
Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the ACL, pages 145–152,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Partially Specified Signatures: a Vehicle for Grammar Modularity

Yael Cohen-Sygal
Dept. of Computer Science

University of Haifa
yaelc@cs.haifa.ac.il

Shuly Wintner
Dept. of Computer Science

University of Haifa
shuly@cs.haifa.ac.il

Abstract

This work provides the essential founda-
tions for modular construction of (typed)
unification grammars for natural lan-
guages. Much of the information in such
grammars is encoded in the signature, and
hence the key is facilitating a modularized
development of type signatures. We intro-
duce a definition of signature modules and
show how two modules combine. Our def-
initions are motivated by the actual needs
of grammar developers obtained through a
careful examination of large scale gram-
mars. We show that our definitions meet
these needs by conforming to a detailed set
of desiderata.

1 Introduction

Development of large scale grammars for natural
languages is an active area of research in human
language technology. Such grammars are devel-
oped not only for purposes of theoretical linguis-
tic research, but also for natural language applica-
tions such as machine translation, speech genera-
tion, etc. Wide-coverage grammars are being de-
veloped for various languages (Oepen et al., 2002;
Hinrichs et al., 2004; Bender et al., 2005; King et
al., 2005) in several theoretical frameworks, e.g.,
LFG (Dalrymple, 2001) and HPSG (Pollard and
Sag, 1994).

Grammar development is a complex enterprise:
it is not unusual for a single grammar to be devel-
oped by a team including several linguists, com-
putational linguists and computer scientists. The
scale of grammars is overwhelming: for exam-
ple, the English resource grammar (Copestake
and Flickinger, 2000) includes thousands of types.
This raises problems reminiscent of those encoun-
tered in large-scale software development. Yet
while software engineering provides adequate so-

lutions for the programmer, no grammar develop-
ment environment supports even the most basic
needs, such as grammar modularization, combi-
nation of sub-grammars, separate compilation and
automatic linkage of grammars, information en-
capsulation, etc.

This work provides the essential foundations for
modular construction of signatures in typed unifi-
cation grammars. After a review of some basic
notions and a survey of related work we list a set
of desiderata in section 4, which leads to a defi-
nition of signature modules in section 5. In sec-
tion 6 we show how two modules are combined,
outlining the mathematical properties of the com-
bination (proofs are suppressed for lack of space).
Extending the resulting module to a stand-alone
type signature is the topic of section 7. We con-
clude with suggestions for future research.

2 Type signatures

We assume familiarity with theories of (typed)
unification grammars, as formulated by, e.g., Car-
penter (1992) and Penn (2000). The definitions
in this section set the notation and recall basic no-
tions. For a partial functionF , ‘F (x)↓’ means that
F is defined for the valuex.

Definition 1 Given a partially ordered set〈P,≤〉,
the set ofupper boundsof a subsetS ⊆ P is the
setSu = {y ∈ P | ∀x ∈ S x ≤ y}.

For a given partially ordered set〈P,≤〉, if S ⊆
P has a least element then it is unique.

Definition 2 A partially ordered set〈P,≤〉 is a
bounded complete partial order (BCPO) if for
everyS ⊆ P such thatSu 6= ∅, Su has a least
element, called aleast upper bound (lub).

Definition 3 A type signature is a structure
〈TYPE,⊑, FEAT, Approp〉, where:

1. 〈TYPE,⊑〉 is a finite bounded complete par-
tial order (thetype hierarchy)

145

2. FEAT is a finite set, disjoint fromTYPE.

3. Approp : TYPE×FEAT → TYPE (theappro-
priateness specification) is a partial function
such that for everyF ∈ FEAT:

(a) (Feature Introduction) there exists a
type Intro(F) ∈ TYPE such that
Approp(Intro(F), F)↓, and for every
t ∈ TYPE, if Approp(t, F) ↓, then
Intro(F) ⊑ t;

(b) (Upward Closure) if Approp(s, F) ↓
and s ⊑ t, then Approp(t, F) ↓ and
Approp(s, F) ⊑ Approp(t, F).

Notice that every signature has a least type,
since the subsetS = ∅ of TYPE has the non-empty
set of upper bounds,Su = TYPE, which must
have a least element due to bounded completeness.

Definition 4 Let 〈TYPE,⊑〉 be a type hierarchy
and letx, y ∈ TYPE. If x ⊑ y, thenx is a su-
pertype of y and y is a subtype of x. If x ⊑ y,
x 6= y and there is noz such thatx ⊑ z ⊑ y and
z 6= x, y thenx is an immediate supertypeof y
andy is an immediate subtypeof x.

3 Related Work

Several authors address the issue of grammar mod-
ularization in unification formalisms. Moshier
(1997) views HPSG , and in particular its signa-
ture, as a collection of constraints over maps be-
tween sets. This allows the grammar writer to
specify any partial information about the signa-
ture, and provides the needed mathematical and
computational capabilities to integrate the infor-
mation with the rest of the signature. However,
this work does not define modules or module in-
teraction. It does not address several basic issues
such as bounded completeness of the partial or-
der and the feature introduction and upward clo-
sure conditions of the appropriateness specifica-
tion. Furthermore, Moshier (1997) shows how sig-
natures are distributed into components, but not
the conditions they are required to obey in order
to assure the well-definedness of the combination.

Keselj (2001) presents a modular HPSG, where
each module is an ordinary type signature, but
each of the sets FEAT and TYPE is divided into
two disjoint sets of private and public elements. In
this solution, modules do not support specification
of partial information; module combination is not
associative; and the only channel of interaction be-
tween modules is the names of types.

Kaplan et al. (2002) introduce a system de-
signed for building a grammar by both extending
and restricting another grammar. An LFG gram-
mar is presented to the system in a priority-ordered
sequence of files where the grammar can include
only one definition of an item of a given type (e.g.,
rule) with a particular name. Items in a higher pri-
ority file override lower priority items of the same
type with the same name. The override convention
makes it possible to add, delete or modify rules.
However, a basis grammar is needed and when
modifying a rule, the entire rule has to be rewritten
even if the modifications are minor. The only in-
teraction among files in this approach is overriding
of information.

King et al. (2005) augment LFG with a
makeshift signature to allow modular development
of untypedunification grammars. In addition, they
suggest that any development team should agree in
advance on the feature space. This work empha-
sizes the observation that the modularization of the
signature is the key for modular development of
grammars. However, the proposed solution is ad-
hoc and cannot be taken seriously as a concept of
modularization. In particular, the suggestion for
an agreement on the feature space undermines the
essence of modular design.

Several works address the problem of modular-
ity in other, related, formalisms. Candito (1996)
introduces a description language for the trees of
LTAG. Combining two descriptions is done by
conjunction. To constrain undesired combina-
tions, Candito (1996) uses a finite set of names
where each node of a tree description is associ-
ated with a name. The only channel of interac-
tion between two descriptions is the names of the
nodes, which can be used only to allow identifi-
cation but not to prevent it. To overcome these
shortcomings, Crabbé and Duchier (2004) suggest
to replace node naming by colors. Then, when
unifying two trees, the colors can prevent or force
the identification of nodes. Adapting this solution
to type signatures would yield undesired order-
dependence (see below).

4 Desiderata

To better understand the needs of grammar devel-
opers we carefully explored two existing gram-
mars: the LINGO grammar matrix (Bender et al.,
2002), which is a basis grammar for the rapid de-
velopment of cross-linguistically consistent gram-

146

mars; and a grammar of a fragment of Modern He-
brew, focusing on inverted constructions (Melnik,
2006). These grammars were chosen since they
are comprehensive enough to reflect the kind of
data large scale grammar encode, but are not too
large to encumber this process. Motivated by these
two grammars, we experimented with ways to di-
vide the signatures of grammars into modules and
with different methods of module interaction. This
process resulted in the following desiderata for a
beneficial solution for signature modularization:

1. The grammar designer should be provided
with as much flexibility as possible. Modules
should not be unnecessarily constrained.

2. Signature modules should provide means
for specifyingpartial information about the
components of a grammar.

3. A good solution should enable one module to
refer to types defined in another. Moreover,
it should enable the designer of moduleMi

to use a type defined inMj without specify-
ing the type explicitly. Rather, some of the
attributes of the type can be (partially) speci-
fied, e.g., its immediate subtypes or its appro-
priateness conditions.

4. While modules can specify partial informa-
tion, it must be possible to deterministically
extend a module (which can be the result of
the combination of several modules) into a
full type signature.

5. Signature combination must be associative
and commutative: the order in which mod-
ules are combined must not affect the result.

The solution we propose below satisfies these re-
quirements.1

5 Partially specified signatures

We definepartially specified signatures (PSSs),
also referred to asmodulesbelow, which are struc-
tures containing partial information about a sig-
nature: part of the subsumption relation and part
of the appropriateness specification. We assume
enumerable, disjoint sets TYPE of types and FEAT

of features, over which signatures are defined.
We begin, however, by definingpartially labeled
graphs, of which PSSs are a special case.

1The examples in the paper are inspired by actual gram-
mars but are obviously much simplified.

Definition 5 A partially labeled graph (PLG)
over TYPE and FEAT is a finite, directed labeled
graphS = 〈Q, T,�, Ap〉, where:

1. Q is a finite, nonempty set of nodes, disjoint
from TYPE andFEAT.

2. T : Q → TYPE is a partial function, marking
some of the nodes with types.

3. �⊆ Q ×Q is a relation specifying (immedi-
ate) subsumption.

4. Ap ⊆ Q× FEAT ×Q is a relation specifying
appropriateness.

Definition 6 A partially specified signa-
ture (PSS) over TYPE and FEAT is a PLG
S = 〈Q, T,�, Ap〉, where:

1. T is one to one.

2. ‘�’ is antireflexive; its reflexive-transitive

closure, denoted ‘
∗

�’, is antisymmetric.

3. (a) (Relaxed Upward Closure) for all
q1, q

′

1, q2 ∈ Q and F ∈ FEAT, if

(q1, F, q2) ∈ Ap andq1

∗

� q′1, then there

existsq′2 ∈ Q such thatq2

∗

� q′2 and
(q′1, F, q′2) ∈ Ap; and

(b) (Maximality) for allq1, q2 ∈ Q andF ∈
FEAT, if (q1, F, q2) ∈ Ap then for all

q′2 ∈ Q such thatq′2
∗

� q2 andq2 6= q′2,
(q1, F, q′2) /∈ Ap.

A PSS is a finite directed graph whose nodes
denote types and whose edges denote the sub-
sumption and appropriateness relations. Nodes
can bemarkedby types through the functionT ,
but can also beanonymous(unmarked). Anony-
mous nodes facilitate reference, in one module, to
types that are defined in another module.T is one-
to-one since we assume that two marked nodes de-
note different types.

The ‘�’ relation specifies an immediate sub-
sumption order over the nodes, with the intention
that this order hold later for the types denoted by

nodes. This is why ‘
∗

�’ is required to be a partial
order. The type hierarchy of a type signature is a
BCPO, but current approaches (Copestake, 2002)
relax this requirement to allow more flexibility in
grammar design. PSS subsumption is also a par-
tial order but not necessarily a bounded complete

147

one. After all modules are combined, the resulting
subsumption relation will be extended to a BCPO
(see section 7), but any intermediate result can be a
general partial order. Relaxing the BCPO require-
ment also helps guaranteeing the associativity of
module combination.

Consider now the appropriateness relation. In
contrast to type signatures,Ap is not required
to be a function. Rather, it is a relation which
may specifyseveralappropriate nodes for the val-
ues of a featureF at a nodeq. The intention is
that the eventual value ofApprop(T (q), F) be the
lub of the types of all those nodesq′ such that
Ap(q, F, q′). This relaxation allows more ways for
modules to interact. We do restrict theAp relation,
however. Condition 3a enforces a relaxed version
of upward closure. Condition 3b disallows redun-
dant appropriateness arcs: if two nodes are ap-
propriate for the same node and feature, then they
should not be related by subsumption. The feature
introduction condition of type signatures is not en-
forced by PSSs. This, again, results in more flex-
ibility for the grammar designer; the condition is
restored after all modules combine, see section 7.

Example 1 A simple PSSS1 is depicted in Fig-
ure 1, where solid arrows represent the ‘�’ (sub-
sumption) relation and dashed arrows, labeled by
features, theAp relation. S1 stipulates two sub-
types ofcat, n and v, with a common subtype,
gerund. The featureAGR is appropriate for all
three categories, with distinct (but anonymous)
values forApprop(n, AGR) andApprop(v, AGR).
Approp(gerund, AGR) will eventually be the lub
of Approp(n, AGR) and Approp(v, AGR), hence
the multiple outgoingAGR arcs fromgerund.

Observe that inS1, ‘�’ is not a BCPO,Ap is
not a function and the feature introduction condi-
tion does not hold.

gerund

n v

cat agr

AGR

AGR

AGR

AGR

Figure 1: A partially specified signature,S1

We impose an additional restriction on PSSs:
a PSS iswell-formedif any two different anony-
mous nodes aredistinguishable, i.e., if each node

is unique with respect to the information it en-
codes. If two nodes are indistinguishable then one
of them can be removed without affecting the in-
formation encoded by the PSS. The existence of
indistinguishable nodes in a PSS unnecessarily in-
creases its size, resulting in inefficient processing.

Given a PSSS, it can becompactedinto a PSS,
compact(S), by unifying all the indistinguishable
nodes inS. compact(S) encodes the same infor-
mation asS but does not include indistinguish-
able nodes. Two nodes, only one of which is
anonymous, can still be otherwise indistinguish-
able. Such nodes will, eventually, be coalesced,
but only after all modules are combined (to ensure
the associativity of module combination). The de-
tailed computation of the compacted PSS is sup-
pressed for lack of space.

Example 2 Let S2 be the PSS of Figure 2.S2 in-
cludes two pairs of indistinguishable nodes:q2, q4

andq6, q7. The compacted PSS ofS2 is depicted in
Figure 3. All nodes incompact(S2) are pairwise
distinguishable.

q6 q7

b

q8

q2 q3 q4 q5

q1

a

F F F
F

Figure 2: A partially specified signature with in-
distinguishable nodes,S2

b

a

F F
F

Figure 3: The compacted partially specified signa-
ture ofS2

Proposition 1 If S is a PSS thencompact(S) is a
well formed PSS.

148

6 Module combination

We now describe how to combine modules, an op-
eration we callmergebellow. When two mod-
ules are combined, nodes that are marked by the
same type are coalesced along with their attributes.
Nodes that are marked by different types cannot
be coalesced and must denote different types. The
main complication is caused when twoanonymous
nodes are considered: such nodes are coalesced
only if they are indistinguishable.

The merge of two modules is performed in sev-
eral stages: First, the two graphs are unioned (this
is a simple pointwise union of the coordinates
of the graph, see definition 7). Then the result-
ing graph is compacted, coalescing nodes marked
by the same type as well as indistinguishable
anonymous nodes. However, the resulting graph
does not necessarily maintain the relaxed upward
closure and maximality conditions, and therefore
some modifications are needed. This is done by
Ap-Closure, see definition 8. Finally, the addi-
tion of appropriateness arcs may turn two anony-
mous distinguishable nodes into indistinguishable
ones and therefore another compactness operation
is needed (definition 9).

Definition 7 Let S1 = 〈Q1, T1,�1, Ap1〉, S2 =
〈Q2, T2,�2, Ap2〉 be two PLGssuch thatQ1 ∩
Q2 = ∅. Theunion of S1 andS2, denotedS1∪S2,
is the PLGS = 〈Q1 ∪ Q2, T1 ∪ T2,�1 ∪ �2,
Ap1 ∪Ap2〉.

Definition 8 Let S = 〈Q, T,�, Ap〉 be a PLG.
The Ap-Closure of S, denotedApCl(S), is the
PLG 〈Q, T,�, Ap′′〉 where:

• Ap′ = {(q1, F, q2) | q1, q2 ∈ Q and there

exists q′1 ∈ Q such that q′1
∗

� q1 and
(q′1, F, q2) ∈ Ap}

• Ap′′ = {(q1, F, q2) ∈ Ap′ | for all q′2 ∈ Q,

such thatq2

∗

� q′2 andq2 6= q′2, (q1, F, q′2) /∈
Ap′}

Ap-Closureadds to a PLG the arcs required for
it to maintain the relaxed upward closure and max-
imality conditions. First, arcs are added (Ap′) to
maintain upward closure (to create the relations
between elements separated between the two mod-
ules and related by mutual elements). Then, re-
dundant arcs are removed to maintain the maxi-
mality condition (the removed arcs may be added
by Ap′ but may also exist inAp). Notice that

Ap ⊆ Ap′ since for all (q1, F, q2) ∈ Ap, by

choosingq′1 = q1 it follows that q′1 = q1

∗

� q1

and (q′1, F, q2) = (q1, F, q2) ∈ Ap and hence
(q′1, F, q2) = (q1, F, q2) ∈ Ap′.

Two PSSs can be merged only if the result-
ing subsumption relation is indeed a partial order,
where the only obstacle can be the antisymme-
try of the resulting relation. The combination of
the appropriateness relations, in contrast, cannot
cause the merge operation to fail because any vi-
olation of the appropriateness conditions in PSSs
can be deterministically resolved.

Definition 9 Let S1 = 〈Q1, T1,�1, Ap1〉, S2 =
〈Q2, T2,�2, Ap2〉 be two PSSs such thatQ1 ∩
Q2 = ∅. S1, S2 are mergeableif there are no
q1, q2 ∈ Q1 and q3, q4 ∈ Q2 such that the fol-
lowing hold:

1. T1(q1)↓, T1(q2)↓, T2(q3)↓ andT2(q4)↓

2. T1(q1) = T2(q4) andT1(q2) = T2(q3)

3. q1

∗

�1 q2 andq3

∗

�2 q4

If S1 and S2 are mergeable, then theirmerge,
denotedS1⋒S2, iscompact(ApCl(compact(S1∪
S2))).

In the merged module, pairs of nodes marked
by the same type and pairs of indistinguishable
anonymous nodes are coalesced. An anonymous
node cannot be coalesced with a typed node, even
if they are otherwise indistinguishable, since that
will result in an unassociative combination oper-
ation. Anonymous nodes are assigned types only
after all modules combine, see section 7.1.

If a node has multiple outgoingAp-arcs labeled
with the same feature, these arcs are not replaced
by a single arc, even if thelub of the target nodes
exists in the resulting PSS. Again, this is done to
guarantee the associativity of the merge operation.

Example 3 Figure 4 depicts a näıve agreement
module, S5. Combined withS1 of Figure 1,
S1 ⋒ S5 = S5 ⋒ S1 = S6, whereS6 is depicted
in Figure 5. All dashed arrows are labeledAGR,
but these labels are suppressed for readability.

Example 4 Let S7 and S8 be the PSSs depicted
in Figures 6 and 7, respectively. ThenS7 ⋒ S8 =
S8⋒S7 = S9, whereS9 is depicted in Figure 8. By
standard convention,Ap arcs that can be inferred
by upward closure are not depicted.

149

n nagr gerund vagr v

agr

Figure 4: Näıve agreement module,S5

gerund

n v vagr nagr

cat agr

Figure 5:S6 = S1 ⋒ S5

Proposition 2 Given two mergeable PSSsS1, S2,
S1 ⋒ S2 is a well formed PSS.

Proposition 3 PSS merge is commutative: for any
two PSSs,S1, S2, S1⋒S2 = S2⋒S1. In particular,
either both are defined or both are undefined.

Proposition 4 PSS merge is associative: for all
S1, S2, S3, (S1 ⋒ S2) ⋒ S3 = S1 ⋒ (S2 ⋒ S3).

7 Extending PSSs to type signatures

When developing large scale grammars, the sig-
nature can be distributed among several modules.
A PSS encodes only partial information and there-
fore is not required to conform with all the con-
straints imposed on ordinary signatures. After all
the modules are combined, however, the PSS must
be extended into a signature. This process is done
in 4 stages, each dealing with one property: 1.
Name resolution: assigning types to anonymous
nodes (section 7.1); 2. DeterminizingAp, convert-
ing it from a relation to a function (section 7.2); 3.
Extending ‘�’ to a BCPO. This is done using the
algorithm of Penn (2000); 4. ExtendingAp to a
full appropriateness specification by enforcing the
feature introduction condition: Again, we use the

person nvagr bool

vagr nagr

agr numNUM

PERSON DEF

Figure 6: An agreement module,S7

first second third + −

sg
person

pl
bool

num

Figure 7: A partially specified signature,S8

first second third + −

person bool

nvagr

vagr nagr sg pl

agr numNUM

DEF

P
E

R
S

O
N

Figure 8:S9 = S7 ⋒ S8

algorithm of Penn (2000).

7.1 Name resolution

By the definition of a well-formed PSS, each
anonymous node is unique with respect to the in-
formation it encodes among the anonymous nodes,
but there may exist amarkednode encoding the
same information. The goal of the name resolution
procedure is to assign a type to every anonymous
node, by coalescing it with a similar marked node,
if one exists. If no such node exists, or if there is
more than one such node, the anonymous node is
given an arbitrary type.

The name resolution algorithm iterates as long
as there are nodes to coalesce. In each iteration,
for each anonymous node the set of its similar
typed nodes is computed. Then, using this compu-
tation, anonymous nodes are coalesced with their
paired similar typed node, if such a node uniquely
exists. After coalescing all such pairs, the result-
ing PSS may be non well-formed and therefore the
PSS is compacted. Compactness can trigger more
pairs that need to be coalesced, and therefore the
above procedure is repeated. When no pairs that
need to be coalesced are left, the remaining anony-
mous nodes are assigned arbitrary names and the
algorithm halts. The detailed algorithm is sup-
pressed for lack of space.

150

Example 5 Let S6 be the PSS depicted in Fig-
ure 5. Executing the name resolution algorithm
on this module results in the PSS of Figure 9
(AGR-labels are suppressed for readability.) The
two anonymous nodes inS6 are coalesced with
the nodes markednagr and vagr, as per their
attributes. Cf. Figure 1, in particular how two
anonymous nodes inS1 are assigned types from
S5 (Figure 4).

gerund

n v vagr nagr

cat agr

Figure 9: Name resolution result forS6

7.2 Appropriateness consolidation

For each nodeq, the set of outgoing appropriate-
ness arcs with the same labelF , {(q, F, q′)}, is
replaced by the single arc(q, F, ql), whereql is
marked by thelub of the types of allq′. If no lub
exists, a new node is added and is marked by the
lub. The result is that the appropriateness relation
is a function, and upward closure is preserved; fea-
ture introduction is dealt with separately.

The input to the following procedure is a PSS
whose typing function,T , is total; its output is a
PSS whose typing function,T , is total and whose
appropriateness relation is a function. LetS =
〈Q, T,�, Ap〉 be a PSS. For eachq ∈ Q andF ∈
FEAT, let

target(q, F) = {q′ | (q, F, q′) ∈ Ap}
sup(q) = {q′ ∈ Q | q′ � q}
sub(q) = {q′ ∈ Q | q � q′}
out(q) = {(F, q′) | (q, F, q′) ∈ Ap

Algorithm 1 Appropriateness consolidation
(S = 〈Q, T,�, Ap〉)

1. Find a nodeq and a featureF for which
|target(q, F)| > 1 and for all q′ ∈ Q such

that q′
∗

� q, |target(q′, F)| ≤ 1. If no such
pair exists, halt.

2. If target(q, F) has a lub,p, then:

(a) for all q′ ∈ target(q, F), remove the arc
(q, F, q′) fromAp.

(b) add the arc(q, F, p) to Ap.

(c) for all q′ ∈ Q such thatq
∗

� q′, if
(q′, F, p) /∈ Ap then add(q′, F, p) to
Ap.

(d) go to (1).

3. (a) Add a new node,p, to Q with:

• sup(p) = target(q, F)

• sub(p) = (target(q, F))u

• out(p) =
⋃

q′∈target(q,F) out(q′)

(b) Markp with a fresh type fromNAMES.

(c) For all q′ ∈ Q such thatq
∗

� q′, add
(q′, F, p) to Ap.

(d) For all q′ ∈ target(q, F), remove the
arc (q, F, q′) fromAp.

(e) Add(q, F, p) to Ap.

(f) go to (1).

The order in which nodes are selected in step 1
of the algorithm is from supertypes to subtypes.
This is done to preserve upward closure. In ad-
dition, when replacing a set of outgoing appropri-
ateness arcs with the same labelF , {(q, F, q′)},
by a single arc(q, F, ql), ql is added as an ap-
propriate value forF and all the subtypes ofq.
Again, this is done to preserve upward closure. If
a new node is added (stage 3), then its appropriate
features and values are inherited from its immedi-
ate supertypes. During the iterations of the algo-
rithm, condition 3b (maximality) of the definition
of a PSS may be violated but the resulting graph is
guaranteed to be a PSS.

Example 6 Consider the PSS depicted in Fig-
ure 9. Executing the appropriateness consolida-
tion algorithm on this module results in the module
depicted in Figure 10.AGR-labels are suppressed.

gerund new

n v vagr nagr

cat agr

Figure 10: Appropriateness consolidation result

8 Conclusions

We advocate the use of PSSs as the correct con-
cept of signature modules, supporting interaction

151

among grammar modules. Unlike existing ap-
proaches, our solution is formally defined, mathe-
matically proven and can be easily and efficiently
implemented. Module combination is a commuta-
tive and associative operation which meets all the
desiderata listed in section 4.

There is an obvious trade-off between flexibility
and strong typedeness, and our definitions can be
finely tuned to fit various points along this spec-
trum. In this paper we prefer flexibility, follow-
ing Melnik (2005), but future work will investigate
other options.

There are various other directions for future re-
search. First, grammarrules can be distributed
among modules in addition to the signature. The
definition of modules can then be extended to in-
clude also parts of the grammar. Then, various
combination operators can be defined for grammar
modules (cf. Wintner (2002)). We are actively pur-
suing this line of research.

Finally, while this work is mainly theoretical,
it has important practical implications. We would
like to integrate our solutions in an existing envi-
ronment for grammar development. An environ-
ment that supports modular construction of large
scale grammars will greatly contribute to gram-
mar development and will have a significant im-
pact on practical implementations of grammatical
formalisms.

9 Acknowledgments

We are grateful to Gerald Penn and Nissim
Francez for their comments on an earlier version
of this paper. This research was supported by The
Israel Science Foundation (grant no. 136/01).

References

Emily M. Bender, Dan Flickinger, and Stephan Oepen.
2002. The grammar matrix: An open-source starter-
kit for the rapid development of cross-linguistically
consistent broad-coverage precision grammars. In
Proceedings of ACL Workshop on Grammar Engi-
neering. Taipei, Taiwan, pages 8–14.

Emily M. Bender, Dan Flickinger, Fredrik Fouvry, and
Melanie Siegel. 2005. Shared representation in
multilingual grammar engineering.Research on
Language and Computation, 3:131–138.

Marie-Hélène Candito. 1996. A principle-based hier-
archical representation of LTAGs. InCOLING-96,
pages 194–199, Copenhagen, Denemark.

Bob Carpenter. 1992.The Logic of Typed Feature
Structures. Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press.

Ann Copestake and Dan Flickinger. 2000. An
open-source grammar development environment
and broad-coverage English grammar using HPSG.
In Proceedings of LREC, Athens, Greece.

Ann Copestake. 2002.Implementing typed feature
structures grammars. CSLI publications, Stanford.

Benoit Crabb́e and Denys Duchier. 2004. Metagram-
mar redux. InCSLP, Copenhagen, Denemark.

Mary Dalrymple. 2001. Lexical Functional Gram-
mar, volume 34 ofSyntax and Semantics. Academic
Press.

Erhard W. Hinrichs, W. Detmar Meurers, and Shuly
Wintner. 2004. Linguistic theory and grammar im-
plementation.Research on Language and Compu-
tation, 2:155–163.

Ronald M. Kaplan, Tracy Holloway King, and John T.
Maxwell. 2002. Adapting existing grammars:
the XLE experience. InCOLING-02 workshop on
Grammar engineering and evaluation, pages 1–7,
Morristown, NJ, USA.

Vlado Keselj. 2001. Modular HPSG. Technical Re-
port CS-2001-05, Department of Computer Science,
University of Waterloo, Waterloo, Ontario, Canada.

Tracy Holloway King, Martin Forst, Jonas Kuhn, and
Miriam Butt. 2005. The feature space in parallel
grammar writing.Research on Language and Com-
putation, 3:139–163.

Nurit Melnik. 2005. From “hand-written” to imple-
mented HPSG theories. InProceedings of HPSG-
2005, Lisbon, Portugal.

Nurit Melnik. 2006. A constructional approach to
verb-initial constructions in Modern Hebrew.Cog-
nitive Linguistics, 17(2). To appear.

Andrew M. Moshier. 1997. Is HPSG featureless or un-
principled?Linguistics and Philosophy, 20(6):669–
695.

Stephan Oepen, Daniel Flickinger, J. Tsujii, and Hans
Uszkoreit, editors. 2002.Collaborative Language
Engineering: A Case Study in Efficient Grammar-
Based Processing. CSLI Publications, Stanford.

Gerald B. Penn. 2000.The algebraic structure of
attributed type signatures. Ph.D. thesis, School
of Computer Science, Carnegie Mellon University,
Pittsburgh, PA.

Carl Pollard and Ivan A. Sag. 1994.Head-Driven
Phrase Structure Grammar. University of Chicago
Press and CSLI Publications.

Shuly Wintner. 2002. Modular context-free grammars.
Grammars, 5(1):41–63.

152

