
addition of character-level regular expressions of
uppercases [A-Z], lowercases [a-z], digits [0-9] or
others, and prefixes and suffixes of one to four let-
ters. We also expanded the above basic features by
using bigram combinations within window size 5.
Note that we never used features derived from ex-
ternal information such as the Web, or a dictionary,
which have been used in many previous studies but
which are difficult to employ for validating the ex-
periments.

5.3 Results and Discussion

Our experiments were designed to investigate the
impact of eliminating the inconsistency between
objective functions and evaluation measures, that
is, to compare ML/MAP and MCE-F.

Table 1 shows the results of Chunking and NER.
The F,—; and ‘Sent’ columns show the perfor-
mance evaluated using segmentation F-score and

2In order to realize faster convergence, we applied online
GPD optimization for the first ten iterations.

3Chunking has no common development set. We first
train the systems with all but the last 2000 sentences in the
training data as a development set to obtain C', and then re-
train them with all the training data.
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Table 1: Performance of text chunking and named
entity recognition data (CoNLL-2000 and 2003)

Chunking NER
I() ||[n|Fy=1 Sent||n|F,=1 Sent
MCE-F (sig) || 5]93.96 60.44 | 4 |84.72 78.72
MCE (log) [ 3]93.92 60.19 || 3 [84.30 78.02
MCE (sig) || 3|93.85 60.14 | 3 |83.82 77.52
MAP 0]93.71 59.15| 0|83.79 77.39
ML - 19319 56.26 || - | 82.39 75.71

sentence accuracy, respectively. MCE-F refers to
the results obtained from optimizing Eq. 9 based
on Eq. 16. In addition, we evaluated the error
rate version of MCE. MCE(log) and MCE(sig)
indicate that logistic and sigmoid functions are
selected for [(), respectively, when optimizing
Eq. 9 based on Eq. 10. Moreover, MCE(log) and
MCE(sig) used d() based on )=o00, and were op-
timized using QuickProp; these are the same con-
ditions as used for MCE-F. We found that MCE-F
exhibited the best results for both Chunking and
NER. There is a significant difference (p <0.01)
between MCE-F and ML/MAP with the McNemar
test, in terms of the correctness of both individual
outputs, y¥, and sentences, y*.

NER data has 83.3% (170524/204567) and
82.6% (38554/46666) of ‘O’ tags in the training
and test data, respectively while the correspond-
ing values of the Chunking data are only 13.1%
(27902/211727) and 13.0% (6180/47377). In gen-
eral, such an imbalanced data set is unsuitable for
accuracy-based evaluation. This may be one rea-
son why MCE-F improved the NER results much
more than the Chunking results.

The only difference between MCE(sig) and
MCE-F is the objective function. The correspond-
ing results reveal the effectiveness of using an ob-
jective function that is consistent as the evalua-
tion measure for the target task. These results
show that minimizing the error rate is not opti-
mal for improving the segmentation F-score eval-
uation measure. Eliminating the inconsistency be-
tween the task evaluation measure and the objec-
tive function during the training can improve the
overall performance.

531

While ML/MAP and MCE(log) is convex w.r.t.
the parameters, neither the objective function of
MCE-F, nor that of MCE(sig), is convex. There-
fore, initial parameters can affect the optimization

Influence of Initial Parameters

Table 2: Performance when initial parameters are
derived from MAP

Chunking NER
) [|n|Fy=1 Sent |[n]|Fy=1 Sent
MCE-F (sig) || 5| 94.03 60.74 | 4 | 85.29 79.26
MCE  (sig) || 3 |93.97 60.59 || 3 |84.57 77.71

results, since QuickProp as well as L-BFGS can
only find local optima.

The previous experiments were only performed
with all parameters initialized at zero. In this ex-
periment, the parameters obtained by the MAP-
trained model were used as the initial values of
MCE-F and MCE(sig). This evaluation setting ap-
pears to be similar to reranking, although we used
exactly the same model and feature set.

Table 2 shows the results of Chunking and NER
obtained with this parameter initialization setting.
When we compare Tables 1 and 2, we find that
the initialization with the MAP parameter values
further improves performance.

6 Reated Work

Various loss functions have been proposed for de-
sighing CRFs (Kakade et al., 2002; Altun et al.,
2003). This work also takes the design of the loss
functions for CRFs into consideration. However,
we proposed a general framework for designing
these loss function that included non-linear loss
functions, which has not been considered in pre-
vious work.

With Chunking, (Kudo and Matsumoto, 2001)
reported the best F-score of 93.91 with the vot-
ing of several models trained by Support Vec-
tor Machine in the same experimental settings
and with the same feature set. MCE-F with the
MAP parameter initialization achieved an F-score
of 94.03, which surpasses the above result without
manual parameter tuning.

With NER, we cannot make a direct compari-
son with previous work in the same experimental
settings because of the different feature set, as de-
scribed in Sec. 5.2. However, MCE-F showed the
better performance of 85.29 compared with (Mc-
Callum and Li, 2003) of 84.04, which used the
MAP training of CRFs with a feature selection ar-
chitecture, yielding similar results to the MAP re-
sults described here.
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7 Conclusions

We proposed a framework for training CRFs based
on optimization criteria directly related to target
multivariate evaluation measures. We first pro-
vided a general framework of CRF training based
on MCE criterion. Then, specifically focusing
on SSTs, we introduced an approximate segmen-
tation F-score objective function. Experimental
results showed that eliminating the inconsistency
between the task evaluation measure and the ob-
jective function used during training improves the
overall performance in the target task without any
change in feature set or model.

Appendices

Misclassification measures

Another type of misclassification measure using
soft-max is (Katagiri et al., 1991):

¥
d(y, =, \) = —g" + [A > gw} :

YyEV\y*

Another d(), for g in the range [0, co):

1
d(y, =, ) = [A 2 eyt gw} e

Comparison of ML/MAP and MCE

If we select I'®() with «=1and =0, and use Eq.
7 with ¢» = 1 and without the term A for d(). We
can obtain the same loss function as ML/MAP:

log (1 4 exp(—g~ +log(Zx — exp(g”))))
~log <eXp(g*) +(Zx —exp(g™))
exp(g*)
= —g" +log(Zy).
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