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Abstract

We consider the task of unsupervised lec-
ture segmentation. We formalize segmen-
tation as a graph-partitioning task that op-
timizes the normalized cut criterion. Our
approach moves beyond localized com-
parisons and takes into account long-
range cohesion dependencies. Our results
demonstrate that global analysis improves
the segmentation accuracy and is robust in
the presence of speech recognition errors.

1 Introduction

The development of computational models of text
structure is a central concern in natural language
processing. Text segmentation is an important in-
stance of such work. The task is to partition a
text into a linear sequence of topically coherent
segments and thereby induce a content structure
of the text. The applications of the derived rep-
resentation are broad, encompassing information
retrieval, question-answering and summarization.

Not surprisingly, text segmentation has been ex-
tensively investigated over the last decade. Fol-
lowing the first unsupervised segmentation ap-
proach by Hearst (1994), most algorithms assume
that variations in lexical distribution indicate topic
changes. When documents exhibit sharp varia-
tions in lexical distribution, these algorithms are
likely to detect segment boundaries accurately.
For example, most algorithms achieve high per-
formance on synthetic collections, generated by
concatenation of random text blocks (Choi, 2000).
The difficulty arises, however, when transitions
between topics are smooth and distributional vari-
ations are subtle. This is evident in the perfor-
mance of existing unsupervised algorithms on less

structured datasets, such as spoken meeting tran-
scripts (Galley et al., 2003). Therefore, a more
refined analysis of lexical distribution is needed.

Our work addresses this challenge by casting
text segmentation in a graph-theoretic framework.
We abstract a text into a weighted undirected
graph, where the nodes of the graph correspond
to sentences and edge weights represent the pair-
wise sentence similarity. In this framework, text
segmentation corresponds to a graph partitioning
that optimizes thenormalized-cut criterion (Shi
and Malik, 2000). This criterion measures both the
similarity within each partition and the dissimilar-
ity across different partitions. Thus, our approach
moves beyond localized comparisons and takes
into account long-range changes in lexical distri-
bution. Our key hypothesis is that global analysis
yields more accurate segmentation results than lo-
cal models.

We tested our algorithm on a corpus of spo-
ken lectures. Segmentation in this domain is chal-
lenging in several respects. Being less structured
than written text, lecture material exhibits digres-
sions, disfluencies, and other artifacts of sponta-
neous communication. In addition, the output of
speech recognizers is fraught with high word er-
ror rates due to specialized technical vocabulary
and lack of in-domain spoken data for training.
Finally, pedagogical considerations call for fluent
transitions between different topics in a lecture,
further complicating the segmentation task.

Our experimental results confirm our hypothe-
sis: considering long-distance lexical dependen-
cies yields substantial gains in segmentation per-
formance. Our graph-theoretic approach com-
pares favorably to state-of-the-art segmentation al-
gorithms and attains results close to the range of
human agreement scores. Another attractive prop-
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erty of the algorithm is its robustness to noise: the
accuracy of our algorithm does not deteriorate sig-
nificantly when applied to speech recognition out-
put.

2 Previous Work

Most unsupervised algorithms assume that frag-
ments of text with homogeneous lexical distribu-
tion correspond to topically coherent segments.
Previous research has analyzed various facets of
lexical distribution, including lexical weighting,
similarity computation, and smoothing (Hearst,
1994; Utiyama and Isahara, 2001; Choi, 2000;
Reynar, 1998; Kehagias et al., 2003; Ji and Zha,
2003).

The focus of our work, however, is on an or-
thogonal yet fundamental aspect of this analysis
— the impact of long-range cohesion dependen-
cies on segmentation performance. In contrast to
previous approaches, the homogeneity of a seg-
ment is determined not only by the similarity of its
words, but also by their relation to words in other
segments of the text. We show that optimizing our
global objective enables us to detect subtle topical
changes.

Graph-Theoretic Approaches in Vision Seg-
mentation Our work is inspired by minimum-cut-
based segmentation algorithms developed for im-
age analysis. Shi and Malik (2000) introduced
the normalized-cut criterion and demonstrated its
practical benefits for segmenting static images.

Our method, however, is not a simple applica-
tion of the existing approach to a new task. First,
in order to make it work in the new linguistic
framework, we had to redefine the underlying rep-
resentation and introduce a variety of smoothing
and lexical weighting techniques. Second, the
computational techniques for finding the optimal
partitioning are also quite different. Since the min-
imization of the normalized cut isNP -complete
in the general case, researchers in vision have to
approximate this computation. Fortunately, we
can find an exact solution due to the linearity con-
straint on text segmentation.

3 Minimum Cut Framework

Linguistic research has shown that word repeti-
tion in a particular section of a text is a device for
creating thematic cohesion (Halliday and Hasan,
1976), and that changes in the lexical distributions
usually signal topic transitions.

Figure 1: Sentence similarity plot for a Physics
lecture, with vertical lines indicating true segment
boundaries.

Figure 1 illustrates these properties in a lec-
ture transcript from an undergraduate Physics
class. We use the text Dotplotting representation
by (Church, 1993) and plot the cosine similar-
ity scores between every pair of sentences in the
text. The intensity of a point(i, j) on the plot in-
dicates the degree to which thei-th sentence in
the text is similar to thej-th sentence. The true
segment boundaries are denoted by vertical lines.
This similarity plot reveals a block structure where
true boundaries delimit blocks of text with high
inter-sentential similarity. Sentences found in dif-
ferent blocks, on the other hand, tend to exhibit
low similarity.

u1 u2 u3 un

Figure 2: Graph-based Representation of Text

Formalizing the Objective Whereas previous
unsupervised approaches to segmentation rested
on intuitive notions of similarity density, we for-
malize the objective of text segmentation through
cuts on graphs. We aim to jointly maximize the
intra-segmental similarity and minimize the simi-
larity between different segments. In other words,
we want to find the segmentation with a maximally
homogeneous set of segments that are also maxi-
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mally different from each other.
Let G = {V,E} be an undirected, weighted

graph, whereV is the set of nodes correspond-
ing to sentences in the text andE is the set of
weighted edges (See Figure 2). The edge weights,
w(u, v), define a measure of similarity between
pairs of nodesu and v, where higher scores in-
dicate higher similarity. Section 4 provides more
details on graph construction.

We consider the problem of partitioning the
graph into two disjoint sets of nodesA andB. We
aim to minimize the cut, which is defined to be the
sum of the crossing edges between the two sets of
nodes. In other words, we want to split the sen-
tences into two maximally dissimilar classes by
choosingA andB to minimize:

cut(A,B) =
∑

u∈A,v∈B

w(u, v)

However, we need to ensure that the two parti-
tions are not only maximally different from each
other, but also that they are themselves homoge-
neous by accounting for intra-partition node simi-
larity. We formulate this requirement in the frame-
work of normalized cuts (Shi and Malik, 2000),
where the cut value is normalized by the volume
of the corresponding partitions. The volume of the
partition is the sum of its edges to the whole graph:

vol(A) =
∑

u∈A,v∈V

w(u, v)

The normalized cut criterion (Ncut) is then de-
fined as follows:

Ncut(A,B) =
cut(A,B)
vol(A)

+
cut(A,B)
vol(B)

By minimizing this objective we simultane-
ously minimize the similarity across partitions and
maximize the similarity within partitions. This
formulation also allows us to decompose the ob-
jective into a sum of individual terms, and formu-
late a dynamic programming solution to the mul-
tiway cut problem.

This criterion is naturally extended to a k-way
normalized cut:

Ncutk(V ) =
cut(A1, V −A1)

vol(A1)
+ . . .+

cut(Ak, V −Ak)

vol(Ak)

whereA1 . . . Ak form a partition of the graph,
andV −Ak is the set difference between the entire
graph and partitionk.

DecodingPapadimitriou proved that the prob-
lem of minimizing normalized cuts on graphs is
NP -complete (Shi and Malik, 2000). However,
in our case, the multi-way cut is constrained to
preserve the linearity of the segmentation. By seg-
mentation linearity, we mean that all of the nodes
between the leftmost and the rightmost nodes of
a particular partition have to belong to that par-
tition. With this constraint, we formulate a dy-
namic programming algorithm for exactly finding
the minimum normalized multiway cut in polyno-
mial time:

C [i, k] = min
j<k

[
C [i− 1, j] +

cut [Aj,k, V −Aj,k]

vol [Aj,k]

]
(1)

B [i, k] = argmin
j<k

[
C [i− 1, j] +

cut [Aj,k, V −Aj,k]

vol [Aj,k]

]
(2)

s.t.C [0, 1] = 0, C [0, k] =∞, 1 < k ≤ N (3)

B [0, k] = 1, 1 ≤ k ≤ N (4)

C [i, k] is the normalized cut value of the op-
timal segmentation of the firstk sentences intoi
segments. Thei-th segment,Aj,k, begins at node
uj and ends at nodeuk. B [i, k] is the back-pointer
table from which we recover the optimal sequence
of segment boundaries. Equations 3 and 4 capture
respectively the condition that the normalized cut
value of the trivial segmentation of an empty text
into one segment is zero and the constraint that the
first segment starts with the first node.

The time complexity of the dynamic program-
ming algorithm isO(KN2), whereK is the num-
ber of partitions andN is the number of nodes in
the graph or sentences in the transcript.

4 Building the Graph

Clearly, the performance of our model depends
on the underlying representation, the definition of
the pairwise similarity function, and various other
model parameters. In this section we provide fur-
ther details on the graph construction process.

PreprocessingBefore building the graph, we
apply standard text preprocessing techniques to
the text. We stem words with the Porter stem-
mer (Porter, 1980) to alleviate the sparsity of word
counts through stem equivalence classes. We also
remove words matching a prespecified list of stop
words.
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Graph Topology As we noted in the previ-
ous section, the normalized cut criterion considers
long-term similarity relationships between nodes.
This effect is achieved by constructing a fully-
connected graph. However, considering all pair-
wise relations in a long text may be detrimen-
tal to segmentation accuracy. Therefore, we dis-
card edges between sentences exceeding a certain
threshold distance. This reduction in the graph
size also provides us with computational savings.

Similarity Computation In computing pair-
wise sentence similarities, sentences are repre-
sented as vectors of word counts. Cosine sim-
ilarity is commonly used in text segmentation
(Hearst, 1994). To avoid numerical precision
issues when summing a series of very small
scores, we compute exponentiated cosine similar-
ity scores between pairs of sentence vectors:

w(si, sj) = e
si·sj

||si||×||sj ||

We further refine our analysis by smoothing the
similarity metric. When comparing two sentences,
we also take into account similarity between their
immediate neighborhoods. The smoothing is
achieved by adding counts of words that occur in
adjoining sentences to the current sentence feature
vector. These counts are weighted in accordance
to their distance from the current sentence:

s̃i =
i+k∑
j=i

e−α(j−i)sj ,

wheresi are vectors of word counts, andα is a
parameter that controls the degree of smoothing.

In the formulation above we use sentences as
our nodes. However, we can also represent graph
nodes with non-overlapping blocks of words of
fixed length. This is desirable, since the lecture
transcripts lack sentence boundary markers, and
short utterances can skew the cosine similarity
scores. The optimal length of the block is tuned
on a heldout development set.

Lexical Weighting Previous research has
shown that weighting schemes play an important
role in segmentation performance (Ji and Zha,
2003; Choi et al., 2001). Of particular concern
are words that may not be common in general En-
glish discourse but that occur throughout the text
for a particular lecture or subject. For example, in
a lecture about support vector machines, the oc-
currence of the term “SVM” is not going to con-
vey a lot of information about the distribution of

Segments perTotal Word ASR WER
Corpus Lectures Lecture Tokens Accuracy
Physics 33 5.9 232K 19.4%

AI 22 12.3 182K ×

Table 1: Lecture Corpus Statistics

sub-topics, even though it is a fairly rare term
in general English and bears much semantic con-
tent. The same words can convey varying degrees
of information across different lectures, and term
weighting specific to individual lectures becomes
important in the similarity computation.

In order to address this issue, we introduce a
variation on thetf-idf scoring scheme used in the
information-retrieval literature (Salton and Buck-
ley, 1988). A transcript is split uniformly intoN
chunks; each chunk serves as the equivalent of
documents in thetf-idf computation. The weights
are computed separately for each transcript, since
topic and word distributions vary across lectures.

5 Evaluation Set-Up

In this section we present the different corpora
used to evaluate our model and provide a brief
overview of the evaluation metrics. Next, we de-
scribe our human segmentation study on the cor-
pus of spoken lecture data.

5.1 Parameter Estimation

A heldout development set of three lectures is-
used for estimating the optimal word block length
for representing nodes, the threshold distances for
discarding node edges, the number of uniform
chunks for estimatingtf-idf lexical weights, the
alpha parameter for smoothing, and the length of
the smoothing window. We use a simple greedy
search procedure for optimizing the parameters.

5.2 Corpora

We evaluate our segmentation algorithm on three
sets of data. Two of the datasets we use are new
segmentation collections that we have compiled
for this study,1 and the remaining set includes a
standard collection previously used for evaluation
of segmentation algorithms. Various corpus statis-
tics for the new datasets are presented in Table 1.
Below we briefly describe each corpus.

Physics LecturesOur first corpus consists of
spoken lecture transcripts from an undergraduate

1Our materials are publicly available athttp://www.
csail.mit.edu/ ˜ igorm/acl06.html
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Physics class. In contrast to other segmentation
datasets, our corpus contains much longer texts.
A typical lecture of 90 minutes has 500 to 700
sentences with8500 words, which corresponds to
about 15 pages of raw text. We have access both
to manual transcriptions of these lectures and also
output from an automatic speech recognition sys-
tem. The word error rate for the latter is 19.4%,2

which is representative of state-of-the-art perfor-
mance on lecture material (Leeuwis et al., 2003).

The Physics lecture transcript segmentations
were produced by the teaching staff of the intro-
ductory Physics course at the Massachusetts In-
stitute of Technology. Their objective was to fa-
cilitate access to lecture recordings available on
the class website. This segmentation conveys the
high-level topical structure of the lectures. On av-
erage, a lecture was annotated with six segments,
and a typical segment corresponds to two pages of
a transcript.

Artificial Intelligence Lectures Our second
lecture corpus differs in subject matter, lecturing
style, and segmentation granularity. The gradu-
ate Artificial Intelligence class has, on average,
twelve segments per lecture, and a typical segment
is about half of a page. One segment roughly cor-
responds to the content of a slide. This time the
segmentation was obtained from the lecturer her-
self. The lecturer went through the transcripts of
lecture recordings and segmented the lectures with
the objective of making the segments correspond
to presentation slides for the lectures.

Due to the low recording quality, we were un-
able to obtain the ASR transcripts for this class.
Therefore, we only use manual transcriptions of
these lectures.

Synthetic Corpus Also as part of our anal-
ysis, we used the synthetic corpus created by
Choi (2000) which is commonly used in the eval-
uation of segmentation algorithms. This corpus
consists of a set of concatenated segments ran-
domly sampled from the Brown corpus. The
length of the segments in this corpus ranges from
three to eleven sentences. It is important to note
that the lexical transitions in these concatenated
texts are very sharp, since the segments come from
texts written in widely varying language styles on
completely different topics.

2A speaker-dependent model of the lecturer was trained
on 38 hours of lectures from other courses using the SUM-
MIT segment-based Speech Recognizer (Glass, 2003).

5.3 Evaluation Metric

We use thePk and WindowDiff measures to eval-
uate our system (Beeferman et al., 1999; Pevzner
and Hearst, 2002). ThePk measure estimates the
probability that a randomly chosen pair of words
within a window of lengthk words is inconsis-
tently classified. The WindowDiff metric is a vari-
ant of thePk measure, which penalizes false posi-
tives on an equal basis with near misses.

Both of these metrics are defined with re-
spect to the average segment length of texts and
exhibit high variability on real data. We fol-
low Choi (2000) and compute the mean segment
length used in determining the parameterk on
each reference text separately.

We also plot the Receiver Operating Character-
istic (ROC) curve to gauge performance at a finer
level of discrimination (Swets, 1988). The ROC
plot is the plot of the true positive rate against the
false positive rate for various settings of a decision
criterion. In our case, the true positive rate is the
fraction of boundaries correctly classified, and the
false positive rate is the fraction of non-boundary
positions incorrectly classified as boundaries. In
computing the true and false positive rates, we
vary the threshold distance to the true boundary
within which a hypothesized boundary is consid-
ered correct. Larger areas under the ROC curve
of a classifier indicate better discriminative perfor-
mance.

5.4 Human Segmentation Study

Spoken lectures are very different in style from
other corpora used in human segmentation studies
(Hearst, 1994; Galley et al., 2003). We are inter-
ested in analyzing human performance on a corpus
of lecture transcripts with much longer texts and a
less clear-cut concept of a sub-topic. We define a
segment to be a sub-topic that signals a prominent
shift in subject matter. Disregarding this sub-topic
change would impair the high-level understanding
of the structure and the content of the lecture.

As part of our human segmentation analysis,
we asked three annotators to segment the Physics
lecture corpus. These annotators had taken the
class in the past and were familiar with the subject
matter under consideration. We wrote a detailed
instruction manual for the task, with annotation
guidelines for the most part following the model
used by Gruenstein et al. (2005). The annotators
were instructed to segment at a level of granularity
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O A B C
MEAN SEG. COUNT 6.6 8.9 18.4 13.8
MEAN SEG. LENGTH 69.4 51.5 24.9 33.2
SEG. LENGTH DEV. 39.6 37.4 34.5 39.4

Table 2: Annotator Segmentation Statistics for the
first ten Physics lectures.

REF/HYP O A B C
O 0 0.243 0.418 0.312
A 0.219 0 0.400 0.355
B 0.314 0.337 0 0.332
C 0.260 0.296 0.370 0

Table 3:Pk annotation agreement between differ-
ent pairs of annotators.

that would identify most of the prominent topical
transitions necessary for a summary of the lecture.

The annotators used the NOMOS annotation
software toolkit, developed for meeting segmenta-
tion (Gruenstein et al., 2005). They were provided
with recorded audio of the lectures and the corre-
sponding text transcriptions. We intentionally did
not provide the subjects with the target number of
boundaries, since we wanted to see if the annota-
tors would converge on a common segmentation
granularity.

Table 2 presents the annotator segmentation
statistics. We see two classes of segmentation
granularities. The original reference (O) and anno-
tator A segmented at a coarse level with an average
of 6.6 and 8.9 segments per lecture, respectively.
Annotators B and C operated at much finer levels
of discrimination with 18.4 and 13.8 segments per
lecture on average. We conclude that multiple lev-
els of granularity are acceptable in spoken lecture
segmentation. This is expected given the length of
the lectures and varying human judgments in se-
lecting relevant topical content.

Following previous studies, we quantify the
level of annotator agreement with thePk measure
(Gruenstein et al., 2005).3 Table 3 shows the an-
notator agreement scores between different pairs
of annotators.Pk measures ranged from0.24 and
0.42. We observe greater consistency at similar
levels of granularity, and less so across the two

3Kappa measure would not be the appropriate measure in
this case, because it is not sensitive to near misses, and we
cannot make the required independence assumption on the
placement of boundaries.

EDGE CUTOFF

10 25 50 100 200 NONE

PHYSICS (MANUAL )
PK 0.394 0.3730.3410.2950.3110.330
WD 0.404 0.3830.3520.3080.3290.350

PHYSICS (ASR)
PK 0.440 0.3710.3430.3300.3220.359
WD 0.456 0.3830.3560.3430.3420.398

AI
PK 0.480 0.4220.4080.4160.3930.397
WD 0.493 0.4350.4200.4400.4240.432

CHOI

PK 0.222 0.2020.2130.2160.2080.208
WD 0.234 0.2220.2330.2380.2300.230

Table 4: Edges between nodes separated beyond a
certain threshold distance are removed.

classes. Note that annotator A operated at a level
of granularity consistent with the original refer-
ence segmentation. Hence, the 0.24Pk measure
score serves as the benchmark with which we can
compare the results attained by segmentation al-
gorithms on the Physics lecture data.

As an additional point of reference we note that
the uniform and random baseline segmentations
attain0.469 and0.493 Pk measure, respectively,
on the Physics lecture set.

6 Experimental Results
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Figure 3: ROC plot for the Minimum Cut Seg-
menter on thirty Physics Lectures, with edge cut-
offs set at five and hundred sentences.

Benefits of global analysisWe first determine
the impact of long-range pairwise similarity de-
pendencies on segmentation performance. Our
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CHOI UI M INCUT

PHYSICS (MANUAL )
PK 0.372 0.310 0.298
WD 0.385 0.323 0.311
PHYSICS (ASR TRANSCRIPTS)

PK 0.361 0.352 0.322
WD 0.376 0.364 0.340

AI
PK 0.445 0.374 0.383
WD 0.478 0.420 0.417

CHOI

PK 0.110 0.105 0.212
WD 0.121 0.116 0.234

Table 5: Performance analysis of different algo-
rithms using thePk and WindowDiff measures,
with three lectures heldout for development.

key hypothesis is that considering long-distance
lexical relations contributes to the effectiveness of
the algorithm. To test this hypothesis, we discard
edges between nodes that are more than a cer-
tain number of sentences apart. We test the sys-
tem on a range of data sets, including the Physics
and AI lectures and the synthetic corpus created by
Choi (2000). We also include segmentation results
on Physics ASR transcripts.

The results in Table 4 confirm our hypothesis —
taking into account non-local lexical dependencies
helps across different domains. On manually tran-
scribed Physics lecture data, for example, the al-
gorithm yields 0.394Pk measure when taking into
account edges separated by up to ten sentences.
When dependencies up to a hundred sentences are
considered, the algorithm yields a 25% reduction
in Pk measure. Figure 3 shows the ROC plot
for the segmentation of the Physics lecture data
with different cutoff parameters, again demon-
strating clear gains attained by employing long-
range dependencies. As Table 4 shows, the im-
provement is consistent across all lecture datasets.
We note, however, that after some point increas-
ing the threshold degrades performance, because
it introduces too many spurious dependencies (see
the last column of Table 4). The speaker will oc-
casionally return to a topic described at the begin-
ning of the lecture, and this will bias the algorithm
to put the segment boundary closer to the end of
the lecture.

Long-range dependencies do not improve the

performance on the synthetic dataset. This is ex-
pected since the segments in the synthetic dataset
are randomly selected from widely-varying doc-
uments in the Brown corpus, even spanning dif-
ferent genres of written language. So, effectively,
there are no genuine long-range dependencies that
can be exploited by the algorithm.

Comparison with local dependency models
We compare our system with the state-of-the-art
similarity-based segmentation system developed
by Choi (2000). We use the publicly available im-
plementation of the system and optimize the sys-
tem on a range of mask-sizes and different param-
eter settings described in (Choi, 2000) on a held-
out development set of three lectures. To control
for segmentation granularity, we specify the num-
ber of segments in the reference (“O”) segmen-
tation for both our system and the baseline. Ta-
ble 5 shows that the Minimum Cut algorithm con-
sistently outperforms the similarity-based baseline
on all the lecture datasets. We attribute this gain
to the presence of more attenuated topic transi-
tions in spoken language. Since spoken language
is more spontaneous and less structured than writ-
ten language, the speaker needs to keep the listener
abreast of the changes in topic content by intro-
ducing subtle cues and references to prior topics in
the course of topical transitions. Non-local depen-
dencies help to elucidate shifts in focus, because
the strength of a particular transition is measured
with respect to other local and long-distance con-
textual discourse relationships.

Our system does not outperform Choi’s algo-
rithm on the synthetic data. This again can be at-
tributed to the discrepancy in distributional prop-
erties of the synthetic corpus which lacks coher-
ence in its thematic shifts and the lecture corpus
of spontaneous speech with smooth distributional
variations. We also note that we did not try to ad-
just our model to optimize its performance on the
synthetic data. The smoothing method developed
for lecture segmentation may not be appropriate
for short segments ranging from three to eleven
sentences that constitute the synthetic set.

We also compared our method with another
state-of-the-art algorithm which does not explic-
itly rely on pairwise similarity analysis. This algo-
rithm (Utiyama and Isahara, 2001) (UI) computes
the optimal segmentation by estimating changes in
the language model predictions over different par-
titions. We used the publicly available implemen-
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tation of the system that does not require parame-
ter tuning on a heldout development set.

Again, our method achieves favorable perfor-
mance on a range of lecture data sets (See Ta-
ble 5), and both algorithms attain results close to
the range of human agreement scores. The attrac-
tive feature of our algorithm, however, is robust-
ness to recognition errors — testing it on the ASR
transcripts caused only 7.8% relative increase in
Pk measure (from 0.298 to 0.322), compared to
a 13.5% relative increase for the UI system. We
attribute this feature to the fact that the model is
less dependent on individual recognition errors,
which have a detrimental effect on the local seg-
ment language modeling probability estimates for
the UI system. The block-level similarity func-
tion is not as sensitive to individual word errors,
because the partition volume normalization factor
dampens their overall effect on the derived mod-
els.

7 Conclusions

In this paper we studied the impact of long-range
dependencies on the accuracy of text segmenta-
tion. We modeled text segmentation as a graph-
partitioning task aiming to simultaneously opti-
mize the total similarity within each segment and
dissimilarity across various segments. We showed
that global analysis of lexical distribution im-
proves the segmentation accuracy and is robust
in the presence of recognition errors. Combin-
ing global analysis with advanced methods for
smoothing (Ji and Zha, 2003) and weighting could
further boost the segmentation performance.

Our current implementation does not automati-
cally determine the granularity of a resulting seg-
mentation. This issue has been explored in the
past (Ji and Zha, 2003; Utiyama and Isahara,
2001), and we will explore the existing strategies
in our framework. We believe that the algorithm
has to produce segmentations for various levels of
granularity, depending on the needs of the appli-
cation that employs it.

Our ultimate goal is to automatically generate
tables of content for lectures. We plan to in-
vestigate strategies for generating titles that will
succinctly describe the content of each segment.
We will explore how the interaction between the
generation and segmentation components can im-
prove the performance of such a system as a
whole.
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