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Abstract 

This paper presents the results of the de-
velopment of a high throughput, real time 
modularized text analysis and information 
retrieval system that identifies clinically 
relevant entities in clinical notes, maps 
the entities to several standardized no-
menclatures and makes them available for 
subsequent information retrieval and data 
mining. The performance of the system 
was validated on a small collection of 351 
documents partitioned into 4 query topics 
and manually examined by 3 physicians 
and 3 nurse abstractors for relevance to 
the query topics. We find that simple key 
phrase searching results in 73% recall and 
77% precision. A combination of NLP 
approaches to indexing improve the recall 
to 92%, while lowering the precision to 
67%.   

1 Introduction 

Until recently the NLP systems developed for 
processing clinical texts have been narrowly fo-
cused on a specific type of document such as radi-
ology reports [1], discharge summaries [2], 
medline abstracts [3], pathology reports [4]. In ad-
dition to being developed for a specific task, these 
systems tend to fairly monolithic in that their com-
ponents have fairly strict dependencies on each 
other, which make plug-and-play functionality dif-
ficult. NLP researchers and systems developers in 
the field realize that modularized approaches are 
beneficial for component reuse and more rapid de-
velopment and advancement of NLP technology. 
In addition to the issue of modularity, the NLP sys-
tems development efforts are starting to take scal-

ability into account. The Mayo Clinic’s repository 
of clinical notes contains over 16 million docu-
ments growing at the rate of 50K documents per 
week. The time and space required for processing 
these large amounts of data impose constraints on 
the complexity of NLP systems.  

Another engineering challenge is to make the 
NLP systems work in real time. This is particularly 
important in a clinical environment for patient re-
cruitment or patient identification for clinical re-
search use cases. In order to satisfy this 
requirement, a text processing system has to inter-
face with the Electronic Health Record (EHR) sys-
tem in real time and process documents 
immediately after they become available electroni-
cally. All of these are non-trivial issues and are 
currently being addressed in the community. In this 
poster we present the design and architecture of a 
large-scale, highly modularized, real-time enabled 
text analysis system as well as experimental vali-
dation results.  

2 System Description 

Mayo Clinic and IBM have collaborated on a 
Text Analytics project as part of a strategic Life 
Sciences and Computational Biology partnership.  
The goal of the Text Analytics collaboration was to 
provide a text analysis system that would index 
and retrieve clinical documents at the Mayo Clinic.   

The Text Analytics architecture leveraged ex-
isting interface feeds for clinical documents by 
routing them to the warehouse.  A work manager 
was written using messaging queues to distribute 
work for text analysis for real-time and bulk proc-
essing (see Figure 1).   Additional text analysis 
engines can be configured and added with appro-
priate hardware to increase document throughput 
of the system.    
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Figure 1- Text Analysis Process Flow 
For deployment of text analysis engines we tested 
two configurations.  During the development phase 
we used synchronous messaging using Apache 
Web Server with Tomcat/Axis.  The Apache Web 
server provided a round robin mechanism to dis-
tributed SOAP requests for text analysis.  This test-
ing was deployed on a 20 CPU Beowulf cluster 
using AMD Athlon™ processors running Linux 
operating system.  For production deployment we 
used Message Driven Beans (MDBs)using IBM 
Websphere Application Server™ (WAS) and IBM 
Websphere Message Queue™.  The text engines 
were deployed on 2-CPU blade servers with 4Gb 
RAM.  Each WAS instance had two MDBs with 
text analysis engines. 
Work was distributed using message queues.  Each 
text analysis engine was deployed to function in-
dependent of other engines.   A total of 20 blade 
servers were configured for text processing.  The 
average document throughput for each blade was 
20 documents per minute. 
 
The text analysis engine was designed by concep-
tually breaking up the task into granular functions 
that could be implemented as components to be 
assembled into a text processing system.  

To implement the components we used an 
IBM AlphaWorks package called Unstructured 
Information Management Architecture (UIMA).  
UIMA is a software architecture that defines roles, 
interface, and communications of components for 
natural language processing.  The four main UIMA 
services include: acquisition, unstructured informa-
tion analysis, structured information access, and 
component discovery.  For the Mayo project we 
used the first three services.  The ability to custom-
ize annotator sequences was advantageous during 
the design process.  Also, the ability to add annota-
tors for specific dictionaries amounted only in mi-
nor work. Once annotators are written to 
conformance, UIMA provides pipeline develop-
ment and permits the developer to quickly custom-

ize processing to a specific task.  The final annota-
tor layout is depicted in Figure 2. 

The context free tokenizer is a finite state 
transducer that parses the document text into the 
smallest meaningful spans of text. A token is a set 
of characters that can be classified into one of 
these categories: word, punctuation, number, con-
traction, possessive, symbol without taking into 
account any additional context. 

The context sensitive spell corrector annotator 
is used for automatic spell correction on word to-
kens.  This annotator uses a combination of iso-
lated-word and context-sensitive statistical 
approaches to rank the possible suggestions [5].  
The suggestion with the highest ranking is stored 
as a feature of a token.   

 
Figure 2 – Text Analysis Pipeline 

The lexical normalizer annotator is applied 
only to words, possessives, and contractions.  It 
generates a canonical form by using the National 
Library of Medicine UMLS Lexical Variant Gen-
erator (LVG) tool1. Apart from generating lexical 
variants and stemming optimized for the biomedi-
cal domain, it also generates a list of lemma entries 
with Penn Treebank tags as input for the POS tag-
ger. 

The sentence detector annotator parses the 
document text into sentences.  The sentence detec-
tor is based on a Maximum Entropy classifier 
technology2 and is trained to recognize sentence 
boundaries from hand annotated data. 

                                                           
1 http://umlslex.nlm.nih.gov  
2 http://maxent.sourceforge.net/ 
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The context dependent tokenizer uses context 
to detect complex tokens such as dates, times, and 
problem lists3.  

The part of speech (POS) pre-tagger annotator 
is intended to execute prior to the POS tagger an-
notator.  The pre-tagger loads a list of words that 
are unambiguous with respect to POS and have 
predetermined Penn Treebank tags.  Words in the 
document text are tagged with these predetermined 
tags.  The POS tagger can ignore these words and 
focus on the remaining syntactically ambiguous 
words. 

The POS tagger annotator attaches a part of 
speech tag to each token. The current version of 
the POS tagger is from IBM based on Hidden 
Markov models technology.  This tagger has been 
trained on a combination of the Penn Treebank 
corpus of general English and a corpus of manually 
tagged clinical data developed at the Mayo Clinic 
[6], [7]. 

The shallow parser annotator makes higher 
level constructs at the phrase level.  The Shallow 
Parser is from IBM.  The shallow parser uses a set 
of rules operating on tokens and their part-of-
speech category to identify linguistic phrases in the 
text such as noun phrases, verb phrases, and adjec-
tival phrases.   

The dictionary named entity annotator uses a 
set of enriched dictionaries (SNOMED-CT, MeSH, 
RxNorm and Mayo Synonym Clusters (MSC) to 
lookup named entities in the document text.  These 
named entities include drugs, diagnoses, signs, and 
symptoms.  The MSC database contains a set of 
clusters each consisting of diagnostic statements 
that are considered to be synonymous. Synonymy 
here is defined as two or more terms that have been 
manually classified to the same category in the 
Mayo Master Sheet repository, which contains 
over 20 million manually coded diagnostic state-
ments. These diagnostic statements are used as 
entry terms for dictionary lookup. A set of Mayo 
compiled dictionaries are also used to detect ab-
breviations and hyphenated terms.  

The abbreviation disambiguation annotator at-
tempts to detect and expand abbreviations and ac-
ronyms based on Maximum Entropy classifiers 
trained on automatically generated data [8].  

                                                           
3 Problem lists typically consist of numbered items in the Im-
pression/Report/Plan section of the clinical notes  

The negation annotator assigns a certainty at-
tribute to each named entity with the exception of 
drugs. This annotator is based on a generalized 
version of Chapman’s NegEx algorithm [9].   

The ML (Machine Learning) Named Entity 
annotator is based on a Naïve Bayes classifier 
trained on a combination of the UMLS entry terms 
and the MCS where each diagnostic statement is 
represented as a bag-of-words and used as a train-
ing sample for generating a Naive Bayes classifier 
which assigns MCS id’s to noun phrases identified 
in the text of clinical notes. The architecture of this 
component is given in Figure 3. 

Text 

Dictionary Lookup 

Found 

Noun Phrase Head identifier 

Naïve Bayes classifier 

Best guess cluster

Mayo Synonym Clusters
M001|cholangeocarcinoma 
M001|bile duct cancer 
M001|… Y N 

 
Figure 3. ML Named Entity Classifier 
 
The text of a clinical note is first looked up in the 
MSC database using the dictionary named entity 
annotator. If a span of text matched something in 
the database, then the span is marked as a named 
entity annotation and the appropriate cluster ID is 
assigned to it. The portions of text where no match 
was found continue to be processed with a named 
entity identification algorithm that relies on the 
output of the shallow parser annotator to find 
noun phrases whose heads are on a list of nouns 
that exist in the MSC database as individual manu-
ally coded entries. For example, a noun phrase 
such as ‘metastasized cholangiocarcinoma’ will be 
identified as a named entity and subsequently 
automatically classified, but a noun phrase such as 
‘patient’s father’ will not.  

3 Evaluation 

The system performance was evaluated using a 
collection of 351 documents partitioned into 4 top-
ics: pulmonary fibrosis, cholangiocarcinoma, dia-
betes mellitus and congestive heart failure. Each of 
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the topics contained approximately 90 documents 
that were manually examined by three nurse ab-
stractors and three physicians. Each note was 
marked as either relevant or not relevant to a given 
topic. In order to establish the reliability of this test 
corpus, we used a standard weighted Kappa statis-
tic [10]. The overall Kappa for the four topics were 
0.59 for pulmonary fibrosis, 0.79 for cholangiocar-
cinoma, 0.79 for diabetes mellitus and 0.59 for 
congestive heart failure. We ran a set of queries for 
each of the 4 topics on the partition generated for 
that topic. Each query used the primary term that 
represented the topic. For example, for pulmonary 
fibrosis, only the term ‘pulmonary fibrosis’ was 
used while other closely related terms such as ‘in-
terstitial pneumonitis’ were excluded. The baseline 
query was executed using the term as a key phrase 
on the original text of the documents. The rest of 
the queries were executed using the concept id’s 
automatically generated for each primary term. On 
the back end, the text of the clinical notes was an-
notated with the Metamap program [3] for the 
UMLS concepts and the ML Named Entity annota-
tor for MSC cluster id’s. On the front end, the 
UMLS concept id’s were generated via the UMLS 
Knowledge Server online and the MSC id’s were 
generated using a combination of the same Naïve 
Bayes classifier and the same dictionary lookup 
mechanism as were used to annotate the clinical 
notes. We also tested a query that combined 
Metamap and MSC annotations and query parame-
ters. Recall, precision and f-score (α=0.5) were 
calculated for each query. The results are summa-
rized in Table 1. 
 Precision Recall F-score 
Key Phrase 0.77 0.73 0.749467 
MSC cluster 0.67 0.89 0.764487 
Metamap 0.71 0.84 0.769548 
Metamap+MSC 0.67 0.92 0.775346 
Table 1. Performance of different annotation methods. 
 
The f-score results are fairly close for all methods; 
however, the recall is highest for the method that 
combines Metamap and the MSC methodology. 
This is particularly important for using this system 
in recruiting patients for epidemiological research 
for disease  incidence or disease prevalence studies 
and clinical trials where recall is valued more than 
precision. A combination of Metamap and MSC 
annotations and queries produced the highest recall 
which shows that these systems are complemen-

tary. The modular design of our system makes it 
easy to incorporate complementary annotation sys-
tems like Metamap into the annotation process. 
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