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Abstract

Shortage of manually labeled data is an
obstacle to supervised relation extraction
methods. In this paper we investigate a
graph based semi-supervised learning al-
gorithm, a label propagation (LP) algo-

rithm, for relation extraction. It represents

labeled and unlabeled examples and their
distances as the nodes and the weights of
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amount of manually labeled relation instances. Un-
supervised methods do not need the definition of
relation types and manually labeled data, but they
cannot detect relations between entity pairs and its
result cannot be directly used in many NLP tasks
since there is no relation type label attached to
each instance in clustering result. Considering both
the availability of a large amount of untagged cor-
pora and direct usage of extracted relations, semi-
supervised learning methods has received great at-

tention.

DIPRE (Dual lterative Pattern Relation Expan-
sion) (Brin, 1998) is a bootstrapping-based sys-
tem that used a pattern matching system as clas-
sifier to exploit the duality between sets of pat-
terns and relations. Snowball (Agichtein and Gra-
vano, 2000) is another system that used bootstrap-
ping techniques for extracting relations from un-
structured text. Snowball shares much in common
with DIPRE, including the employment of the boot-
strapping framework as well as the use of pattern
matching to extract new candidate relations. The
third system approaches relation classification prob-

Relation extraction is the task of detecting andem with bootstrapping on top of SVM, proposed by
classifying relationships between two entities fronfhang (2004). This system focuses on the ACE sub-
text. Many machine learning methods have beeproblem, RDC, and extracts various lexical and syn-
proposed to address this problem, e.g., supervisé%PtiC features for the classification task. However,
learning algorithms (Miller et al., 2000; Zelenko etZhang (2004)’s method doesn't actually “detect” re-
al., 2002; Culotta and Soresen, 2004: Kambhaﬂ@itons but only performs relation classification be-
2004; Zhou et al., 2005), semi-supervised learrfween two entities given that they are known to be
ing algorithms (Brin, 1998; Agichtein and Gravanofelated.
2000; Zhang, 2004), and unsupervised learning al- Bootstrapping works by iteratively classifying un-
gorithms (Hasegawa et al., 2004). labeled examples and adding confidently classified
Supervised methods for relation extraction perexamples into labeled data using a model learned
form well on the ACE Data, but they require a largdrom augmented labeled data in previous iteration. It

edges of a graph, and tries to obtain a la-
beling function to satisfy two constraints:
1) it should be fixed on the labeled nodes,
2) it should be smooth on the whole graph.
Experiment results on the ACE corpus
showed that this LP algorithm achieves
better performance than SVM when only
very few labeled examples are available,
and it also performs better than bootstrap-
ping for the relation extraction task.

1 Introduction
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can be found that the affinity information amongun2 The Proposed Method
Iabelet_j examples is not fully explored in this boot—zl1 Problem Definition
strapping process.

Recently a promising family of semi-supervisedThe problem qf relation extraction is to assign an ap-
learning algorithm is introduced, which can effeclPropriate relation type to an occurrence of two entity
tively combine unlabeled data with labeled data if?@irs in @ given context. It can be represented as fol-
learning process by exploiting manifold structurdOWs:
(cluster structure) in data (Belkin and Niyogi, 2002;
Blum and Chawla, 2001; Blum et al., 2004; Zhu
and Ghahramani, 2002; Zhu et al., 2003). Thesgheree; and e, denote the entity mentions, and
graph-based semi-supervised methods usually de€s,.,C,,;q,and Cp.s: are the contexts before, be-
fine a graph where the nodes represent labeled afwgeen and after the entity mention pairs. In this pa-
unlabeled examples in a dataset, and edges (may &, we set the mid-context window as the words be-
weighted) reflect the similarity of examples. Thenween the two entity mentions and the pre- and post-
one wants a labeling function to satisfy two concontext as up to two words before and after the cor-
straints at the same time: 1) it should be close to th@sponding entity mention.
given labels on the labeled nodes, and 2) it should be Let X = {z;}" ; be a set of contexts of occur-
smooth on the whole graph. This can be expressednces of all the entity mention pairs, whergerep-
in a regularization framework where the first ternresents the contexts of thieh occurrence, and is
is a loss function, and the second term is a reguhe total number of occurrences. The firstxam-
larizer. These methods differ from traditional semiples (or contexts) are labeled as(y, € {Tj}?:P
supervised learning methods in that they use graph) denotes relation type arlis the total number of
structure to smooth the labeling function. relation types). The remainingu = n — [) exam-

To the best of our knowledge, no work has beeples are unlabeled.
done on using graph based semi-supervised learninglntuitively, if two occurrences of entity mention
algorithms for relation extraction. Here we invespairs have the similarity context, they tend to hold
tigate a label propagation algorithm (LP) (Zhu andhe same relation type. Based on the assumption, we
Ghahramani, 2002) for relation extraction task. Thislefine a graph where the vertices represent the con-
algorithm works by representing labeled and unlaexts of labeled and unlabeled occurrences of entity
beled examples as vertices in a connected grapigention pairs, and the edge between any two ver-
then propagating the label information from any verticesz; andz; is weighted so that the closer the ver-
tex to nearby vertices through weighted edges iteréices in some distance measure, the larger the weight
tively, finally inferring the labels of unlabeled exam-associated with this edge. Hence, the weights are de-
ples after the propagation process converges. In tHfised as follows:
paper we focus on the ACE RDC tdsk §2

The rest of this paper is organized as follows. Sec- Wi; = e:cp(—%) 2)
tion 2 presents related work. Section 3 formulates @
relation extraction problem in the context of semiwheres;; is the similarity between; andx; calcu-
supervised learning and describes our proposed dpted by some similarity measures, e.g., cosine sim-
proach. Then we provide experimental results of odlarity, and « is used to scale the weights. In this
proposed method and compare with a popular s@aper, we set as the average similarity between la-
pervised learning algorithm (SVM) and bootstrapbeled examples from different classes.
ping algorithm in Section 4. Finally we conclude
our work in section 5.

R — (Cprea €1, Cmid7 €2, CPOSt) (l)

2.2 A Label Propagation Algorithm

In the LP algorithm, the label information of any

. http://www.ldc.upenn.edu/Projects/ACE/, Three tasks ofertex in a graph is propagated to nearby vertices
ACE program: Entity Detection and Tracking (EDT), Rela- hrough weighted edaes until a alobal stable stage is
tion Detection and Characterization (RDC), and Event Deted! g g g g g

tion and Characterization (EDC) achieved. Larger edge weights allow labels to travel
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through easier. Thus the closer the examples are, tBeep 5: Assignz, (I + 1 < h < n) with a label:
more likely they have similar labels. yn = argmax;Yp;.

We define soft label as a vector that is a proba- _
bilistic distribution over all the classes. In the la- 1h€ @bove algorithm can ensure that the labeled

bel propagation process, the soft label of each initiflat@Yz never changes since itis clamped in Step 3.
labeled example is clamped in each iteration to ré>ctually we are interested in onlyy;. This algo-
plenish label sources from these labeled data. Thiidm has been shown to converge to a unique solu-
the labeled data act like sources to push out labdi@N Yo = lim; oo Y77 = (I — T) ™' Ty (Zhu
through unlabeled data. With this push from la@&"d Ghahramani, 2002). Herg,, andT, are ac-
beled examples, the class boundaries will be pushdyired by splitting matrix” after thei-th row and
through edges with large weights and settle in ga8€-th column into4 sub-matrices. And is u x u
along edges with small weights. Hopefully, the Val_ldgl’.\tlty matrlx. _We_can see that the |r_1|t|aI|Ozat|on of
ues ofi¥;; across different classes would be as smalfv In this solution is not important, since; does

as possible and the values @f;; within the same not affect the estimation dfy.

class would be as large as possible. This will mak§
label propagation to stay within the same class. This
label propagation process will make the labelin®.1 Feature Set

function smooth on the graph. N _ Following (Zhang, 2004), we used lexical and syn-
Define ann x n probabilistic transition matrif’  (4ic features in the contexts of entity pairs, which
Wi 3) are extracted and computed from the parse trees de-
> h—1 Wi rived from Charniak Parser (Charniak, 1999) and the
Chunklink script written by Sabine Buchholz from
Tilburg University.

Experiments and Results

Ty = P(j— i) =

whereT;; is the probability to jump from vertex;
to vertexz;. We define an x R label matrixY’,
whereY;; representing the probabilities of vertgx Words: Surface tokens of the two entities and

to have the labet;. words in the three contexts.
Then the label propagation algorithm consists the
following main steps: Entity Type: the entity type of both entity men-
tions, which can be PERSON, ORGANIZA-
Stepl: Initialization TION, FACILITY, LOCATION and GPE.

e Set the iteration index = 0;

o LetY" be the initial soft labels attached to
each vertex, wher]e’ig = 1if y; is labelr;
andO0 otherwise.

e Let Y be the topl rows of Y andY}} Chunking features: This category of features are
be the remaining rows.YL0 is consistent extracted from the chunklink representation,
with the labeling in labeled data and the  which includes:
initialization of ;% can be arbitrary.

POS features: Part-Of-Speech tags corresponding
to all tokens in the two entities and words in
the three contexts.

e Chunk tag information of the two enti-

Step 2 Propagate the labels of any vertex to ties and words in the three contexts. The
nearby vertices byy‘t! = TY! , where “0” tag means that the word is not in any
T is the row-normalized matrix off’, i.e. chunk. The “I-XP" tag means that this
T; = Ti;/ Xk Tir, Which can maintain the word is inside an XP chunk. The “B-XP”
class probab|||ty interpretation. by default means that the word is at the

_ beginning of an XP chunk.

Step 3: Clamp thteJrIlabgled (gl)ata, that is, replace the e Grammatical function of the two enti-
top! row of Y with Y. ties and words in the three contexts. The

Step 4 : Repeat from step 2 unfit converges. 2Software available at http://ilk.uvt.alsabine/chunklink/
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I word in h chunk is its h n
ast Oq each chu ) s its eaq’ a able 1:Frequency of Relation SubTypes in the ACE training
the function of the head is the function of 3pq gevtest corpus.

the whole chunk. “NP-SBJ” means a NP Type [ SubType [ Training Devtest
chunk as the subject of the sentence. The ROLE SAeneral-Staff 233 igg
: anagement
other words in a chunk that_ are not the Citizen-Of 127 o4
head have “NOFUNC" as their function. Founder 11 5
. . Owner 146 15
. IQB-chalns of the head_s of th_e two enti- Affiliate-Partner 111 15
ties. So-called I0B-chain, noting the syn- Member 460 145
tactic categories of all the constituents on Client 67 13
h th from the root node to this leaf Other = !
the pa PART | Part-Of 490 103
node of tree. Subsidiary 85 19
Other 2 1
. . . . . . AT Located 975 192
The position information is also specified in the Based-In 187 64
description of each feature above. For example, — gﬁfidegci _ igg 245‘-
. e . : : . er-rroressiona
word features with position |.nformat|on include: Other-Personal 60 10
1) WE1 (WEZ2): all words ire; (e2) Parent 68 24
2) WHE1 (WHE2): head word of; (e2) Spouse 21 4
WMNULL: no words inCiy,; Associate 29 !
3) . ~mid Other-Relative 23 10
4) WMFL.: the only word inC,,,;4 Sibling 7 4
5) WMF, WML, WM2, WM3, .. first word, last xR gg?;tfvzaﬁgﬁon 83 3%
word, second word, third word, ...i@,,,;; when at
least two words irC,,,;4
6) WEL1, WELZ2, ...: first word, second word, ... .
beforee; JS(q,7) = 5[Dxr(allp) + Drce(r]|p)] 4)
7) WER1, WER?2, ...: first word, second word, ...
afterey ~ a(y)
We combine the above lexical and syntactic features Dicr(allp) = Y a(y)(og 7)) ®)
with their position information in the contexts to
form context vectors. Before that, we filter out.Iow Dxi(r||p) = Z r(y)(log %) (6)
frequency features which appeared only once in the v Py

dataset. wherep = (¢ + r) andJS(q,r) represents JS

divergence between probability distribution q(y) and
r(y) (y is a random variable), which is defined in

The similaritys;; between two occurrences of entityterms of KL-divergence.
pairs is |mpor_tant to the p(_arform_ance of the_LI? alél3 Experimental Evaluation
gorithm. In this paper, we investigated two similar-
ity measures, cosine similarity measure and Jensep3-1  Experiment Setup

Shannon (JS) divergence (Lin, 1991). Cosine sim- We evaluated this label propagation based rela-
ilarity is commonly used semantic distance, whichion extraction method for relation subtype detection
measures the angle between two feature vectors. d8d characterization task on the official ACE 2003
divergence has ever been used as distance meastwepus. It contains 519 files from sources including
for document clustering, which outperforms cosinédroadcast, newswire, and newspaper. We dealt with
similarity based document clustering (Slonim et al.only intra-sentence explicit relations and assumed
2002). JS divergence measures the distance betwehat all entities have been detected beforehand in the
two probability distributions if feature vector is con-EDT sub-task of ACE. Table 1 lists the types and
sidered as probability distribution over features. JSubtypes of relations for the ACE Relation Detection
divergence is defined as follows: and Characterization (RDC) task, along with their

3.2 Similarity Measures
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Table 2:The Performance of SVM and LP algorithm with different sizes of labeled data for relation detection on relation subtypes.
The LP algorithm is run with two similarity measures: cosine similarity and JS divergence.

[ SVM [ LPcosme [ LPJS
Percentage P R F P R F P R F
1% | 35.9 32.6 34.4 58.3 56.1 57.1 58.5 58.7 58.5
10% | 51.3 41.5 45.9 64.5 57.5 60.7 64.6 62.0 63.2
25% | 67.1 52.9 590.1 68.7 59.0 63.4 68.9 63.7 66.1
50% | 74.0 57.8 64.9 69.9 61.8 65.6 70.1 64.1 66.9
75% | 77.6 59.4 67.2 71.8 63.4 67.3 72.4 64.8 68.3
100% | 79.8 62.9 70.3 73.9 66.9 70.2 74.2 68.2 711

Table 3:The performance of SVM and LP algorithm with different sizes of labeled data for relation detection and classification
on relation subtypes. The LP algorithm is run with two similarity measures: cosine similarity and JS divergence.

[ SVM [ LPCosine [ LPJS
Percentage P R F P R F P R F

1% | 31.6 26.1 28.6 39.6 37.5 38.5 40.1 38.0 39.0
10% | 39.1 32.7 35.6 45.9 39.6 42.5 46.2 41.6 43.7
25% | 49.8 35.0 41.1 51.0 445 47.3 52.3 46.0 48.9
50% | 52.5 41.3 46.2 54.1 48.6 51.2 54.9 50.8 52.7
75% | 58.7 46.7 52.0 56.0 52.0 53.9 56.1 52.6 54.3
100% | 60.8 48.9 54.2 56.2 52.3 54.1 56.3 52.9 54.6

frequency of occurrence in the ACE training set anthg set). If any relation subtype was absent from the
test set. We constructed labeled data by randomgampled labeled set, we redid the sampling. For each
sampling some examples from ACE training dataize, we performed 20 trials and calculated average
and additionally sampling examples with the samecores on test set over these 20 random trials.

size from the pool of unrelated entity pairs for the Taple 2 reports the performance of SVM and LP
“NONE” class. We used the remaining examples iRith different sizes of labled data for relation detec-

the ACE training set and the whole ACE test set agon task. We used the same sampled labeled data in
unlabeled data. The testing set was used for fingp a5 the training data for SVM model.

evaluation. From Table 2, we see that both &B;.. and

3.3.2 LPvs. SVM LP ;s achieve higheRecallthan SVM. Specifically,

Support Vector Machine (SVM) is a state of thewith small labeled dataset (p«_arcentage of labeled
art technique for relation extraction task. In this exdata< 25%), the performance improvement by LP
periment, we use LIBSVM todl with linear kernel 1S significant. When the percentage of labeled data
function. increases from30% to 100%, LP¢sine is Still com-

For comparison between SVM and LP, we rafparable to SVM inF-measurewhile LP; s achieves
SVM and LP with different sizes of labeled dataS/ightly betterF-measurethan SVM. On the other
and evaluate their performance on unlabeled dafi@nd. LPys consistently outperforms Lsine-
using precision, recall and F-measure. Firstly, we Table 3 reports the performance of relation clas-
ran SVM or LP algorithm to detect possible relasification by using SVM and LP with different sizes
tions from unlabeled data. If an entity mention paiof labled data. And the performance describes the
is classified not to the “NONE?” class but to the otheaverage values d®recision Recalland F-measure
24 subtype classes, then it has a relation. Then copver major relation subtypes.
struct labeled datasets with different sampling set From Table 3, we see that kB.;,.. and LP;g out-
sizel, including1% x Nirqin, 10% X Nirain, 25% % perform SVM byF-measurein almost all settings
Nirain, 50% X Nirain, 75% X Nirain, 100% X Nizain - of labeled data, which is due to the increaséRef
(Ntrain is the number of examples in the ACE train-call. With smaller labeled dataset (percentage of la-

SLIBSV M: a library for support vector machines. Soft- _beIEd data< 50%)' the gap between LP and SVM
ware available at http://www.csie.ntu.edu dveflin/libsvm. is larger. When the percentage of labeled data in-
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creases fronT5% to 100%, the performance of LP

algorithm is still comparable to SVM. On the otherFigure 2: An example: comparison of SVM and LP

hand, the LP algorithm based on JS divergence coalgorithm on a data set from ACE corpus. and

sistently outperforms the LP algorithm based on CoA denote the unlabeled examples in training set and

sine similarity. Figure 1 visualizes the accuracy ofest set respectively, and other symbeglsx(, O, +

three algorithms. andsy) represent the labeled examples with respec-
As shown in Figure 1, the gap between SVMive relation type sampled from training set.

curve and LBg curves is large when the percentage

of labeled data s relatively low. strategy achieves better performance than the local

3.3.3 An Example consistency based SVM strategy when the size of

. . . . labeled data is quite small.
In Figure 2, we selected 25 instances in train- d

ing set and 15 instances in test set from the ACB.3.4 LP vs. Bootstrapping

corpus,which covered five relation types. Using |, (Zhang, 2004), they perform relation classifi-
Isomap tool %, the 40 instances with 229 feature di-cation on ACE corpus with bootstrapping on top of
mensions are visualized in a two-dimensional spacg\/p. To compare with their proposed Bootstrapped
as the figure. We randomly sampled only one lagy/ algorithm, we use the same feature stream set-
beled example for each relation type from the 2§ and randomly selected 100 instances from the
training examples as labeled data. Figure 2(a) anhjning data as the size of initial labeled data.

2(b) show the initial state and ground truth result re- Taple 4 lists the performance of the bootstrapped
spectively. Figure 2(c) reports the classification res\/m method from (Zhang, 2004) and LP method
sult on test set by SVMagcuracy = 15 = 26.7%),  with 100 seed labeled examples for relation type
and Figure 2(d) gives the classification result on botRj5ssification task. We can see that LP algorithm
training set and test set by LRdcuracy = 15 = outperforms the bootstrapped SVM algorithm on
73.3%). four relation type classification tasks, and perform

Comparing Figure 2(b) and Figure 2(c), we findcomparably on the relation "SOC” classification
that many examples are misclassified from class tggk.

to other class symbols. This may be caused that
SVMs method ignores the intrinsic structure in data4  Discussion

For Figure 2(d), the labels of unlabeled examples hi h . , q h-based
are determined not only by nearby labeled examplegf this paper,we have investigated a graph-base

but also by nearby unlabeled examples, so using ﬁ@mi—supervised learning approach for relation ex-
traction problem. Experimental results showed that

“The tool is available at http://isomap.stanford.edu/. the LP algorithm performs better than SVM and
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Table 4: Comparison of the performance of the bootstrapped SVM method from (Zhang, 2004) and LP method with 100 seed
labeled examples for relation type classification task.

Bootstrapping [ LPss
Relation type|| P R F P R F
ROLE 78.5 69.7 73.8 81.0 4.7 7.7
PART 65.6 34.1 44.9 70.1 41.6 52.2
AT 61.0 84.8 70.9 74.2 79.1 76.6
SOC 47.0 57.4 51.7 45.0 59.1 51.0
NEAR — — — 13.7 125 13.0

Table 5:Comparison of the performance of previous methods on ACE RDC task.

[ | Relation Dectection| Relation Detection and Classification
\ | on Types on Subtypes
| Method [ P R F P R F P R F
Culotta and Soresen (2004) Tree kernel based 81.2 518 632 671 350 458 - - -
Kambhatla (2004) Feature based, Maxir - - - - - - 63.5 452 528
mum Entropy
Zhou et al. (2005) Feature based,SVM | 84.8 66.7 74.7| 77.2 60.7 68.0 63.1 495 555

bootstrapping. We have some findings from thesgaper focuses on the investigation of a graph based
results: semi-supervised learning algorithm for relation ex-

The LP based relation extraction method can u traction. In the future, we would like to use more ef-

the graph structure to smooth the labels of unlabelegcnve feature sets Zhou et al. (2005) or kemnel based

examples. Therefore, the labels of unlabeled eXam%l_mllarlty measure with LP for relation extraction.

ples are determined not only by the nearby labeled
examples, _but also by nearby unlabeled exampleg. Conclusion and Euture Work
For supervised methods, e.g., SVM, very few la-
beled examples are not enough to reveal the struc-
ture of each class. Therefore they can not perforfhis paper approaches the problem of semi-
well, since the classification hyperplane was learneslipervised relation extraction using a label propaga-
only from few labeled data and the coherent strudion algorithm. It represents labeled and unlabeled
ture in unlabeled data was not explored when inexamples and their distances as the nodes and the
ferring class boundary. Hence, our LP-based semiveights of edges of a graph, and tries to obtain a
supervised method achieves better performance abeling function to satisfy two constraints: 1) it
both relation detection and classification when onlghould be fixed on the labeled nodes, 2) it should
few labeled data is available. Bootstrapping be smooth on the whole graph. In the classifica-
tion process, the labels of unlabeled examples are
Currently most of works on the RDC task ofI pre ’ u xamp
) . determined not only by nearby labeled examples,
ACE focused on supervised learning methods Cl,b-
ut also by nearby unlabeled examples. Our exper-
lotta and Soresen (2004; Kambhatla (2004; Zhou )
. . Imental results demonstrated that this graph based
et al. (2005). Table 5 lists a comparison on re- . :
. : e algorithm can achieve better performance than SVM
lation detection and classification of these meth-

h I few label I ilabl
ods. Zhou et al. (2005) reported the best result aV\sI en only very few labeled examples are available,

63.1%/49.5%/55.5% iRrecision/Recall/F-measure and also outperforms the bootstrapping method for

. . . relation extraction task.
on the relation subtype classification using feature

based method, which outperforms tree kernel based!n the future, we would like to investigate more
method by Culotta and Soresen (2004). Compareffective feature set or use feature selection to im-
with Zhou et al.’s method, the performance of LP alProve the performance of this graph-based semi-
gorithm is slightly lower. It may be due to that wesupervised relation extraction method.

used a much simpler feature set. Our work in this
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