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Abstract

In this paper we presenta novel training
method for a localized phrase-basegredic-
tion model for statisticalmachinetranslation
(SMT). The modelpredictsblockswith orien-
tation to handlelocal phrasere-ordering. We
usea maximumlikelihood criterion to train a
log-linearblock bigrammodelwhich usegeal-
valuedfeatures(e.g. a languagemodelscore)
aswell as binary featuresbasedon the block
identitiesthemseles, e.g. block bigram fea-
tures.Our trainingalgorithmcaneasilyhandle
millions of features. The bestsystemobtains
a 18.6 % improvementover the baselineon a
standardArabic-Englishtranslatiorntask.

1 Intr oduction

In this paper we presenta block-basednodelfor statis-
tical machinetranslation. A block is a pair of phrases
which aretranslationf eachother For example,Fig. 1
shaws an Arabic-Englishtranslationexamplethat uses4
blocks. During decodingwe view translationasa block
segmentationprocess,wherethe input sentenceas seg-
mentedrom left to right andthetargetsentencés gener
atedfrom bottomto top, oneblockatatime. A monotone
block sequencés generateaxceptfor the possibility to
swap a pair of neighborblocks. We usean orientation
modelsimilar to the lexicalizedblock re-orderingmodel
in (Tillmann, 2004;0chetal., 2004):to generate block
b with orientationo relative to its predecessoblock b'.
During decodingwe computethe probability P (b7, o)
of a block sequencé? with orientationo} asa product
of block bigramprobabilities:
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Figure 1: An Arabic-Englishblock translationexample,
wherethe Arabic words are romanized. The following
orientationsequencés generatedo; = N, 0, = L, 03 =
N, 04 = R.

whereb; is ablockando; € {L(eft), R(ight), N (eutra)}
is a three-alued orientation componentlinked to the
block b, (the orientationo;_; of the predecessoblock
is currentlyignored.).Here,the block sequencevith ori-
entation (b}, o}) is generatecdunderthe restrictionthat
theconcatenatedourcephrase®f theblocksb; yield the
input sentence.ln modelinga block sequenceywe em-
phasizeadjacenblock neighborghathave Right or Left
orientation.Blockswith neutralorientationaresupposed
to belessstrongly’linked’ to their predecessdrlock and
are handledseparately During decoding,most blocks
have right orientation(o = R), sincethe block transla-
tionsaremostlymonotone.
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The focusof this paperis to investigateissuesin dis-
criminative trainingof decodeparameterslnsteadof di-
rectly minimizing error asin earlierwork (Och, 2003),
we decomposéehe decodingprocesdnto a sequencef
local decisionstepsbasedon Eqg. 1, andthentrain each
localdecisionrule usingcorvex optimizationtechniques.
The advantageof this approachs thatit caneasilyhan-
dle a large amountof features. Moreover, under this
view, SMT becomegyuite similar to sequentiahatural
languageannotatiorproblemssuchaspart-of-speeckag-
ging, phrasechunking,andshallov parsing.

The paperis structuredasfollows: Section2 introduces
the conceptof block orientation bigrams. Section3

describesdetails of the localized log-linear prediction
model usedin this paper Section4 describeghe on-

line trainingprocedureandcomparedt to thewell known

perceptrortraining algorithm (Collins, 2002). Section5

shawvs experimentakesultson an Arabic-Englishtransla-
tion task. Section6 presents final discussion.

2 Block Orientation Bigrams

This sectiondescribesa phrase-basedhodel for SMT
similar to the modelspresentedn (Koehnet al., 2003;
Ochet al., 1999; Tillmann and Xia, 2003). In our pa-
per, phrasepairsare namedblocksandour modelis de-
signedto generateblock sequencesWe alsomodelthe
position of blocks relative to eachother: this is called
orientation. To define block sequencesith orienta-
tion, we definethe notion of block orientationbigrams.
Startingpoint for collectingthesebigramsis a block set
I'={b = (S,T) = (s{, t])}. Here,b isablock con-
sisting of a sourcephraseS andatargetphraser’. J is
thesourcephrasdengthand! is thetargetphrasdength.
Single sourceand target words are denotedby s; and
t; respectrely, wherej = 1,---,J andi = 1,---,1.
We will alsousea specialsingle-word blocksetl’; C T
which containsonly blocksfor which J = I = 1. For
theexperimentsn this papertheblock setis theoneused
in (Al-Onaizanet al., 2004). Althoughthis is not inves-
tigatedin the presentpaper differentblocksetsmay be
usedfor computingthe block statisticsintroducedin this
paperwhich mayeffecttranslatiorresults.

For the block setI” and a training sentencepair, we
carry out a two-dimensionapatternmatchingalgorithm
to find adjacentmatchingblocksalongwith their position
in thecoordinatesystemdefinedby sourceandtargetpo-
sitions(seeFig. 2). Here,we do notinsistona consistent
block coverageasonewould doduringdecoding. Among
the matchingblocks,two blocksd’ andb are adjacentf
thetargetphrased” and7T” aswell asthe sourcephrases
S andS’ areadjacent.b’ is predecessoof block b if '
andb areadjacentindd’ occursbelow b. A right adjacent
successoblock b is saidto have right orientationo = R.
A left adjacensuccessadblockis saidto haveleft orienta-
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Figure 2: Block ¥’ is the predecessoof block b. The
successoblock b occurswith eitherleft o = L or right
o = R orientation.’left’ and’right’ aredefinedrelative
tothex axis; 'below’ is definedrelativeto they axis. For
somediscussioron globalre-orderingseeSection6.

tiono = L. Therearematchingblocksb thathave nopre-
decessqrsucha block hasneutralorientation(o = N).
After matchingblocks for a training sentencepair, we
look for adjacenblock pairsto collectblock bigramori-
entationeventse of thetypee = (¥, 0,b). Ourmodelto
bepresentedh Section3is usedto predictafutur e block
orientationpair (b, o) givenits predecessdrlock history
b’. In Fig. 1, thefollowing block orientationbigramsoc-
cur: (-,N,b1),(b1,L,b2),(-, N, b3),(b3, R, bs). Collect-
ing orientationbigramson all parallelsentenceairs,we
obtainanorientationbigramlist e}V :

e = [el )iy = [(by 0,007, 15 @)
Here,n, is the numberof orientationbigramsin the s-th
sentenceair. ThetotalnumberN of orientationbigrams
N = 25:1 ns is about N = 7.8 million for our train-
ing dataconsistingof S = 273 000 sentenceairs. The
orientationbigramlist is usedfor the parametetraining
presentedn Section3. Ignoringthe bigramswith neutral
orientation N reduceghe list definedin Eqg. 2 to about
5.0 million orientationbigrams.The Neutral orientation
is handledseparatelpsdescribedn Sections. Usingthe
reducedorientationbigramlist, we collect unigramori-
entationcountsN,(b): how oftena block occurswith a
given orientationo € {L,R}. Nr(b) > 0.25 - Ng(b)
typically holdsfor blocksb involvedin block swapping
andtheorientationmodelp, (b) is definedas:

No(b)

PO = N E N

In orderto train a block bigramorientationmodelasde-
scribedin Section3.2, we definea successoset d; (')
for ablock b’ in the s-th training sentenceair:



ds(t') = { numberof triplesof type (¥, L, b) or

type (v, R,b) € e]*

The successosetd(b’) is definedfor eacheventin the
list el¥. Theaveragesizeof §(b') is 1.5 successoblocks.
If we wereto computea Viterbi block alignmentfor a
training sentenceair, eachblockin this block alignment
would have at most 1 successorBlocks may have ser-

eral successorshecausave do not inforce ary kind of

consistentoverageduringtraining.

During decoding,we generatea list of block orien-
tation bigramsas describedabove. A DP-basedbeam
searchproceduradenticalto the oneusedin (Tillmann,
2004)is usedto maximizeover all orientedblock seg-
mentations(b}, of). During decodingorientation bi-
grams(¥’, L, b) with left orientationare only generated
if Np,(b) > 3 for thesuccessoblockb.

3 Localized Block Model and
Discriminati ve Training

In this section we describehe componentsisedto com-
pute the block bigram probability p(b;, 0;|b;—1, 0;—1) In
Eq.1. A block orientationpair (o', b’; 0, b) is represented
asafeature-ector f(b, o;b',0') € R%. For amodelthat
usesall thecomponentslefinedbelaw, d is 6. As feature-
vector componentswe take the negative logarithm of
someblock modelprobabilities. We usethe term 'float’
featurefor thesefeature-ector componentgthe model
scoreis storedasa float number). Additionally, we use
binaryblock features Theletters(a)-(f) referto Tablel:

Unigram Models: we compute(a) the unigramproba-
bility p(b) and(b) the orientationprobability p, (b).
Theseprobabilitiesaresimplerelative frequeng es-
timatesbasedon unigramand unigramorientation
countsderived from the datain Eq. 2. For details
see(Tillmann, 2004). During decoding,the uni-
gramprobabilityis normalizedby the sourcephrase
length.

Two typesof Trigram languagemodel: (c) probability
of predictingthefirst targetwordin thetargetclump
of b; giventhe final two words of the targetclump
of b;_1, (d) probability of predictingthe restof the
wordsin thetargetclumpof b;. Thelanguagemodel
is trainedon a separateorpus.

Lexical Weighting: (e) the lexical weight p(S | T)
of the block b = (5,T) is computedsimilarly to
(Koehnetal., 2003),detailsaregivenin Section3.4.

Binary features: (f) binaryfeaturesaredefinedusingan
indicator function f(b,b’) whichis 1 if the block
pair (b, b') occursmore often than a given thresh-
old N, e.gN = 2. Here,theorientationo between
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theblocksis ignored.
sy = {

3.1 Global Model

In our linear block model, for a given source sen-
tences, eachtranslationis representedas a sequence
of block/orientationpairs {b7, 0]} consistentwith the
source. Using featuressuch as thosedescribedabove,
we canparameterizehe probability of sucha sequence
asP(by, ot |w, s), wherew is avectorof unknavn model
parametero be estimatedrom thetrainingdata.We use
a log-linear probability modeland maximumlikelihood
training— the parametenw is estimatedoy maximizing
the joint likelihood over all sentencesDenoteby A(s)
the setof possibleblock/orientationsequencesb’, o}
thatareconsistentvith the sourcesentence, thenalog-
linear probabilitymodelcanberepresenteds

exp(w” f(bF, of))
Z(s) ’

where f (b, o) denoteghe featurevectorof the corre-
spondingblock translation andthe partitionfunctionis:

> e fOT ).

{b'T0' TP reA(s)

1 N(@®V)>N
0 else

®3)

P(bY, ot [w, s) =

(4)

Z(s) =

A disadwantageof this approachis that the summation
over A(s) canbe ratherdifficult to compute. Conse-
guentlysomesophisticate@pproximateénferencemeth-
odsareneededo carry out the computation.A detailed
investigationof the global modelwill be left to another
study

3.2 Local Model Restrictions

In the following, we considera simplification of the di-

rect global model in Eq. 4. As in (Tillmann, 2004),
we model the block bigram probability as p(b;,0; €

{L, R}|bi—1,0,—1) in EQ.1. Wedistinguishthetwo cases
(1) o; € {L, R}, and(2) o; = N. Orientationis modeled
only in thecontet ofimmediateneighbordor blocksthat
have left or right orientation.Thelog-linearmodelis de-

finedas:

p(b,o € {L,R} | V,0';w,s)

exp(wT f(b,0;b,0"))
Z(Y,0';5) ’

wheres is the sourcesentencef (b, o; ¥/, 0') is alocally
definedfeaturevector that dependsonly on the current
andthe previous orientedblocks (b, 0) and (V', o). The

featureswere describedat the beginning of the section.
Thepartitionfunctionis givenby

> exp(w! f(bo;t,0)). (6)

(b0)eA(b,0";s)

(®)

Z(, 0 s) =



ThesetA(V, o; s) is arestrictedsetof possiblesucces-
sor orientedblocks that are consistentwith the current
block positionandthe sourcesentence, to be described
in the following paragraph.Note that a straightforvard
normalizationover all block orientationpairsin Eq. 5
is not feasible: there are tens of millions of possible
successoblocksb (if we do notimposeary restriction).
For eachblock b = (S,T), aligned with a source
sentence, we definea source-inducedlternatve set:

I'(b) = { all blocksb” € T" thatshareanidentical
sourcephrasewith b }
The setT'(b) containsthe block b itself and the block
target phrasesof blocks in that set might differ. To
restrictthe numberof alternatvesfurther, the elements
of I'(b) aresortedaccordingto the unigramcount N (b”)
and we keepat mostthe top 9 blocks for eachsource
interval s. We alsousea modifiedalternatve set'; (b),
where the block b as well as the elementsin the set
I'1(b) are single word blocks. The partition function
is computed slightly differently during training and
decoding:

Training: for eachevent(d’,0,b) in asentenceair s in
Eq. 2 we computethe successosetd(b'). Thisde-
finesa setof 'true’ block successorskor eachtrue
successob, we computethe alternatve setT'(b).
A(b, o; s) istheunionof thealternatve setfor each
successob. Here, the orientationo from the true
successob is assignedo eachalternatve in T'(b).
We obtainonthe averagel 2.8 alternatvespertrain-
ing event (¥, 0,b) in thelist e2.

Decoding: Here,eachblock b thatmatchesa sourcein-
tenal following b’ in the sentences is a potential
successoWe simply setA (b, o'; s) = T'(b). More-
over, settingZ (b', o’; s) = 0.5 duringdecodingloes
not changeperformance:the list I'(b) just restricts
thepossibletargettranslationdor a sourcephrase.

Under this model, the log-probability of a possible
translationof a sourcesentences, asin Eq. 1, canbe
written as

In P(bY, o7 |w, 5) =

_ Xn:ln exp(w? f(b;,043bi-1,0i-1))
Z(bi—1,0i-1;5)
i=1

()

In the maximum-likelihoodtraining,we find w by maxi-
mizing the sumof thelog-likelihoodover obsened sen-
tencesgeachof themhastheformin Eq. 7. Althoughthe
trainingmethodologyis similar to the globalformulation
givenin Eq. 4, this localizedversionis computationally
much easierto managesincethe summationin the par
tition function Z(b;_1,0,_1; s) is now over a relatively
small setof candidates. This computationaladvantage
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is the main reasonthat we adoptthe local modelin this
paper

3.3 Global versusLocal Models

Both the global andthe localizedlog-linear modelsde-
scribedin this sectioncan be consideredas maximum-
entropy models similarto thoseusedin naturallanguage
processinge.g. maximum-entrog modelsfor POStag-
ging andshallov parsing.In the parsingcontext, global
modelssuchasin Eq.4 aresometimeseferredto ascon-
ditional randomfield or CRF(Lafferty etal., 2001).

Although thereare someargumentsthat indicatethat
thisapproacthassomeadvantagesverlocalizedmodels
suchasEqg. 5, the potentialimprovementsare relatively
small, atleastin NLP applications.For SMT, the differ-
encecanbe potentiallymoresignificant. This is because
in our currentlocalizedmodel, successoblocks of dif-
ferentsizesare directly comparedto eachother, which
is intuitively not the best approach(i.e., probabilities
of blocks with identical lengthsare more comparable).
Thisissueis closelyrelatedto the phenomenomf multi-
ple countingof events,which meanshata source/taget
sentencepair canbe decomposedhto differentoriented
blocksin our model. In our currenttraining procedure,
we selectoneasthetruth, while considerthe other(pos-
sibly alsocorrect)decisionsasnon-truthalternatives. In
theglobalmodeling,with appropriatenormalizationthis
issuebecomedesssevere. With this limitation in mind,
the localized model proposedhere s still an effective
approach,as demonstratedy our experiments. More-
over, it is simpleboth computationallyandconceptually
Variousissuessuchasthe onesdescribedabore canbe
addresseavith moresophisticatednodelingtechniques,
which we shallbeleft to future studies.

3.4 Lexical Weighting

The lexical weightp(S | T') of theblockb = (S,T) is
computedsimilarly to (Koehnetal., 2003),but thelexical
translationprobability p(s|t) is derived from the block
setitself ratherthanfrom a word alignment,resultingin
a simplified training. Thelexical weightis computedas
follows:

J
w517 = Tl 555 ortss 1)

N(b)
Yper, i N)

Here, the single-word-based translation probability
p(s; | t;) is derivedfrom theblock setitself. b = (s;, ;)
andb’ = (s;,1;) aresingle-word blocks, wheresource
andtargetphrasesireof lengthl. Nr(s;, t!) isthenum-
ber of blocksb, = (s;,tx) for k € 1,---,I for which
p(s;jltr) > 0.0.

p(s;lti)



4 Online Training of Maximum-entropy
Model

Thelocal modeldescribedn Section3 leadsto the fol-
lowing abstracmaximumentroyy trainingformulation:

Yiea, exp(w T )
exp(wl@;y,)

W = arg n}}}n Z In (8)

i=1

In thisformulation,w is theweightvectorwhichwe want
to compute. The setA; consistsof candidatdabelsfor
the i-th training instance,with the true label y; € A;.
The labelshereare block identities, A; correspondso
the alternatve set A(V', o’; s) andthe 'true’ blocks are
definedby the successosetd(b’). Thevectorz; ; is the
featurevector of the i-th instance,correspondingo la-
belj € A;. Thesymbolz is short-handor the feature-
vector f (b, 0; ', 0’). This formulationis slightly differ-
entfrom thestandardnaximumentrogy formulationtyp-
ically encountereéh NLP applicationsin thatwe restrict
thesummatiorover a subset\; of all labels.

Intuitively, this methodfavors a weight vectorsuchthat
for eachi, w!z; ,, — wl'z; ; is largewhen; # y;. This
effectis desirablesinceit triesto separat¢hecorrectclas-
sificationfrom the incorrectalternatves. If the problem
is completelyseparablethenit can be shavn that the
computedlinear separatqrwith appropriateregulariza-
tion, achievesthelargestpossibleseparatingnamgin. The
effectis similarto somemulti-categorygeneralizationsf
supportvectormachine{SVM). However, Eq. 8 is more
suitablefor non-separabl@roblems(which is often the
casefor SMT) sinceit directly modelsthe conditional
probabilityfor the candidatdabels.

A relatedmethodis multi-category perceptronwhich
explicitly finds a weightvectorthatseparatesorrectla-
belsfrom the incorrectonesin a mistale drivenfashion
(Collins, 2002). The methodworks by examining one
sampleatatime,andmakesanupdatew — w + (x; 4, —
z;,;) whenw? (z; ,, — x; ;) is not positve. To compute
theupdatéefor atraininginstance;, oneusuallypick the j
suchthatw? (z; ,,, —x; ;) isthesmallest.t canbeshavn
thatif thereexist weightvectorsthatseparate¢he correct
labely; from incorrectlabels;j € A; for all j # y;, then
the perceptrormethodcanfind sucha separatar How-
ever, it is not entirely clearwhatthis methoddoeswhen
thetrainingdataarenotcompletelyseparableMoreover,
the standardmistale boundjustification doesnot apply
whenwe go throughthetrainingdatamorethanonce,as
typically donein practice. In spite of someissuesin its
justification,the perceptroralgorithmis still very attrac-
tive dueto its simplicity andcomputationakfficiengy. It
alsoworksquitewell for anumberof NLP applications.

In the following, we show thata simple and efficient
online training procedurecan also be developedfor the
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maximumentropy formulationEq. 8. The proposedup-
daterule is similar to the perceptrormethodbut with a
soft mistake-driven updaterule, wherethe influenceof
eachfeatureis weightedby the significanceof its mis-
take. The methodis essentiallya version of the so-
called stodhastic gradient descentmethod which has
beenwidely usedin complicatedstochastioptimization
problemssuch as neural networks. It was argued re-
centlyin (Zhang,2004)thatthis methodalsoworkswell
for standardcorvex formulationsof binary-classification
problemsincluding SVM and logistic regression. Con-
vergenceboundssimilar to perceptronmistale bounds
canbedeveloped althoughunlike perceptronthetheory
justifiesthe standardpracticeof goingthroughthe train-
ing datamorethanonce. In the non-separablease the
methodsolvesa regularizedversionof Eq. 8, which has
the statisticalinterpretatiorof estimatingthe conditional
probability. Consequentlyit doesnot have the potential
issuesof the perceptronmethodwhich we pointed out
earlier Dueto the natureof online update just like per
ceptronthismethods alsovery simpleto implementand
is scalableo large problemsize. Thisis importantin the
SMT applicationbecauseave canhave a hugenumberof
traininginstancesvhich we arenot ableto keepin mem-
ory atthesametime.

In stochastigyradientdescentwe examineonetrain-
ing instanceat a time. At the i-th instance,we derive
the updaterule by maximizingwith respectto the term
associatedavith theinstance

S ien, exp(wz; ;)

xp(wT 0y,

Li(w) =1In

in Eq. 8. We do a gradientdescentocalizedto this in-
stanceasw — w — m%Li(w), wheren; > 0 is a pa-
rameteroften referredto asthe learningrate. For Eq. 8,
theupdaterule becomes:

S ien, exp(wh @) (@i y, — i)

N )

9)

w — w+n;

Similar to online algorithmssuchasthe perceptronwe
applythisupdaterule oneby oneto eachtraininginstance
(randomlyordered),and may go-throughdatapointsre-
peatedly CompareEg. 9 to the perceptrorupdate there
aretwo maindifferenceswhich we discusselow.

The first differenceis the weighting scheme. In-
stead of putting the update weight to a single
(most mistalen) feature component, as in the per
ceptron algorithm, we use a soft-weighting scheme,
with each feature component; weighted by a fac-
tor exp(whz; j)/ Y pen, exp(wz;1). A component
with larger w’'z; ; getsmore weight. This effectis in
principle similar to the perceptrorupdate. The smooth-
ing effectin Eq. 9 is usefulfor non-separabl@roblems



sinceit doesnotforceanupdaterule thatattemptgo sep-
aratethedata.Eachfeaturecomponengetsaweightthat
is proportionalto its conditionalprobability.

The seconddifferenceis the introductionof a learn-
ing rateparameter),;. For thealgorithmto corverge,one
shouldpick a decreasindearningrate. In practice,how-
ever, it is often morecorvenientto selectafixedn; = n
for all . This leadsto an algorithmthat approximately
solve aregularizedversionof Eq. 8. If we gothroughthe
datarepeatedlyonemayalsodecreas¢he fixedlearning
rate by monitoring the progressmadeeachtime we go
throughthe data. For practicalpurposesa fixed smally
suchasn = 10~° is usuallysufficient. We typically run
forty updatesover the training data. Using techniques
similar to thoseof (Zhang,2004), we canobtaina con-
vergencetheoremfor our algorithm. Due to the space
limitation, we will notpresentheanalysishere.

An advantageof this methodover standardnaximum
entropy training suchasGIS (generalizedterative scal-
ing) is that it doesnot requireus to storeall the data
in memoryat once. Moreover, the corvergenceanaly-
sis can be usedto shaw thatif m is large, we can get
a very good approximatesolution by going throughthe
dataonly once. This desirablepropertyimpliesthatthe
methodis particularlysuitablefor large scaleproblems.

5 Experimental Results

Thetranslationsystemis testedon an Arabic-to-English
translationtask. The training datacomesfrom the UN

news sources.Somepunctuationtokenizationandsome
numberclassingare carriedout on the English and the
Arabic training data. In this paperwe presentesultsfor

two testsets: (1) the devtest setusesdataprovided by

LDC, which consistof 1 043 sentencewith 25 889 Ara-

bic wordswith 4 referenceranslations(2) theblind test
setis the MT03 Arabic-EnglishDARPA evaluationtest
setconsistingof 663 sentencewith 16 278 Arabicwords
with also4 referenceranslations. Experimentalresults
arereportedin Table2: herecasedBLEU resultsarere-

portedon MTO3 Arabic-Englishtestset(Papineniet al.,

2002). Theword casingis addedaspost-processingtep
usinga statisticalmodel(detailsareomittedhere).

In orderto speedup the parametetraining we filter the
original training dataaccordingto the two testsets: for

eachof thetestsetswe take all the Arabic substringaup

to length12 andfilter the paralleltrainingdatato include
only thosetrainingsentenc@airsthatcontainatleastone
out of thesephrases:the'LDC’ training datacontains
about273 thousandsentencgairsandthe’MTO03’ train-

ing datacontainsabout230 thousandentenceairs. Two

block setsarederivedfor eachof the training setsusing
aphrase-paiselectiomalgorithmsimilarto (Koehnetal.,

2003; Tillmann and Xia, 2003). Theseblock setsalso
includeblocksthat occuronly oncein thetraining data.
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Additionally, someheuristicfiltering is usedto increase
phrasdranslationaccurag (Al-Onaizanetal., 2004).

5.1 Likelihood Training Results

We comparenodelperformancavith respecto thenum-
ber and type of featuresusedas well as with respect
to different re-orderingmodels. Resultsfor 9 experi-
mentsareshowvn in Table 2, wherethe featuretypesare
describedin Table 1. The first 5 experimentalresults
are obtainedby carrying out the likelihood training de-
scribedin Section3. Line 1 in Table 2 shows the per
formanceof the baselineblock unigram’MON model
which usestwo ‘float’ features: the unigram probabil-
ity andthe boundary-vord languagemodel probability.
No block re-orderingis allowed for the baselinemodel
(amonotoneblock sequencés generated)The’' SWAP
modelin line 2 usesthe sametwo features,but neigh-
bor blockscanbe swapped.No performancencreasds
obtainedfor this model. The’ SWAP & OR modeluses
anorientationmodelasdescribedn Section3. Here,we
obtaina smallbut significantimprovementverthebase-
line model.Line 4 shavsthatby includingtwo additional
'float’ features:the lexical weighting and the language
model probability of predicting the secondand subse-
guentwords of the target clump yields a further signif-
icantimprovement. Line 5 shavs that including binary
featuresand training their weightson the training data
actuallydecreaseperformance.This issueis addressed
in Section5.2.

Thetrainingis carriedoutasfollows: theresultsin line
1-4 areobtainedby training 'float’ weightsonly. Here,
the training is carriedout by runningonly onceover 10
% of the training data. The modelincluding the binary
featuress trainedon the entiretraining data. We obtain
about3.37 million featuresof the type definedin Eq. 3
by settingthethresholdV = 3. Forty iterationsover the
trainingdatatake about2 hourson asinglelntel machine.
Althoughthe online algorithmdoesnot requireus to do
S0, our training procedurekeepsthe entiretraining data
andtheweightvectorw in about2 gigabytesof memory

For blockswith neutralorientationo = N, we train
a separatenodelthatdoesnot usethe orientationmodel
featureor the binaryfeatures.E.g. for theresultsin line
5 in Table 2, the neutralmodel would usethe features
(a),(c),(d), (e), but not (b) and(f). Here,the neutral
modelis trainedon the neutralorientationbigramsubse-
guencehatis partof Eq. 2.

5.2 Modified Weight Training

We implementedthe following variation of the likeli-
hood training proceduredescribedin Section3, where
we make useof the 'LDC’ devtestset. First, we train
amodelonthe’LDC’ trainingdatausing5 float features
and the binary features. We usethis modelto decode



Table 1: List of feature-sectorcomponents.For a de-
scription,seeSection3.

| Description |
(a) Unigramprobability
(b) Orientationprobability
(c) LM first word probability
(d) LM secondandfollowing wordsprobability
(e) Lexical weighting
(f) Binary Block Bigram Features

Table2: CasedBLEU translationresultswith confidence
intervals on the MTO03 testdata. The third columnsum-
marizesthe modelvariations. The resultsin lines 8 and
9 are for a cheatingexperiment: the float weightsare
trainedon the testdataitself.

Re-ordering | Components BLEU
1| MON (a),(c) 323+1.5
2 [ 'SWAP (a),(c) 32.3+1.5
3| 'SWAP& OR | (a),(b),(c) 33.9+14
4| 'SWAP& OR | (a)-(e) 37.7+1.5
5| 'SWAP& OR | (a)-(f) 37.2+1.6
6 | 'SWAP& OR | (a)-(e)(ldc devtest) | 37.8 +1.5
7| 'SWAP& OR | (a)-(f) (Idc devtest) | 38.2+1.5
8 | 'SWAP& OR | (a)-(e)(mtO3test) | 39.0+1.5
9| 'SWAP& OR | (a)-(f) (mtO3test) | 39.3+1.6

the devtest’LDC’ set. During decoding,we generatea
"translatiorgraph’for everyinputsentenceisingaproce-
duresimilar to (Ueffing et al., 2002): a translationgraph
is a compactway of representingandidatetranslations
which areclosein termsof likelihood. Fromthetransla-
tion graph,we obtainthe 1 000 besttranslationsaccord-
ing to the translationscore. Out of this list, we find the
block sequenc¢hatgeneratedhetop BLEU-scoringtar
gettranslation. Computingthe top BLEU-scoringblock
sequencéor all theinput sentencesve obtain:
611\7, = [ (b;v Oi, bi)?:s,l]ig, ) (10)
where N’ = 9400. Here, N’ is the numberof blocks
neededo decodethe entiredevtestset. Alternativesfor
eachof the eventsin ¢' are generatedas describedn
Section3.2. The setof alternatvesis further restricted
by usingonly thoseblocksthatoccurin sometranslation
in the 1 000-bestlist. The5 float weightsaretrainedon
the modifiedtraining datain Eq. 10, wherethe training
takesonly a few seconds.We thendecodethe 'MTO03’
testsetusingthe modified'float’ weights. As shavn in
line 4 andline 6 thereis almostno changein perfor
mancebetweentraining on the original training datain
Eq. 2 or on the modified training datain Eg. 10. Line
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8 shaws that evenwhentraining the float weightson an
event setobtainedfrom the testdataitself in a cheating
experiment,we obtainonly a moderateperformancem-
provementfrom 37.7 to 39.0. For the experimentalre-
sultsin line 7 and9, we usethe samefive float weights
astrainedfor the experimentsin line 6 and8 andkeep
themfixedwhile trainingthe binaryfeatureweightsonly.
Usingthe binaryfeaturedeadsto only a minorimprove-
mentin BLEU from 37.8 to 38.2 in line 7. For this best
model,we obtaina 18.6 % BLEU improvementover the
baseline.

Fromour experimentakresults,we draw thefollowing
conclusions: (1) the translationperformanceis largely
dominatedby thefloat’ features(2) usingthe sameset
of 'float’ featuresthe performancaloesnt changemuch
whentraining on training, devtest,or eventestdata. Al-
though,we do not obtaina significantimprovementfrom
theuseof binaryfeaturesgcurrently we expectthe useof
binaryfeaturedo beapromisingapproactior thefollow-
ing reasons:

e The currenttraining doesnot take into accountthe
block interactionon the sentencdevel. A moreac-
curate approximationof the global model as dis-
cussedn Section3.1 mightimprove performance.

e As describedin Section3.2 and Section5.2, for
efficiengy reasonsalternatves are computedfrom
sourcephrasematchesonly. During training, more
accuratdocal approximationgor the partitionfunc-
tion in Eq. 6 can be obtainedby looking at block
translationgn the context of translationsequences.
Thisinvolvesthecomputationallyexpensvegenera-
tion of atranslationgraphfor eachtrainingsentence
pair. Thisis futurework.

¢ As mentionedin Sectionl, viewing the translation
processasa sequencef local discussionsnakesit
similarto otherNLP problemssuchasPOStagging,
phrasechunking,and also statisticalparsing. This
similarity may facilitate the incorporationof these
approachesto our translationrmodel.

6 Discussionand Future Work

In this paperwe proposeda methodfor discriminatively
training the parameterof a block SMT decoder We
discussedwo possibleapproachesglobal versuslocal.
This work focusedon the latter, dueto its computational
adwantages.Somelimitations of our approachave also
beenpointedout, althoughour experimentsshoved that
this simplemethodcansignificantlyimprovethebaseline
model.

As far asthe log-linear combinationof float features
is concernedsimilar training procedurefiave beenpro-
posedin (Och, 2003). This paperreportsthe use of 8



featureswhose parameterare trained to optimize per
formancein termsof different evaluation criteria, e.g.
BLEU. On the contrary our papershows that a signifi-
cantimprovementcanalsobeobtainedusingalik elihood
trainingcriterion.

Our modifiedtraining procedureis relatedto the dis-
criminative re-rankingprocedurepresentedn (Shenet
al., 2004). In fact, onemay view discriminatve rerank-
ing asa simplificationof the globalmodelwe discussed,
in thatit restrictsthe numberof candidateglobaltransla-
tions to make the computationmore manageableHow-
ever, the numberof possibletranslationss often expo-
nentialin the sentencdength, while the numberof can-
didatesin a typically rerankingapproachis fixed. Un-
less one employs an elaboratedprocedure,the candi-
datetranslationsnayalsobevery similarto oneanothey
andthus do not give a good coverageof representatie
translations Thereforethe rerankingapproactmay have
someseverelimitations which needto be addressedror
this reasonwe think thata moreprincipledtreatmenif
global modeling can potentially lead to further perfor
mancemprovements.

For future work, our training techniquemay be used
to train modelsthathandleglobalsentence-kel reorder
ings. This might be achieved by introducing orienta-
tion sequencesver phrasetypesthat have beenusedin
((Schaferand Yarowsky, 2003)). To incorporatesyntac-
tic knowledgeinto the block-baseanodel,we will exam-
ine the useof additionalreal-valuedor binary features,
e.g.featureghatlook atwhetherthe block phrasegross
syntacticboundaries.This canbe donewith only minor
modificationsto our trainingmethod.
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