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Abstract

Syntactic knowledge is important for pro-
noun resolution. Traditionally, the syntac-
tic information for pronoun resolution is
represented in terms of features that have
to be selected and defined heuristically.
In the paper, we propose a kernel-based
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for resolution by using manually designed rules
(Lappin and Leass, 1994; Kennedy and Boguraev,
1996; Mitkov, 1998), or using machine-learning
methods (Aone and Bennett, 1995; Yang et al.,
2004; Luo and Zitouni, 2005).

However, such a solution has its limitation. The
syntactic features have to be selected and defined
manually, usually by linguistic intuition. Unfor-

method that can automatically mine the
syntactic information from the parse trees
for pronoun resolution. Specifically, we
utilize the parse trees directly as a struc-
tured feature and apply kernel functions to
this feature, as well as other normal fea-
tures, to learn the resolution classifier. In
this way, our approach avoids the efforts
of decoding the parse trees into the set of
flat syntactic features. The experimental
results show that our approach can bring
significant performance improvement and
is reliably effective for the pronoun reso-
lution task.

tunately, what kinds of syntactic information are
effective for pronoun resolution still remains an
open question in this research community. The
heuristically selected feature set may be insuffi-
cient to represent all the information necessary for
pronoun resolution contained in the parse trees.

In this paper we will explore how to utilize the
syntactic parse trees to help learning-based pro-
noun resolution. Specifically, we directly utilize
the parse trees as a structured feature, and then use
a kernel-based method to automatically mine the
knowledge embedded in the parse trees. The struc-
tured syntactic feature, together with other nor-
mal features, is incorporated in a trainable model
based on Support Vector Machine (SVM) (Vapnik,
1995) to learn the decision classifier for resolution.
Pronoun resolution is the task of finding the cor-Indeed, using kernel methods to mine structural
rect antecedent for a given pronominal anaphoknowledge has shown success in some NLP ap-
in a document. Prior studies have suggested thaications like parsing (Collins and Duffy, 2002;
syntactic knowledge plays an important role inMoschitti, 2004) and relation extraction (Zelenko
pronoun resolution. For a practical pronoun reset al., 2003; Zhao and Grishman, 2005). However,
olution system, the syntactic knowledge usuallyto our knowledge, the application of such a tech-
comes from the parse trees of the text. The isnique to the pronoun resolution task still remains
sue that arises is how to effectively incorporate theinexplored.
syntactic information embedded in the parse trees Compared with previous work, our approach
to help resolution. One common solution seen irhas several advantages: (1) The approach uti-
previous work is to define a set of features that replizes the parse trees as a structured feature, which
resent particular syntactic knowledge, such as thavoids the efforts of decoding the parse trees into
grammatical role of the antecedent candidates, the set of syntactic features in a heuristic manner.
governing relations between the candidate and th@) The approach is able to put together the struc-
pronoun, and so on. These features are calculatedred feature and the normal flat features in a
by mining the parse trees, and then could be usetlainable model, which allows different types of
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information to be considered in combination for . . .
Category: whether the candidate is a definite noun phrase,

both learning and resolution. (3) The approach ipgefinite noun phrase, pronoun, named-entity or others.

IS appllcab!e_for prac_tlcal pronoun reSO_IUt'On 8S Reflexivenesswhether the pronominal anaphor is a reflex-
the syntactic information can be automatically ob- ive pronoun.

tained from machine-generated parse trees. AndType: whether the pronominal anaphor is a male-person
our study shows that the approach works well un- Pronoun (likehe), female-person pronoun (likehg, sin-
. gle gender-neuter pronoun (lik, or plural gender-neuter

der the commonly available parsers. pronoun (likethey)

We evaluate our approach on the ACE data set.sypject: whether the candidate is a subject of a sentence, a
The experimental results over the different do- subject of a clause, or not.
mains indicate that the structured syntactic fea- Object: whether the candidate is an object of a verb, an
ture incorporated with kernels can significantly ©biectofapreposition, or not.
improve the resolution performance (by 5%/ ;
. . . . the pronominal anaphor.
in the success rates), and is reliably effective for _ , )
h lution task Closeness:whether the candidate is the candidate closest
the pronoun resolution task. to the pronominal anaphor.

The remainder of the paper is organized as fol- girstnp: whether the candidate is the first noun phrase in
lows. Section 2 gives some related work that uti- the current sentence.
lizes the structured syntactic knowledge to do pro- Parallelism: whether the candidate has an identical collo-
noun resolution. Section 3 introduces the frame- cation pattem with the pronominal anaphor.
work for the pronoun resolution, as well as theT ble 1: Feat t for the baseli
baseline feature space and the SVM classifier.i"‘t_e ) fa ure setfor the baseliné pronoun res-
Section 4 presents in detail the structured featyr8'Ution system
and the kernel functions to incorporate such a fea-
ture in the resolution. Section 5 shows the expersalience measures have to be assigned manually.
imental results and has some discussion. Finally, |uo and Zitouni (2005) proposed a coreference

Distance: the sentence distance between the candidate and

Section 6 concludes the paper. resolution approach which also explores the infor-
mation from the syntactic parse trees. Different
2 Related Work from Lappin and Leass (1994)’s algorithm, they

. employed a maximum entropy based model to au-
One of the early work on pronoun resolution rely- . ) :
omatically compute the importance (in terms of

ing on parse trees was proposed by Hobbs (1978 veights) of the features extracted from the trees.

For ronoun r Iv H " algorithm . . . )
or a pronoun to be resolved, Hobbs' algorit Ip their work, the selection of their features is

works by searching the parse trees of the Currenmainly inspired by the government and binding

text. Specifically, the algorithm processes one Ser}'heory aiming to capture the c-command relation-
tence at a time, using a left-to-right breadth-first '

. . ships between the pronoun and its antecedent can-
searching strategy. It first checks the current se P P

n-. . "
. i . B ntr r roach simpl iliz
tence where the pronoun occurs. The first NPd date. By contrast, our approach simply utilizes
the parse trees as a structured feature, and lets the

that satisfies constraints, like number and gender

arning algorithm discover all possible embedded
agreements, would be selected as the anteceden . .
. . information that is necessary for pronoun resolu-
If the antecedent is not found in the current sen

tence, the algorithm would traverse the trees oP
previous sentences in the text. As the searching
processing is completely done on the parse trees,
the performance of the algorithm would rely heav-Our pronoun resolution system adopts the com-
ily on the accuracy of the parsing results. mon learning-based framework similar to those
Lappin and Leass (1994) reported a pronourby Soon et al. (2001) and Ng and Cardie (2002).
resolution algorithm which uses the syntactic rep- In the learning framework, a training or testing
resentation output by McCord’'s Slot Grammarinstance is formed by a pronoun and one of its
parser. A set of salience measures (egub- antecedent candidate. During training, for each
ject, Object or Accusativeemphasis) is derived pronominal anaphor encountered, a positive in-
from the syntactic structure. The candidate withstance is created by paring the anaphor and its
the highest salience score would be selected adosestantecedent. Also a set of negative instances
the antecedent. In their algorithm, the weights ofis formed by paring the anaphor with each of the

The Resolution Framework
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non-coreferential candidates. Based on the trainwill discuss how to use kernels to incorporate the
ing instances, a binary classifier is generated usinmore complex structured feature.
a particular learning algorithm. During resolution, . )
a pronominal anaphor to be resolved is paired it~ Incorporating Structured Syntactic
turn with each preceding antecedent candidate to  Information
form a testing instance. This instance is presentegd 1  Main Idea
to the classifier which then returns a class label .
. . o - A parse tree that covers a pronoun and its an-
with a confidence value indicating the likelihood . .
that the candidate is the antecedent. The candidaqig(:eo'ent candidate could provide us much syntac-

) . . . IC information related to the pair. The commonly
with the highest confidence value will be selecte . .
. used syntactic knowledge for pronoun resolution,
as the antecedent of the pronominal anaphor.

such as grammatical roles or the governing rela-
3.1 Feature Space tions, can be directly described by the tree struc-

As with many other learning-based approachesture' Other syntactic knowledge that may be help-

the knowledge for the reference determination iJUI for resolution could also be implicitly repre-

represented as a set of features associated wiﬁ?med in the tree. Therefore, by comparing the

the training or test instances. In our baseline sys(—:Ommon substructures between two trees we can

tem, the features adopted include lexical propertyf,md out to what degree two trees contain similar

morphologic type, distance, salience, parallelism,syntaﬁt'f_ mfsrmaliuon, ;Nh'Ch can be done using a
grammatical role and so on. Listed in Table 1, gjiconvolution tre€ kernet.

these features have been proved effective for prot-h Th? v_?lu_(: rebtu:ned frct)m the ttree kerr_1e| refltects
noun resolution in previous work. e similarity between two instances in syntax.

Such syntactic similarity can be further combined
3.2 Support Vector Machine with other knowledge to compute the overall simi-

In theory, any discriminative learning algorithm is 121ty between two instances, through a composite
kernel. And thus a SVM classifier can be learned

applicable to learn the classifier for pronoun res- ) o ,
olution. In our study, we use Support Vector Ma- and then used for resolution. This is just the main

chine (Vapnik, 1995) to allow the use of kernels to!d€2 Of our approach.

incorporate the structured feature. 4.2 Structured Syntactic Feature
Suppose the training s&consists of labelled

vectors{(z;, y;)}, wherex; is the feature vector

of a training instance ang is its class label. The

classifier learned by SVM is

Normally, parsing is done on the sentence level.
However, in many cases a pronoun and an an-
tecedent candidate do not occur in the same sen-
tence. To present their syntactic properties and
flz) = Sgn(z yiaix * x; + b) (1) relations in a single tree structure, we construct a

i1 syntax tree for an entire text, by attaching the parse

) trees of all its sentences to an upper node.

wherea; is th? leamed _parame_tgr for a su_pport Having obtained the parse tree of a text, we shall
vector?ci. '_A‘n Instancer Is Clasi'f'ed as positive consider how to select the appropriate portion of
(negative) iff(x) > 0 (f(z) < 0)". the tree as the structured feature for a given in-

One advantage of SVM is that we can use ker'stance. As each instance is related to a pronoun

nel methqu 0 map a feat_ure space fo a particyyy candidate, the structured feature at least
lar high-dimension space, in case that f[he CUreNl ould be able to cover both of these two expres-
grhoblt;:n ZOI:Id ngt ;e sepgratedl n 3 gneaL Wa¥sions. Generally, the more substructure of the tree
us the dot-product, = w IS replaced by a Ker- ¢ j,01,ded, the more syntactic information would
nel function (or kernel) between two vectors, thatbe provided, but at the same time the more noisy
IS K(”rl’x?)' Eor the learning W't_h the normal information that comes from parsing errors would
features listed in Table 1, we can just employ thelikely be introduced. In our study, we examine

well-known ponnom_la_I or radial basis kernells thatthree possible structured features that contain dif-
can be computed efficiently. In the next section W&arent substructures of the parse tree:

For our task, the result of(z) is used as the confidence

value of the candidate to be the antecedent of the pronouMm'EXpanSIon This fe"’_lture records the mini-
described byt. mal structure covering both the pronoun and
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DEY_ NN.CANDI, TN Ne Y pRPANAl {DET NN.cadDI VIV Ne W pRPoaNA’ DR NCANDI B TNRS. Y pmmana
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man M pEr oW him the  man i onn Ty him the  man in ‘_,‘DET/\"“W‘::. him
the  room the  room e room
Min-Expansion Simple-Expansion Full-Expansion

Figure 1: structured-features for the instanc®im”, “the man”}

the candidate in the parse tree. It only in- and candidate pair. The rightmost picture of
cludes the nodes occurring in the shortest  Figure 1 shows the structure for featumell-
path connecting the pronoun and the candi-  Expansiorof i{*him”, "the man”}. As illus-

date, via the nearest commonly commanding  trated, different from inSimple-Expansign
node. For example, considering the sentence  the subtree of “PP” (for “in the room”) is
“The man in the room saw himthe struc- fully expanded and all its children nodes are
tured feature for the instancd“him”“the included inFull-Expansion

man’} is circled with dash lines as shown in

the leftmost picture of Figure 1. Note that to distinguish from other words, we

explicitly mark up in the structured feature the

Simple-Expansion Min-Expansion could, to pronoun and the antecedent candidate under con-

some degree, describe the syntactic relationsideration, by appending a string tag “ANA” and
ships between the candidate and pronoun:CANDI” in their respective nodes (e.g.,"NN-
However, it is incapable of capturing the CANDI" for “man” and “PRP-ANA’ for “him” as
syntactic properties of the candidate orshown in Figure 1).

the pronoun, because the tree structure

. L . 4.3 Structural Kernel and Composite Kernel
surrounding the expression is not taken into

consideration. To incorporate such infor- To calculate the Simiiarity between two structured
mation, featureSimple-Expansiomot only  features, we use the convolution tree kernel that is
contains all the nodes iMin-Expansionbut ~ defined by Collins and Duffy (2002) and Moschitti
also includes the first-level children of these(2004). Given two trees, the kernel will enumerate
nodeg. The middle of Figure 1 shows such a all their subtrees and use the number of common
feature for {“him"’ "the man"}_ We can see subtrees as the measure of the Similarity between
that the nodes “PP” (for “in the room”) and the trees. As has been proved, the convolution

“VB” (for “saw”) are included in the feature, kernel can be efficiently computed in polynomial
which provides clues that the candidate istime.

modified by a prepositionaj phrase and the The above tree kernel Oniy aims for the struc-
pronoun is the object of a verb. tured feature. We also need a composite kernel

to combine together the structured feature and the

Full-Expansion This feature focusses on the normal features described in Section 3.1. In our

whole tree structure between the candidat,dy we define the composite kernel as follows:
and pronoun. It not only includes all the
Ky (21, 22) . Ky(21,22),

nodes in Simple-Expansignbut also the g (2, 2,) =
nodes (beneath the nearest commanding par- |Kn(z1,2)] | Ki(a1, 22)}

ent) that cover the words between the candi- whereK; is the convolution tree kernel defined
date and the pronodn Such a feature keeps for the structured feature, anil,, is the kernel
the most information related to the pronounapplied on the normal features. Both kernels are

2If the pronoun and the candidate are not in the same sendiVided by their respective Iengihior normaliza-

tence, we will not include the nodes denoting the sentencetion. The new composite kernél.., defined as the
before the candidate or after the pronoun.

3We will not expand the nodes denoting the sentences - The length of a kemek is defined agK (z1,22)| =

other than where the pronoun and the candidate occur. \/K(ml, x1) * K(z2,22)
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multiplier of normalizedk; and K,,, will return a NWire NPaper BNews

value close to 1 only if both the structured features Hobbs (1978) 66.1 66.4 72.7
and the normal features from the two vectors have NORM 744 774 74.2
high similarity under their respective kernels. NORM_MaxEnt 728 779 75.3
NORM_C5 719 759 71.6
5 Experiments and Discussions S Min 76.4 810 76.8
_ S_Simple 732 827 82.3
5.1 Experimental Setup S.Full 732 805 79.0

In our study we focussed on the third-person NORM+SMin 776 825 82.3
pronominal anaphora resolution. All the exper- NORM+S Simple 79.2 827 823
iments were done on the ACE-2 V1.0 corpus NORM+SFull 815 83.2 81.5
(NIST, 2003), which contain two data sets, train- ]
ing and devtest, used for training and testing rejl'able 2: Results of the syntactic structured fea-
spectively. Each of these sets is further dividedUres
into three domains: newswire (NWire), newspa-
per (NPaper), and broadcast news (BNews). Described in Section 2, the algorithm uses heuris-
An input raw text was preprocessed automatitic rules to search the parse tree for the antecedent,
cally by a pipeline of NLP components, including and will act as a good baseline to compare with the
sentence boundary detection, POS-tagging, Texéarned-based approach with the structured fea-
Chunking and Named-Entity Recognition. Theture. As shown in the first line of Table 2, Hobbs’
texts were parsed using the maximum-entropyalgorithm obtains 66%72% success rates on the
based Charniak parser (Charniak, 2000), based ahree domains.
which the structured features were computed au- The second block of Table 2 shows the baseline
tomatically. For learning, the SVM-Light soft- system (NORM) that uses only the normal features
ware (Joachims, 1999) was employed with thejsted in Table 1. Throughout our experiments, we
convolution tree kernel implemented by Moschitti app“ed the p0|ynomia| kernel on the normal fea-
(2004). All classifiers were trained with default tyres to learn the SVM classifiers. In the table we
learning parameters. also compared the SVM-based results with those
The performance was evaluated based on thgsing other learning algorithms, i.e., Maximum
metric successthe ratio of the number of cor- Entropy (Maxent) and C5 decision tree, which are
rectly resolved anaphor over the number of all more commonly used in the anaphora resolution
anaphors. For each anaphor, the NPs occurringask.
within the current and previous two sentences As shown in the table, the system with normal
were taken as the initial antecedent candidateseatures (NORM) obtains 74%77% success rates
Those with mismatched number and gender agregor the three domains. The performance is simi-
ments were filtered from the candidate set. AlsO|ar to other published results like those by Keller
pronouns or NEs that disagreed in person with thng Lapata (2003), who adopted a similar fea-
anaphor were removed in advance. For trainingyre set and reported around 75% success rates
there were 1207, 1440, and 1260 pronouns witlhn the ACE data set. The comparison between
non-empty candidate set found pronouns in thejifferent learning algorithms indicates that SVM
three domains respectively, while for testing, thecan work as well as or even better than Maxent

number was 313, 399 and 271. On average, &NORM._MaxEnt) or C5 (NORMCS5).
pronoun anaphor had~® antecedent candidates

ahead. Tota”y, we gO'[ around 10k, 13k and 8k53 Systems W|th Structured Features
training instances for the three domains.

The last two blocks of Table 2 summarize the re-
5.2 Baseline Systems sults using the three syntactic structured features,

) i i.e, Min_Expansion(S_MIN), SimpleExpansion
Table 2 lists the performance of different systems(S SIMPLE) andFull Expansion(S_FULL). Be-

We first tested Hobbs' algorithm (Hobbs, 1978)'tween them, the third block is for the systems us-

®An anaphor was deemed correctly resolved if the foundNY the individual structured feature alone. We
antecedent is in the same coreference chain of the anaphor.can see that all the three structured features per-
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NWire NPaper BNews
Sentence Distance 0 1 2 0 1 2 0 1 2
(Number of Prons) (192) (102) (19)| (237) (147) (15)| (175) (82) (14)
NORM 80.2 725 26.3 814 755 333 80.0 659 50.0
S_Simple 79.7 706 21.1 87.3 81.0 26.7| 89.7 70.7 57.1
NORM+SSimple | 85.4 76,5 31. 87.3 79.6 40.0| 88.6 74.4 50.0

Table 3: The resolution results for pronouns with antecedent in different sentences apart

NWire NPaper BNews
Type person neuter person neuter person neuter
(Number of Prons) (171) (142)| (250) (149)| (153) (118)
NORM 81.9 65.5 | 80.0 73.2| 745 73.7
S_Simple 81.9 62.7 | 832 819 | 824 822
NORM+S Simple | 87.1 69.7| 836 812 | 8.9 76.3

Table 4: The resolution results for different types of pronouns

form better than the normal features for NPapereason, our subsequent reports will focusSim-
(up to 5.3%succespand BNews (up to 8.1%uc- ple_.Expansionunless otherwise specified.
cesy, or equally well 1 ~ 2% in succesgfor
NWire. When used together with the normal fea- As described, to compute the structured fea-
tures, as shown in the last block, the three structure, parse trees for different sentences are con-
tured features all outperform the baselines. Esnected to form a large tree for the text. It would
pecially, the combinations of NORM+SIMPLE  be interesting to find how the structured feature
and NORM+SFULL can achieve significantfy works for pronouns whose antecedents reside in
better results than NORM, with the success ratglifferent sentences. For this purpose we tested
increasing by (4.8%, 5.3% and 8.1%) and (7.1%the success rates for the pronouns with the clos-
5.8%, 7.2%) respectively. All these results proveest antecedent occurring in the same sentence,
that the structured syntactic feature is effective folone-sentence apart, and two-sentence apart. Ta-
pronoun resolution. ble 3 compares the learning systems with/without
We further compare the performance of thethe structured feature present. From the table,
three different structured features. As shown irfor all the systems, the success rates drop with
Table 2, when used together with the normatthe increase of the distances between the pro-
features, Full_Expansiongives the highest suc- noun and the antecedent. However, in most cases,
cess rates in NWire and NPaper, but nevertheadding the structured feature would bring consis-
less the lowest in BNews. This should be betent improvement against the baselines regardless
cause featureFull-Expansioncaptures a larger of the number of sentence distance. This observa-
portion of the parse trees, and thus can providéion suggests that the structured syntactic informa-
more syntactic information thamin_Expansion tion is helpful for both intra-sentential and inter-
or SimpleExpansion However, if the texts are sentential pronoun resolution.
less-formally structured as those in BNewsiI-
Expansionwould inevitably involve more noises  We were also concerned about how the struc-
and thus adversely affect the resolution perfortured feature works for different types of pro-
mance. By contrast, featurimpleExpansion nouns. Table 4 lists the resolution results for two
would achieve balance between the informatiortypes of pronouns: person pronouns (i.e., “he”,
and the noises to be introduced: from Table 2 wefshe”) and neuter-gender pronouns (i.e., “it” and
can find that compared with the other two featuresithey”). As shown, with the structured feature in-
SimpleExpansionis capable of producing aver- corporated, the system NORM+8mple can sig-
age results for all the three domains. And for thisnificantly boost the performance of the baseline
(NORM), for both personal pronoun and neuter-

®p < 0.05 by a 2-tailed test. gender pronoun resolution.
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NWire NPaper BNews

Figure 2: Learning curves of systems with different features

5.4 Learning Curves NWire NPaper BNews
NORM 744 774 742
Figure 2 plots the learning curves for the sys- NORM - subj/obj 68.7 76.2 72.7
tems with three feature sets, i.e, normal features NORM +SSimple ~ 79.2 82.7 82.3
(NORM), structured feature alone &mple), ~ NORM+SSimple - subjlobj ~ 77.3 830 812
and combined features (NORM+Simple). We NORM + Luo05 5T 719 749

trained each system with different number of in-14p16 5. Comparison of the structured feature and

stances from 1k, 2k, 3k, ..., till the full size. Each e 15t features extracted from parse trees
point in the figures was the average over two trails

with instances selected forwards and backwards—ggztre Parser NWire NPaper BNews
respectively. From the figures we can find that S.Simol Charniak00 ~ 73.2 82.7 823
(1) Used in combination (NORM+Simple), the -IMPIe  Collins99 751 832 804
structured feature shows superiority over NORM, NORM+ Charniak00  79.2 82.7 82.3
achieving results consistently better than the nor-_S-Simple _ Collins99 _ 80.8 815  82.3
mal features (NORM) do in all the three domains.
(2) With training instances above 3k, the struc-
tured feature, used either in isolation §ample)

or in combination (NORM+SSimple), leads to important for pronoun resolution.

steady increase in the success rates and exhibit\ye also tested the flat syntactic feature set pro-
smoother learning curves than the normal featureﬁosed in Luo and Zitouni (2005)'s work. As de-
(NORM). These observations further prove the rescriped in Section 2, the feature set is inspired
Iiapility of the structured feature in pronoun reso-ipe binding theory, including those features like
lution. whether the candidate isaommanding the pro-
noun, and the counts of “NP”, “VP”, “S” nodes

in the commanding path. The last line of Table 5
In our experiment we were also interested to COMghows the results by adding these features into the
pare the structured feature with the normal flatyorma) feature set. In line with the reports in (Luo
features extracted from the parse tree, like feagng zitouni, 2005) we do observe the performance
ture Subjectand Object For this purpose we jmprovement against the baseline (NORM) for all
took out these two grammatical features from thene gomains. However, the increase in the success
normal feature set, and then trained the systemgieg (up to 1.3%) is not so large as by adding the

again. As shown in Table 5, the two grammatical-syryctured feature (NORM+Simple) instead.
role features are important for the pronoun resolu-

tion:_removing thes_e features results in up to 5'70/%.6 Comparison with Different Parsers

(NWire) decrease isuccess However, when the

structured feature is included, the losssimccess As mentioned, the above reported results were
reduces to 1.9% and 1.1% for NWire and BNewspased on Charniak (2000)'s parser. It would be
and a slight improvement can even be achieved fanteresting to examine the influence of different

NPaper. This indicates that the structured featurparsers on the resolution performance. For this
can effectively provide the syntactic information purpose, we also tried the parser by Collins (1999)

Table 6: Results using different parsers

5.5 Feature Analysis
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(Mode 11)?, and the results are shown in Table 6. for Computational Linguistics (ACL'02pages 263—
We can see that Charniak (2000)'s parser leads to 270

higher success rates for NPaper and BNews, whil¥. Collins. 1999. Head-D(iven Statistical MO(_jeIS for
Collins (1999)’s achieves better results for NWire. ’S'ﬁ;%ﬁéﬁ\”/gg%ge ParsingPh.D. thesis, University
However, the difference between the results of the . _
two parsers is not significant (less than 2c- J. 33233:3%%7_%55350"””9 pronoun references
ces$ for the three domains, no matter whether the

structured feature is used alone or in combination!- Joachims. 1999. Making large-scale svm learning
practical. InAdvances in Kernel Methods - Support

Vector LearningMIT Press.

F. Keller and M. Lapata. 2003. Using the web to ob-
The purpose of this paper is to explore how to tain fregencies for unseen bigramSomputational

make use of the structured syntactic knowledge to -NGUistics 29(3):459-484.
do pronoun resolution. Traditionally, syntactic in- C. Kennedy and B. Boguraev. 1996. Anaphora

; ; for everyone: pronominal anaphra resolution with-
formation from parse trees Is represented as a set out a parser. IrProceedings of the 16th Inter-

of flat features. However, the features are usu- national Conference on Computational Linguistics
ally selected and defined by heuristics and may pages 113-118, Copenhagen, Denmark.

not necessarily capture all the syntactic informa=s | appin and H. Leass. 1994. An algorithm for
tion provided by the parse trees. In the paper, we pronominal anaphora resolution.Computational

propose a kernel-based method to incorporate the Linguistics 20(4):525-561.
information from parse trees. Specifically, we di-X. Luo and I. Zitouni. 2005. Milti-lingual coreference

rectly utilize the syntactic parse tree as a struc- resolution with syntactic features. Rroceedings of
Human Language Techonology conference and Con-

tured feature, and then apply kernels to such a fea- ference on Empirical Methods in Natural Language
ture, together with other normal features, to learn Processing (HLT/EMNLRpages 660-667.

the decision classifier and do the resolution. OUR_ witkov. 1998. Robust pronoun resolution with lim-
experimental results on ACE data set show that ited knowledge. IProceedings of the 17th Int. Con-
the system with the structured feature included ge;gnce on Computational Linguisticpages 869

can achieve significant increase in the success rate =

; ; A. Moschitti. 2004. A study on convolution kernels
0 0
by around 5%-8%, for all the different domains. for shallow semantic parsing. FProceedings of the

The deeper analysis on various factors like training 42nd Annual Meeting of the Association for Compu-
size, feature set or parsers further proves that the tational Linguistics (ACL'04)pages 335-342.

Stl’UC'[UI’ed feature incorporated W|th our kernel-v_ Ng and C. Cardie. 2002. |mproving machine learn-

based method is reliably effective for the pronoun ing approaches to coreference resolution. Pho-
resolution task ceedings of the 40th Annual Meeting of the Associa-

' tion for Computational Linguisticppages 104-111,
Philadelphia.

References W. Soon, H. Ng, and D. Lim. 2001. A machine
. learning approach to coreference resolution of noun
C. Aone and S. W. Bennett. 1995. Evaluating auto- phrases. Computational Linguistigs 27(4):521—
mated and manual acquisition of anaphora resolu- 544,
tion strategies. IProceedings of the 33rd Annual . - .
Meeting of the Association for Compuational Lin- V. Vapnik. 1995. The Nature of Statistical Learning

guistics pages 122—129. Theory Springer.

X. Yang, J. Su, G. Zhou, and C. Tan. 2004. Improv-
ing pronoun resolution by incorporating coreferen-
tial information of candidates. IProceedings of
42th Annual Meeting of the Association for Compu-
tational Linguistics pages 127-134, Barcelona.

6 Conclusion

E. Charniak. 2000. A maximum-entropy-inspired
parser. InProceedings of North American chapter
of the Association for Computational Linguistics an-
nual meetingpages 132-139.

M. Collins and N. Duffy. 2002. New ranking algo- p_zelenko, C. Aone, and A. Richardella. 2003. Ker-
rithms for parsing and tagging: kernels over discrete  ne| methods for relation extractiodournal of Ma-

structures and the voted perceptron. Rroceed- chine Learning ResearcB(6):1083 — 1106.
ings of the 40th Annual Meeting of the Association

- S. Zhao and R. Grishman. 2005. Extracting rela-
"As in their pulic reports on Section 23 of WSJ TreeBank,  tions with integrated information using kernel meth-

Charniak (2000)'s parser achieves 89.6% recall and 89.5% ods. InProceedings of 43rd Annual Meeting of the

precision with 0.88 crossing brackets (word<00), against Association for Computational Linguistics (ACLQ5)

Collins (1999)'s 88.1% recall and 88.3% precision with 1.06  pages 419-426.

crossing brackets.

48



