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Abstract 

Entity relation detection is a form of in-
formation extraction that finds predefined 
relations between pairs of entities in text. 
This paper describes a relation detection 
approach that combines clues from differ-
ent levels of syntactic processing using 
kernel methods. Information from three 
different levels of processing is consid-
ered: tokenization, sentence parsing and 
deep dependency analysis. Each source of 
information is represented by kernel func-
tions. Then composite kernels are devel-
oped to integrate and extend individual 
kernels so that processing errors occurring 
at one level can be overcome by informa-
tion from other levels. We present an 
evaluation of these methods on the 2004 
ACE relation detection task, using Sup-
port Vector Machines, and show that each 
level of syntactic processing contributes 
useful information for this task. When 
evaluated on the official test data, our ap-
proach produced very competitive ACE 
value scores. We also compare the SVM 
with KNN on different kernels.  

1 Introduction 

Information extraction subsumes a broad range of 
tasks, including the extraction of entities, relations 
and events from various text sources, such as 
newswire documents and broadcast transcripts. 
One such task, relation detection, finds instances 
of predefined relations between pairs of entities, 

such as a Located-In relation between the entities 
Centre College and Danville, KY in the phrase 
Centre College in Danville, KY. The ‘entities’ are 
the individuals of selected semantic types (such as 
people, organizations, countries, …) which are re-
ferred to in the text. 
    Prior approaches to this task (Miller et al., 2000; 
Zelenko et al., 2003) have relied on partial or full 
syntactic analysis. Syntactic analysis can find rela-
tions not readily identified based on sequences of 
tokens alone. Even ‘deeper’ representations, such 
as logical syntactic relations or predicate-argument 
structure, can in principle capture additional gener-
alizations and thus lead to the identification of ad-
ditional instances of relations. However, a general 
problem in Natural Language Processing is that as 
the processing gets deeper, it becomes less accu-
rate. For instance, the current accuracy of tokeniza-
tion, chunking and sentence parsing for English is 
about 99%, 92%, and 90% respectively. Algo-
rithms based solely on deeper representations in-
evitably suffer from the errors in computing these 
representations. On the other hand, low level proc-
essing such as tokenization will be more accurate, 
and may also contain useful information missed by 
deep processing of text. Systems based on a single 
level of representation are forced to choose be-
tween shallower representations, which will have 
fewer errors, and deeper representations, which 
may be more general. 
    Based on these observations, Zhao et al. (2004) 
proposed a discriminative model to combine in-
formation from different syntactic sources using a 
kernel SVM (Support Vector Machine). We 
showed that adding sentence level word trigrams 
as global information to local dependency context 
boosted the performance of finding slot fillers for 
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management succession events. This paper de-
scribes an extension of this approach to the identi-
fication of entity relations, in which syntactic 
information from sentence tokenization, parsing 
and deep dependency analysis is combined using 
kernel methods. At each level, kernel functions (or 
kernels) are developed to represent the syntactic 
information. Five kernels have been developed for 
this task, including two at the surface level, one at 
the parsing level and two at the deep dependency 
level. Our experiments show that each level of 
processing may contribute useful clues for this 
task, including surface information like word bi-
grams. Adding kernels one by one continuously 
improves performance. The experiments were car-
ried out on the ACE RDR (Relation Detection and 
Recognition) task with annotated entities. Using 
SVM as a classifier along with the full composite 
kernel produced the best performance on this task. 
This paper will also show a comparison of SVM 
and KNN (k-Nearest-Neighbors) under different 
kernel setups. 

2 Kernel Methods  

Many machine learning algorithms involve only 
the dot product of vectors in a feature space, in 
which each vector represents an object in the ob-
ject domain. Kernel methods (Muller et al., 2001) 
can be seen as a generalization of feature-based 
algorithms, in which the dot product is replaced by 
a kernel function (or kernel) Ψ(X,Y) between two 
vectors, or even between two objects. Mathemati-
cally, as long as Ψ(X,Y) is symmetric and the ker-
nel matrix formed by Ψ is positive semi-definite, it 
forms a valid dot product in an implicit Hilbert 
space. In this implicit space, a kernel can be bro-
ken down into features, although the dimension of 
the feature space could be infinite. 
   Normal feature-based learning can be imple-
mented in kernel functions, but we can do more 
than that with kernels. First, there are many well-
known kernels, such as polynomial and radial basis 
kernels, which extend normal features into a high 
order space with very little computational cost. 
This could make a linearly non-separable problem 
separable in the high order feature space. Second, 
kernel functions have many nice combination 
properties: for example, the sum or product of ex-
isting kernels is a valid kernel. This forms the basis 
for the approach described in this paper. With 

these combination properties, we can combine in-
dividual kernels representing information from 
different sources in a principled way.  
   Many classifiers can be used with kernels. The 
most popular ones are SVM, KNN, and voted per-
ceptrons. Support Vector Machines (Vapnik, 1998; 
Cristianini and Shawe-Taylor, 2000) are linear 
classifiers that produce a separating hyperplane 
with largest margin. This property gives it good 
generalization ability in high-dimensional spaces, 
making it a good classifier for our approach where 
using all the levels of linguistic clues could result 
in a huge number of features. Given all the levels 
of features incorporated in kernels and training 
data with target examples labeled, an SVM can 
pick up the features that best separate the targets 
from other examples, no matter which level these 
features are from. In cases where an error occurs in 
one processing result (especially deep processing) 
and the features related to it become noisy, SVM 
may pick up clues from other sources which are 
not so noisy. This forms the basic idea of our ap-
proach. Therefore under this scheme we can over-
come errors introduced by one processing level; 
more particularly, we expect accurate low level 
information to help with less accurate deep level 
information. 

3 Related Work  

Collins et al. (1997) and Miller et al. (2000) used 
statistical parsing models to extract relational facts 
from text, which avoided pipeline processing of 
data. However, their results are essentially based 
on the output of sentence parsing, which is a deep 
processing of text. So their approaches are vulner-
able to errors in parsing. Collins et al. (1997) ad-
dressed a simplified task within a confined context 
in a target sentence.  

Zelenko et al. (2003) described a recursive ker-
nel based on shallow parse trees to detect person-
affiliation and organization-location relations, in 
which a relation example is the least common sub-
tree containing two entity nodes. The kernel 
matches nodes starting from the roots of two sub-
trees and going recursively to the leaves. For each 
pair of nodes, a subsequence kernel on their child 
nodes is invoked, which matches either contiguous 
or non-contiguous subsequences of node. Com-
pared with full parsing, shallow parsing is more 
reliable. But this model is based solely on the out-
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put of shallow parsing so it is still vulnerable to 
irrecoverable parsing errors. In their experiments, 
incorrectly parsed sentences were eliminated.  

Culotta and Sorensen (2004) described a slightly 
generalized version of this kernel based on de-
pendency trees. Since their kernel is a recursive 
match from the root of a dependency tree down to 
the leaves where the entity nodes reside, a success-
ful match of two relation examples requires their 
entity nodes to be at the same depth of the tree. 
This is a strong constraint on the matching of syn-
tax so it is not surprising that the model has good 
precision but very low recall. In their solution a 
bag-of-words kernel was used to compensate for 
this problem. In our approach, more flexible ker-
nels are used to capture regularization in syntax, 
and more levels of syntactic information are con-
sidered. 

Kambhatla (2004) described a Maximum En-
tropy model using features from various syntactic 
sources, but the number of features they used is 
limited and the selection of features has to be a 
manual process.1 In our model, we use kernels to 
incorporate more syntactic information and let a 
Support Vector Machine decide which clue is cru-
cial. Some of the kernels are extended to generate 
high order features. We think a discriminative clas-
sifier trained with all the available syntactic fea-
tures should do better on the sparse data. 

4 Kernel Relation Detection 

4.1 ACE Relation Detection Task 

ACE (Automatic Content Extraction)2 is a research 
and development program in information extrac-
tion sponsored by the U.S. Government. The 2004 
evaluation defined seven major types of relations 
between seven types of entities. The entity types 
are PER (Person), ORG (Organization), FAC (Fa-
cility), GPE (Geo-Political Entity: countries, cities, 
etc.), LOC (Location), WEA (Weapon) and VEH 
(Vehicle). Each mention of an entity has a mention 
type: NAM (proper name), NOM (nominal) or 
                                                           
1 Kambhatla also evaluated his system on the ACE relation 
detection task, but the results are reported for the 2003 task, 
which used different relations and different training and test 
data, and did not use hand-annotated entities, so they cannot 
be readily compared to our results. 
2Task description: http://www.itl.nist.gov/iad/894.01/tests/ace/ 
  ACE guidelines: http://www.ldc.upenn.edu/Projects/ACE/ 

PRO (pronoun); for example George W. Bush, the 
president and he respectively. The seven relation 
types are EMP-ORG (Employ-
ment/Membership/Subsidiary), PHYS (Physical), 
PER-SOC (Personal/Social), GPE-AFF (GPE-
Affiliation), Other-AFF (Person/ORG Affiliation), 
ART (Agent-Artifact) and DISC (Discourse). 
There are also 27 relation subtypes defined by 
ACE, but this paper only focuses on detection of 
relation types. Table 1 lists examples of each rela-
tion type. 
 

Type Example 
EMP-ORG the CEO of Microsoft 

PHYS a military base in Germany 
GPE-AFF U.S.  businessman 
PER-SOC a spokesman for the senator 

DISC many of these people 
ART the makers of the Kursk 

Other-AFF Cuban-American  people 
 

Table 1. ACE relation types and examples. The 
heads of the two entity arguments in a relation are 
marked. Types are listed in decreasing order of 
frequency of occurrence in the ACE corpus. 
 
  Figure 1 shows a sample newswire sentence, in 
which three relations are marked. In this sentence, 
we expect to find a PHYS relation between Hez-
bollah forces and areas, a PHYS relation between 
Syrian troops and areas and an EMP-ORG relation 
between Syrian troops and Syrian. In our ap-
proach, input text is preprocessed by the Charniak 
sentence parser (including tokenization and POS 
tagging) and the GLARF (Meyers et al., 2001) de-
pendency analyzer produced by NYU. Based on 
treebank parsing, GLARF produces labeled deep 
dependencies between words (syntactic relations 
such as logical subject and logical object). It han-
dles linguistic phenomena like passives, relatives, 
reduced relatives, conjunctions, etc.  

 
Figure 1. Example sentence from newswire text  

4.2 Definitions 

In our model, kernels incorporate information from 

PHYS PHYS EMP-ORG

That's because Israel was expected to retaliate against 
Hezbollah forces in areas controlled by Syrian troops. 
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tokenization, parsing and deep dependency analy-
sis. A relation candidate R is defined as 

 R = (arg1, arg2, seq, link, path), 
where arg1 and arg2 are the two entity arguments 
which may be related; seq=(t1, t2, …, tn) is a token 
vector that covers the arguments and intervening 
words; link=(t1, t2, …, tm) is also a token vector, 
generated from seq and the parse tree; path is a 
dependency path connecting arg1 and arg2 in the 
dependency graph produced by GLARF. path can 
be empty if no such dependency path exists. The 
difference between link and seq is that link only 
retains the “important” words in seq in terms of 
syntax. For example, all noun phrases occurring in 
seq are replaced by their heads. Words and con-
stituent types in a stop list, such as time expres-
sions, are also removed. 
  A token T is defined as a string triple, 

T = (word, pos, base), 
where word, pos and base are strings representing 
the word, part-of-speech and morphological base 
form of T. Entity is a token augmented with other 
attributes, 
             E = (tk, type, subtype, mtype), 
where tk is the token associated with E; type, sub-
type and mtype are strings representing the entity 
type, subtype and mention type of E. The subtype 
contains more specific information about an entity. 
For example, for a GPE entity, the subtype tells 
whether it is a country name, city name and so on. 
Mention type includes NAM, NOM and PRO. 
  It is worth pointing out that we always treat an 
entity as a single token: for a nominal, it refers to 
its head, such as boys in the two boys; for a proper 
name, all the words are connected into one token, 
such as Bashar_Assad. So in a relation example R 
whose seq is (t1, t2, …, tn), it is always true that 
arg1=t1 and arg2=tn. For names, the base form of 
an entity is its ACE type (person, organization, 
etc.). To introduce dependencies, we define a de-
pendency token to be a token augmented with a 
vector of dependency arcs, 
           DT=(word, pos, base, dseq),     
where dseq = (arc1, ... , arcn ). A dependency arc is 
            ARC = (w, dw, label, e),  
where w is the current token; dw is a token con-
nected by a dependency to w; and label and e are 
the role label and direction of this dependency arc 
respectively. From now on we upgrade the type of 
tk in arg1 and arg2 to be dependency tokens. Fi-
nally, path is a vector of dependency arcs, 

     path = (arc1 , ... , arcl ),  
where l is the length of the path and arci (1≤i≤l) 
satisfies arc1.w=arg1.tk, arci+1.w=arci.dw and 
arcl.dw=arg2.tk. So path is a chain of dependencies 
connecting the two arguments in R. The arcs in it 
do not have to be in the same direction. 
 

 
 
Figure 2. Illustration of a relation example R. The 
link sequence is generated from seq by removing 
some unimportant words based on syntax. The de-
pendency links are generated by GLARF. 
 
  Figure 2 shows a relation example generated from 
the text “… in areas controlled by Syrian troops”. 
In this relation example R, arg1 is ((“areas”, 
“NNS”, “area”, dseq), “LOC”, “Region”, 
“NOM”), and arg1.dseq is ((OBJ, areas, in, 1), 
(OBJ, areas, controlled, 1)). arg2 is ((“troops”, 
“NNS”, “troop”, dseq), “ORG”, “Government”, 
“NOM”) and arg2.dseq = ((A-POS, troops, Syrian, 
0), (SBJ, troops, controlled, 1)). path is ((OBJ, ar-
eas, controlled, 1), (SBJ, controlled, troops, 0)). 
The value 0 in a dependency arc indicates forward 
direction from w to dw, and 1 indicates backward 
direction. The seq and link sequences of R are 
shown in Figure 2. 
  Some relations occur only between very restricted 
types of entities, but this is not true for every type 
of relation. For example, PER-SOC is a relation 
mainly between two person entities, while PHYS 
can happen between any type of entity and a GPE 
or LOC entity. 

4.3 Syntactic Kernels 

In this section we will describe the kernels de-
signed for different syntactic sources and explain 
the intuition behind them. 
  We define two kernels to match relation examples 
at surface level. Using the notation just defined, we 
can write the two surface kernels as follows: 
1) Argument kernel 

troopsareas controlled by 

A-POS OBJ 

arg1 arg2 SBJ 
OBJ

path 

in

seq 

link 

areas controlled by Syrian troops

COMP 
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where KE is a kernel that matches two entities, 
 
 
 
 
 
 
KT is a kernel that matches two tokens. I(x, y) is a 
binary string match operator that gives 1 if x=y 
and 0 otherwise. Kernel Ψ1 matches attributes of 
two entity arguments respectively, such as type, 
subtype and lexical head of an entity. This is based 
on the observation that there are type constraints 
on the two arguments. For instance PER-SOC is a 
relation mostly between two person entities. So the 
attributes of the entities are crucial clues. Lexical 
information is also important to distinguish relation 
types. For instance, in the phrase U.S. president 
there is an EMP-ORG relation between president 
and U.S., while in a U.S. businessman there is a 
GPE-AFF relation between businessman and U.S. 
2)  Bigram kernel 
 
 
where  
 
 
 
Operator <t1, t2> concatenates all the string ele-
ments in tokens t1 and t2 to produce a new token. 
So Ψ2 is a kernel that simply matches unigrams and 
bigrams between the seq sequences of two relation 
examples. The information this kernel provides is 
faithful to the text. 
3) Link sequence kernel 
 
 
 
 
where min_len is the length of the shorter link se-
quence in R1 and R2. Ψ3 is a kernel that matches 
token by token between the link sequences of two 
relation examples. Since relations often occur in a 
short context, we expect many of them have simi-
lar link sequences. 
4) Dependency path kernel 
 
 
where  

 
 
 
 
             ).',.()).',.( earcearcIdwarcdwarcK jijiT ×  
  Intuitively the dependency path connecting two 
arguments could provide a high level of syntactic 
regularization. However, a complete match of two 
dependency paths is rare. So this kernel matches 
the component arcs in two dependency paths in a 
pairwise fashion. Two arcs can match only when 
they are in the same direction. In cases where two 
paths do not match exactly, this kernel can still tell 
us how similar they are. In our experiments we 
placed an upper bound on the length of depend-
ency paths for which we computed a non-zero ker-
nel. 
5) Local dependency 
 
 
where 
 
 
 
 
         ).',.()).',.( earcearcIdwarcdwarcK jijiT ×  
  This kernel matches the local dependency context 
around the relation arguments. This can be helpful 
especially when the dependency path between ar-
guments does not exist. We also hope the depend-
encies on each argument may provide some useful 
clues about the entity or connection of the entity to 
the context outside of the relation example.  

4.4 Composite Kernels 

Having defined all the kernels representing shallow 
and deep processing results, we can define com-
posite kernels to combine and extend the individ-
ual kernels.  
1) Polynomial extension  
 
 
  This kernel combines the argument kernel Ψ1 and 
link kernel Ψ3 and applies a second-degree poly-
nomial kernel to extend them. The combination of 
Ψ1 and Ψ3 covers the most important clues for this 
task: information about the two arguments and the 
word link between them. The polynomial exten-
sion is equivalent to adding pairs of features as 
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new features. Intuitively this introduces new fea-
tures like: the subtype of the first argument is a 
country name and the word of the second argument 
is president, which could be a good clue for an 
EMP-ORG relation. The polynomial kernel is 
down weighted by a normalization factor because 
we do not want the high order features to over-
whelm the original ones. In our experiment, using 
polynomial kernels with degree higher than 2 does 
not produce better results. 
2) Full kernel 
 
 
This is the final kernel we used for this task, which 
is a combination of all the previous kernels. In our 
experiments, we set all the scalar factors to 1. Dif-
ferent values were tried, but keeping the original 
weight for each kernel yielded the best results for 
this task. 
  All the individual kernels we designed are ex-
plicit. Each kernel can be seen as a matching of 
features and these features are enumerable on the 
given data. So it is clear that they are all valid ker-
nels. Since the kernel function set is closed under 
linear combination and polynomial extension, the 
composite kernels are also valid. The reason we 
propose to use a feature-based kernel is that we can 
have a clear idea of what syntactic clues it repre-
sents and what kind of information it misses. This 
is important when developing or refining kernels, 
so that we can make them generate complementary 
information from different syntactic processing 
results. 

5 Experiments  

Experiments were carried out on the ACE RDR 
(Relation Detection and Recognition) task using 
hand-annotated entities, provided as part of the 
ACE evaluation. The ACE corpora contain docu-
ments from two sources: newswire (nwire) docu-
ments and broadcast news transcripts (bnews). In 
this section we will compare performance of dif-
ferent kernel setups trained with SVM, as well as 
different classifiers, KNN and SVM, with the same 
kernel setup. The SVM package we used is 
SVMlight. The training parameters were chosen us-
ing cross-validation. One-against-all classification 
was applied to each pair of entities in a sentence. 
When SVM predictions conflict on a relation ex-

ample, the one with larger margin will be selected 
as the final answer. 

5.1 Corpus 

The ACE RDR training data contains 348 docu-
ments, 125K words and 4400 relations. It consists 
of both nwire and bnews documents. Evaluation of 
kernels was done on the training data using 5-fold 
cross-validation. We also evaluated the full kernel 
setup with SVM on the official test data, which is 
about half the size of the training data. All the data 
is preprocessed by the Charniak parser and 
GLARF dependency analyzer. Then relation ex-
amples are generated based these results. 

5.2 Results 

  Table 2 shows the performance of the SVM on 
different kernel setups. The kernel setups in this 
experiment are incremental. From this table we can 
see that adding kernels continuously improves the 
performance, which indicates they provide 
additional clues to the previous setup. The argu-
ment kernel treats the two arguments as 
independent entities. The link sequence kernel 
introduces the syntactic connection between 
arguments, so adding it to the argument kernel 
boosted the performance. Setup F shows the 
performance of adding only dependency kernels to 
the argument kernel. The performance is not as 
good as setup B, indicating that dependency 
information alone is not as crucial as the link 
sequence.  
 

 Kernel           Performance 
  prec       recall    F-score 

A Argument (Ψ1) 52.96%    58.47%   55.58% 
B A + link (Ψ1+Ψ3) 58.77%    71.25%   64.41%* 
C B-poly (Φ1) 66.98%    70.33%   68.61%* 
D C + dep (Φ1+Ψ4+Ψ5) 69.10%    71.41%   70.23%* 
E D + bigram (Φ2) 69.23%    70.50%   70.35% 
F A + dep (Ψ1+Ψ4+Ψ5) 57.86%    68.50%   62.73% 

 
Table 2. SVM performance on incremental kernel 
setups. Each setup adds one level of kernels to the 
previous one except setup F. Evaluated on the 
ACE training data with 5-fold cross-validation. F-
scores marked by * are significantly better than the 
previous setup (at 95% confidence level). 
 

2541212 ),( χψβψαψ +++Φ=Φ RR
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  Another observation is that adding the bigram 
kernel in the presence of all other level of kernels 
improved both precision and recall, indicating that 
it helped in both correcting errors in other 
processing results and providing supplementary 
information missed by other levels of analysis. In 
another experiment evaluated on the nwire data 
only (about half of the training data), adding the 
bigram kernel improved F-score 0.5% and this 
improvement is statistically significant.  
   

Type KNN (Ψ1+Ψ3) KNN (Φ2) SVM (Φ2) 
EMP-ORG 75.43% 72.66% 77.76% 

PHYS 62.19 % 61.97% 66.37% 
GPE-AFF 58.67% 56.22% 62.13% 
PER-SOC 65.11% 65.61% 73.46% 

DISC 68.20% 62.91% 66.24% 
ART 69.59% 68.65% 67.68% 

Other-AFF 51.05% 55.20% 46.55% 
Total 67.44% 65.69% 70.35% 

 
Table 3. Performance of SVM and KNN (k=3) on 
different kernel setups. Types are ordered in de-
creasing order of frequency of occurrence in the 
ACE corpus. In SVM training, the same 
parameters were used for all 7 types.  
 
  Table 3 shows the performance of SVM and 
KNN (k Nearest Neighbors) on different kernel 
setups. For KNN, k was set to 3. In the first setup 
of KNN, the two kernels which seem to contain 
most of the important information are used. It 
performs quite well when compared with the SVM 
result. The other two tests are based on the full 
kernel setup. For the two KNN experiments, 
adding more kernels (features) does not help. The 
reason might be that all kernels (features) were 
weighted equally in the composite kernel Φ2 and 
this may not be optimal for KNN. Another reason 
is that the polynomial extension of kernels does not 
have any benefit in KNN because it is a monotonic 
transformation of similarity values. So the results 
of KNN on kernel (Ψ1+Ψ3) and Φ1 would be ex-
actly the same. We also tried different k for KNN 
and k=3 seems to be the best choice in either case.  
  For the four major types of relations SVM does 
better than KNN, probably due to SVM’s 
generalization ability in the presence of large 
numbers of features. For the last three types with 
many fewer examples, performance of SVM is not 
as good as KNN. The reason we think is that 
training of SVM on these types is not sufficient. 

We tried different training parameters for the types 
with fewer examples, but no dramatic 
improvement obtained. 
  We also evaluated our approach on the official 
ACE RDR test data and obtained very competitive 
scores.3 The primary scoring metric4 for the ACE 
evaluation is a 'value' score, which is computed by 
deducting from 100 a penalty for each missing and 
spurious relation; the penalty depends on the types 
of the arguments to the relation. The value scores 
produced by the ACE scorer for nwire and bnews 
test data are 71.7 and 68.0 repectively. The value 
score on all data is 70.1.5 The scorer also reports an 
F-score based on full or partial match of relations 
to the keys. The unweighted F-score for this test 
produced by the ACE scorer on all data is 76.0%. 
For this evaluation we used nearest neighbor to 
determine argument ordering and relation 
subtypes. 
  The classification scheme in our experiments is 
one-against-all. It turned out there is not so much 
confusion between relation types. The confusion 
matrix of predictions is fairly clean. We also tried 
pairwise classification, and it did not help much. 

6 Discussion 

In this paper, we have shown that using kernels to 
combine information from different syntactic 
sources performed well on the entity relation 
detection task. Our experiments show that each 
level of syntactic processing contains useful 
information for the task. Combining them may 
provide complementary information to overcome 
errors arising from linguistic analysis. Especially, 
low level information obtained with high reliability 
helped with the other deep processing results. This 
design feature of our approach should be best 
employed when the preprocessing errors at each 
level are independent, namely when there is no 
dependency between the preprocessing modules. 
The model was tested on text with annotated 
entities, but its design is generic. It can work with 
                                                           
3 As ACE participants, we are bound by the participation 
agreement not to disclose other sites’ scores, so no direct 
comparison can be provided. 
4 http://www.nist.gov/speech/tests/ace/ace04/software.htm 
5 No comparable inter-annotator agreement scores are avail-
able for this task, with pre-defined entities.  However, the 
agreement scores across multiple sites for similar relation 
tagging tasks done in early 2005, using the value metric, 
ranged from about 0.70 to 0.80. 
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noisy entity detection input from an automatic 
tagger. With all the existing information from other 
processing levels, this model can be also expected 
to recover from errors in entity tagging. 

7 Further Work 

Kernel functions have many nice properties. There 
are also many well known kernels, such as radial 
basis kernels, which have proven successful in 
other areas. In the work described here, only linear 
combinations and polynomial extensions of kernels 
have been evaluated. We can explore other kernel 
properties to integrate the existing syntactic 
kernels. In another direction, training data is often 
sparse for IE tasks. String matching is not 
sufficient to capture semantic similarity of words. 
One solution is to use general purpose corpora to 
create clusters of similar words; another option is 
to use available resources like WordNet. These 
word similarities can be readily incorporated into 
the kernel framework.  To deal with sparse data, 
we can also use deeper text analysis to capture 
more regularities from the data. Such analysis may 
be based on newly-annotated corpora like 
PropBank (Kingsbury and Palmer, 2002) at the 
University of Pennsylvania and NomBank (Meyers 
et al., 2004) at New York University. Analyzers 
based on these resources can generate regularized 
semantic representations for lexically or 
syntactically related sentence structures. Although 
deeper analysis may even be less accurate, our 
framework is designed to handle this and still 
obtain some improvement in performance. 
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