
Proceedings of the 43rd Annual Meeting of the ACL, pages 419–426,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Extracting Relations with Integrated Information Using Kernel Methods

 Shubin Zhao Ralph Grishman
Department of Computer Science

New York University
715 Broadway, 7th Floor, New York, NY 10003

 shubinz@cs.nyu.edu grishman@cs.nyu.edu

Abstract

Entity relation detection is a form of in-
formation extraction that finds predefined
relations between pairs of entities in text.
This paper describes a relation detection
approach that combines clues from differ-
ent levels of syntactic processing using
kernel methods. Information from three
different levels of processing is consid-
ered: tokenization, sentence parsing and
deep dependency analysis. Each source of
information is represented by kernel func-
tions. Then composite kernels are devel-
oped to integrate and extend individual
kernels so that processing errors occurring
at one level can be overcome by informa-
tion from other levels. We present an
evaluation of these methods on the 2004
ACE relation detection task, using Sup-
port Vector Machines, and show that each
level of syntactic processing contributes
useful information for this task. When
evaluated on the official test data, our ap-
proach produced very competitive ACE
value scores. We also compare the SVM
with KNN on different kernels.

1 Introduction

Information extraction subsumes a broad range of
tasks, including the extraction of entities, relations
and events from various text sources, such as
newswire documents and broadcast transcripts.
One such task, relation detection, finds instances
of predefined relations between pairs of entities,

such as a Located-In relation between the entities
Centre College and Danville, KY in the phrase
Centre College in Danville, KY. The ‘entities’ are
the individuals of selected semantic types (such as
people, organizations, countries, …) which are re-
ferred to in the text.
 Prior approaches to this task (Miller et al., 2000;
Zelenko et al., 2003) have relied on partial or full
syntactic analysis. Syntactic analysis can find rela-
tions not readily identified based on sequences of
tokens alone. Even ‘deeper’ representations, such
as logical syntactic relations or predicate-argument
structure, can in principle capture additional gener-
alizations and thus lead to the identification of ad-
ditional instances of relations. However, a general
problem in Natural Language Processing is that as
the processing gets deeper, it becomes less accu-
rate. For instance, the current accuracy of tokeniza-
tion, chunking and sentence parsing for English is
about 99%, 92%, and 90% respectively. Algo-
rithms based solely on deeper representations in-
evitably suffer from the errors in computing these
representations. On the other hand, low level proc-
essing such as tokenization will be more accurate,
and may also contain useful information missed by
deep processing of text. Systems based on a single
level of representation are forced to choose be-
tween shallower representations, which will have
fewer errors, and deeper representations, which
may be more general.
 Based on these observations, Zhao et al. (2004)
proposed a discriminative model to combine in-
formation from different syntactic sources using a
kernel SVM (Support Vector Machine). We
showed that adding sentence level word trigrams
as global information to local dependency context
boosted the performance of finding slot fillers for

419

management succession events. This paper de-
scribes an extension of this approach to the identi-
fication of entity relations, in which syntactic
information from sentence tokenization, parsing
and deep dependency analysis is combined using
kernel methods. At each level, kernel functions (or
kernels) are developed to represent the syntactic
information. Five kernels have been developed for
this task, including two at the surface level, one at
the parsing level and two at the deep dependency
level. Our experiments show that each level of
processing may contribute useful clues for this
task, including surface information like word bi-
grams. Adding kernels one by one continuously
improves performance. The experiments were car-
ried out on the ACE RDR (Relation Detection and
Recognition) task with annotated entities. Using
SVM as a classifier along with the full composite
kernel produced the best performance on this task.
This paper will also show a comparison of SVM
and KNN (k-Nearest-Neighbors) under different
kernel setups.

2 Kernel Methods

Many machine learning algorithms involve only
the dot product of vectors in a feature space, in
which each vector represents an object in the ob-
ject domain. Kernel methods (Muller et al., 2001)
can be seen as a generalization of feature-based
algorithms, in which the dot product is replaced by
a kernel function (or kernel) Ψ(X,Y) between two
vectors, or even between two objects. Mathemati-
cally, as long as Ψ(X,Y) is symmetric and the ker-
nel matrix formed by Ψ is positive semi-definite, it
forms a valid dot product in an implicit Hilbert
space. In this implicit space, a kernel can be bro-
ken down into features, although the dimension of
the feature space could be infinite.
 Normal feature-based learning can be imple-
mented in kernel functions, but we can do more
than that with kernels. First, there are many well-
known kernels, such as polynomial and radial basis
kernels, which extend normal features into a high
order space with very little computational cost.
This could make a linearly non-separable problem
separable in the high order feature space. Second,
kernel functions have many nice combination
properties: for example, the sum or product of ex-
isting kernels is a valid kernel. This forms the basis
for the approach described in this paper. With

these combination properties, we can combine in-
dividual kernels representing information from
different sources in a principled way.
 Many classifiers can be used with kernels. The
most popular ones are SVM, KNN, and voted per-
ceptrons. Support Vector Machines (Vapnik, 1998;
Cristianini and Shawe-Taylor, 2000) are linear
classifiers that produce a separating hyperplane
with largest margin. This property gives it good
generalization ability in high-dimensional spaces,
making it a good classifier for our approach where
using all the levels of linguistic clues could result
in a huge number of features. Given all the levels
of features incorporated in kernels and training
data with target examples labeled, an SVM can
pick up the features that best separate the targets
from other examples, no matter which level these
features are from. In cases where an error occurs in
one processing result (especially deep processing)
and the features related to it become noisy, SVM
may pick up clues from other sources which are
not so noisy. This forms the basic idea of our ap-
proach. Therefore under this scheme we can over-
come errors introduced by one processing level;
more particularly, we expect accurate low level
information to help with less accurate deep level
information.

3 Related Work

Collins et al. (1997) and Miller et al. (2000) used
statistical parsing models to extract relational facts
from text, which avoided pipeline processing of
data. However, their results are essentially based
on the output of sentence parsing, which is a deep
processing of text. So their approaches are vulner-
able to errors in parsing. Collins et al. (1997) ad-
dressed a simplified task within a confined context
in a target sentence.

Zelenko et al. (2003) described a recursive ker-
nel based on shallow parse trees to detect person-
affiliation and organization-location relations, in
which a relation example is the least common sub-
tree containing two entity nodes. The kernel
matches nodes starting from the roots of two sub-
trees and going recursively to the leaves. For each
pair of nodes, a subsequence kernel on their child
nodes is invoked, which matches either contiguous
or non-contiguous subsequences of node. Com-
pared with full parsing, shallow parsing is more
reliable. But this model is based solely on the out-

420

put of shallow parsing so it is still vulnerable to
irrecoverable parsing errors. In their experiments,
incorrectly parsed sentences were eliminated.

Culotta and Sorensen (2004) described a slightly
generalized version of this kernel based on de-
pendency trees. Since their kernel is a recursive
match from the root of a dependency tree down to
the leaves where the entity nodes reside, a success-
ful match of two relation examples requires their
entity nodes to be at the same depth of the tree.
This is a strong constraint on the matching of syn-
tax so it is not surprising that the model has good
precision but very low recall. In their solution a
bag-of-words kernel was used to compensate for
this problem. In our approach, more flexible ker-
nels are used to capture regularization in syntax,
and more levels of syntactic information are con-
sidered.

Kambhatla (2004) described a Maximum En-
tropy model using features from various syntactic
sources, but the number of features they used is
limited and the selection of features has to be a
manual process.1 In our model, we use kernels to
incorporate more syntactic information and let a
Support Vector Machine decide which clue is cru-
cial. Some of the kernels are extended to generate
high order features. We think a discriminative clas-
sifier trained with all the available syntactic fea-
tures should do better on the sparse data.

4 Kernel Relation Detection

4.1 ACE Relation Detection Task

ACE (Automatic Content Extraction)2 is a research
and development program in information extrac-
tion sponsored by the U.S. Government. The 2004
evaluation defined seven major types of relations
between seven types of entities. The entity types
are PER (Person), ORG (Organization), FAC (Fa-
cility), GPE (Geo-Political Entity: countries, cities,
etc.), LOC (Location), WEA (Weapon) and VEH
(Vehicle). Each mention of an entity has a mention
type: NAM (proper name), NOM (nominal) or

1 Kambhatla also evaluated his system on the ACE relation
detection task, but the results are reported for the 2003 task,
which used different relations and different training and test
data, and did not use hand-annotated entities, so they cannot
be readily compared to our results.
2Task description: http://www.itl.nist.gov/iad/894.01/tests/ace/
 ACE guidelines: http://www.ldc.upenn.edu/Projects/ACE/

PRO (pronoun); for example George W. Bush, the
president and he respectively. The seven relation
types are EMP-ORG (Employ-
ment/Membership/Subsidiary), PHYS (Physical),
PER-SOC (Personal/Social), GPE-AFF (GPE-
Affiliation), Other-AFF (Person/ORG Affiliation),
ART (Agent-Artifact) and DISC (Discourse).
There are also 27 relation subtypes defined by
ACE, but this paper only focuses on detection of
relation types. Table 1 lists examples of each rela-
tion type.

Type Example
EMP-ORG the CEO of Microsoft

PHYS a military base in Germany
GPE-AFF U.S. businessman
PER-SOC a spokesman for the senator

DISC many of these people
ART the makers of the Kursk

Other-AFF Cuban-American people

Table 1. ACE relation types and examples. The
heads of the two entity arguments in a relation are
marked. Types are listed in decreasing order of
frequency of occurrence in the ACE corpus.

 Figure 1 shows a sample newswire sentence, in
which three relations are marked. In this sentence,
we expect to find a PHYS relation between Hez-
bollah forces and areas, a PHYS relation between
Syrian troops and areas and an EMP-ORG relation
between Syrian troops and Syrian. In our ap-
proach, input text is preprocessed by the Charniak
sentence parser (including tokenization and POS
tagging) and the GLARF (Meyers et al., 2001) de-
pendency analyzer produced by NYU. Based on
treebank parsing, GLARF produces labeled deep
dependencies between words (syntactic relations
such as logical subject and logical object). It han-
dles linguistic phenomena like passives, relatives,
reduced relatives, conjunctions, etc.

Figure 1. Example sentence from newswire text

4.2 Definitions

In our model, kernels incorporate information from

PHYS PHYS EMP-ORG

That's because Israel was expected to retaliate against
Hezbollah forces in areas controlled by Syrian troops.

421

tokenization, parsing and deep dependency analy-
sis. A relation candidate R is defined as

 R = (arg1, arg2, seq, link, path),
where arg1 and arg2 are the two entity arguments
which may be related; seq=(t1, t2, …, tn) is a token
vector that covers the arguments and intervening
words; link=(t1, t2, …, tm) is also a token vector,
generated from seq and the parse tree; path is a
dependency path connecting arg1 and arg2 in the
dependency graph produced by GLARF. path can
be empty if no such dependency path exists. The
difference between link and seq is that link only
retains the “important” words in seq in terms of
syntax. For example, all noun phrases occurring in
seq are replaced by their heads. Words and con-
stituent types in a stop list, such as time expres-
sions, are also removed.
 A token T is defined as a string triple,

T = (word, pos, base),
where word, pos and base are strings representing
the word, part-of-speech and morphological base
form of T. Entity is a token augmented with other
attributes,
 E = (tk, type, subtype, mtype),
where tk is the token associated with E; type, sub-
type and mtype are strings representing the entity
type, subtype and mention type of E. The subtype
contains more specific information about an entity.
For example, for a GPE entity, the subtype tells
whether it is a country name, city name and so on.
Mention type includes NAM, NOM and PRO.
 It is worth pointing out that we always treat an
entity as a single token: for a nominal, it refers to
its head, such as boys in the two boys; for a proper
name, all the words are connected into one token,
such as Bashar_Assad. So in a relation example R
whose seq is (t1, t2, …, tn), it is always true that
arg1=t1 and arg2=tn. For names, the base form of
an entity is its ACE type (person, organization,
etc.). To introduce dependencies, we define a de-
pendency token to be a token augmented with a
vector of dependency arcs,
 DT=(word, pos, base, dseq),
where dseq = (arc1, ... , arcn). A dependency arc is
 ARC = (w, dw, label, e),
where w is the current token; dw is a token con-
nected by a dependency to w; and label and e are
the role label and direction of this dependency arc
respectively. From now on we upgrade the type of
tk in arg1 and arg2 to be dependency tokens. Fi-
nally, path is a vector of dependency arcs,

 path = (arc1 , ... , arcl),
where l is the length of the path and arci (1≤i≤l)
satisfies arc1.w=arg1.tk, arci+1.w=arci.dw and
arcl.dw=arg2.tk. So path is a chain of dependencies
connecting the two arguments in R. The arcs in it
do not have to be in the same direction.

Figure 2. Illustration of a relation example R. The
link sequence is generated from seq by removing
some unimportant words based on syntax. The de-
pendency links are generated by GLARF.

 Figure 2 shows a relation example generated from
the text “… in areas controlled by Syrian troops”.
In this relation example R, arg1 is ((“areas”,
“NNS”, “area”, dseq), “LOC”, “Region”,
“NOM”), and arg1.dseq is ((OBJ, areas, in, 1),
(OBJ, areas, controlled, 1)). arg2 is ((“troops”,
“NNS”, “troop”, dseq), “ORG”, “Government”,
“NOM”) and arg2.dseq = ((A-POS, troops, Syrian,
0), (SBJ, troops, controlled, 1)). path is ((OBJ, ar-
eas, controlled, 1), (SBJ, controlled, troops, 0)).
The value 0 in a dependency arc indicates forward
direction from w to dw, and 1 indicates backward
direction. The seq and link sequences of R are
shown in Figure 2.
 Some relations occur only between very restricted
types of entities, but this is not true for every type
of relation. For example, PER-SOC is a relation
mainly between two person entities, while PHYS
can happen between any type of entity and a GPE
or LOC entity.

4.3 Syntactic Kernels

In this section we will describe the kernels de-
signed for different syntactic sources and explain
the intuition behind them.
 We define two kernels to match relation examples
at surface level. Using the notation just defined, we
can write the two surface kernels as follows:
1) Argument kernel

troopsareas controlled by

A-POS OBJ

arg1 arg2 SBJ
OBJ

path

in

seq

link

areas controlled by Syrian troops

COMP

422

where KE is a kernel that matches two entities,

KT is a kernel that matches two tokens. I(x, y) is a
binary string match operator that gives 1 if x=y
and 0 otherwise. Kernel Ψ1 matches attributes of
two entity arguments respectively, such as type,
subtype and lexical head of an entity. This is based
on the observation that there are type constraints
on the two arguments. For instance PER-SOC is a
relation mostly between two person entities. So the
attributes of the entities are crucial clues. Lexical
information is also important to distinguish relation
types. For instance, in the phrase U.S. president
there is an EMP-ORG relation between president
and U.S., while in a U.S. businessman there is a
GPE-AFF relation between businessman and U.S.
2) Bigram kernel

where

Operator <t1, t2> concatenates all the string ele-
ments in tokens t1 and t2 to produce a new token.
So Ψ2 is a kernel that simply matches unigrams and
bigrams between the seq sequences of two relation
examples. The information this kernel provides is
faithful to the text.
3) Link sequence kernel

where min_len is the length of the shorter link se-
quence in R1 and R2. Ψ3 is a kernel that matches
token by token between the link sequences of two
relation examples. Since relations often occur in a
short context, we expect many of them have simi-
lar link sequences.
4) Dependency path kernel

where

).',.()).',.(earcearcIdwarcdwarcK jijiT ×
 Intuitively the dependency path connecting two
arguments could provide a high level of syntactic
regularization. However, a complete match of two
dependency paths is rare. So this kernel matches
the component arcs in two dependency paths in a
pairwise fashion. Two arcs can match only when
they are in the same direction. In cases where two
paths do not match exactly, this kernel can still tell
us how similar they are. In our experiments we
placed an upper bound on the length of depend-
ency paths for which we computed a non-zero ker-
nel.
5) Local dependency

where

).',.()).',.(earcearcIdwarcdwarcK jijiT ×
 This kernel matches the local dependency context
around the relation arguments. This can be helpful
especially when the dependency path between ar-
guments does not exist. We also hope the depend-
encies on each argument may provide some useful
clues about the entity or connection of the entity to
the context outside of the relation example.

4.4 Composite Kernels

Having defined all the kernels representing shallow
and deep processing results, we can define com-
posite kernels to combine and extend the individ-
ual kernels.
1) Polynomial extension

 This kernel combines the argument kernel Ψ1 and
link kernel Ψ3 and applies a second-degree poly-
nomial kernel to extend them. The combination of
Ψ1 and Ψ3 covers the most important clues for this
task: information about the two arguments and the
word link between them. The polynomial exten-
sion is equivalent to adding pairs of features as

),arg.,arg.(),(21
2,1

211 ii
i

E RRKRR ∑
=

=ψ

++=).,.().,.(),(212121 typeEtypeEItkEtkEKEEK TE

).,.().,.(2121 mtypeEmtypeEIsubtypeEsubtypeEI +

+=).,.(),(2121 wordTwordTITTKT

).,.().,.(2121 baseTbaseTIposTposTI +

),.,.(),(21212 seqRseqRKRR seq=ψ

∑ ∑
<≤ <≤

+=
lenseqi lenseqj

jiTseq tktkKseqseqK
.0 .'0

)',(('),(

))',',,(11 ><>< ++ jjiiT tktktktkK

).,.(),(21213 linkRlinkRKRR link=ψ

,)..,..(21
min_0

ii
leni

T ktlinkRktlinkRK∑
<≤

=

),.,.(),(21214 pathRpathRKRR path=ψ

)',(pathpathK path

∑ ∑
<≤ <≤

+=
lenpathi lenpathj

ji labelarclabelarcI
.0 .'0

).',.(((

,).arg.,.arg.(),(
2,1

21215 ∑
=

=
i

iiD dseqRdseqRKRRψ

)',(dseqdseqK D

∑ ∑
<≤ <≤

+=
lendseqi lendseqj

ji labelarclabelarcI
.0 .'0

).',.((

4/)()(),(2
3131211 ψψψψ +++=Φ RR

423

new features. Intuitively this introduces new fea-
tures like: the subtype of the first argument is a
country name and the word of the second argument
is president, which could be a good clue for an
EMP-ORG relation. The polynomial kernel is
down weighted by a normalization factor because
we do not want the high order features to over-
whelm the original ones. In our experiment, using
polynomial kernels with degree higher than 2 does
not produce better results.
2) Full kernel

This is the final kernel we used for this task, which
is a combination of all the previous kernels. In our
experiments, we set all the scalar factors to 1. Dif-
ferent values were tried, but keeping the original
weight for each kernel yielded the best results for
this task.
 All the individual kernels we designed are ex-
plicit. Each kernel can be seen as a matching of
features and these features are enumerable on the
given data. So it is clear that they are all valid ker-
nels. Since the kernel function set is closed under
linear combination and polynomial extension, the
composite kernels are also valid. The reason we
propose to use a feature-based kernel is that we can
have a clear idea of what syntactic clues it repre-
sents and what kind of information it misses. This
is important when developing or refining kernels,
so that we can make them generate complementary
information from different syntactic processing
results.

5 Experiments

Experiments were carried out on the ACE RDR
(Relation Detection and Recognition) task using
hand-annotated entities, provided as part of the
ACE evaluation. The ACE corpora contain docu-
ments from two sources: newswire (nwire) docu-
ments and broadcast news transcripts (bnews). In
this section we will compare performance of dif-
ferent kernel setups trained with SVM, as well as
different classifiers, KNN and SVM, with the same
kernel setup. The SVM package we used is
SVMlight. The training parameters were chosen us-
ing cross-validation. One-against-all classification
was applied to each pair of entities in a sentence.
When SVM predictions conflict on a relation ex-

ample, the one with larger margin will be selected
as the final answer.

5.1 Corpus

The ACE RDR training data contains 348 docu-
ments, 125K words and 4400 relations. It consists
of both nwire and bnews documents. Evaluation of
kernels was done on the training data using 5-fold
cross-validation. We also evaluated the full kernel
setup with SVM on the official test data, which is
about half the size of the training data. All the data
is preprocessed by the Charniak parser and
GLARF dependency analyzer. Then relation ex-
amples are generated based these results.

5.2 Results

 Table 2 shows the performance of the SVM on
different kernel setups. The kernel setups in this
experiment are incremental. From this table we can
see that adding kernels continuously improves the
performance, which indicates they provide
additional clues to the previous setup. The argu-
ment kernel treats the two arguments as
independent entities. The link sequence kernel
introduces the syntactic connection between
arguments, so adding it to the argument kernel
boosted the performance. Setup F shows the
performance of adding only dependency kernels to
the argument kernel. The performance is not as
good as setup B, indicating that dependency
information alone is not as crucial as the link
sequence.

 Kernel Performance
 prec recall F-score

A Argument (Ψ1) 52.96% 58.47% 55.58%
B A + link (Ψ1+Ψ3) 58.77% 71.25% 64.41%*
C B-poly (Φ1) 66.98% 70.33% 68.61%*
D C + dep (Φ1+Ψ4+Ψ5) 69.10% 71.41% 70.23%*
E D + bigram (Φ2) 69.23% 70.50% 70.35%
F A + dep (Ψ1+Ψ4+Ψ5) 57.86% 68.50% 62.73%

Table 2. SVM performance on incremental kernel
setups. Each setup adds one level of kernels to the
previous one except setup F. Evaluated on the
ACE training data with 5-fold cross-validation. F-
scores marked by * are significantly better than the
previous setup (at 95% confidence level).

2541212),(χψβψαψ +++Φ=Φ RR

424

 Another observation is that adding the bigram
kernel in the presence of all other level of kernels
improved both precision and recall, indicating that
it helped in both correcting errors in other
processing results and providing supplementary
information missed by other levels of analysis. In
another experiment evaluated on the nwire data
only (about half of the training data), adding the
bigram kernel improved F-score 0.5% and this
improvement is statistically significant.

Type KNN (Ψ1+Ψ3) KNN (Φ2) SVM (Φ2)
EMP-ORG 75.43% 72.66% 77.76%

PHYS 62.19 % 61.97% 66.37%
GPE-AFF 58.67% 56.22% 62.13%
PER-SOC 65.11% 65.61% 73.46%

DISC 68.20% 62.91% 66.24%
ART 69.59% 68.65% 67.68%

Other-AFF 51.05% 55.20% 46.55%
Total 67.44% 65.69% 70.35%

Table 3. Performance of SVM and KNN (k=3) on
different kernel setups. Types are ordered in de-
creasing order of frequency of occurrence in the
ACE corpus. In SVM training, the same
parameters were used for all 7 types.

 Table 3 shows the performance of SVM and
KNN (k Nearest Neighbors) on different kernel
setups. For KNN, k was set to 3. In the first setup
of KNN, the two kernels which seem to contain
most of the important information are used. It
performs quite well when compared with the SVM
result. The other two tests are based on the full
kernel setup. For the two KNN experiments,
adding more kernels (features) does not help. The
reason might be that all kernels (features) were
weighted equally in the composite kernel Φ2 and
this may not be optimal for KNN. Another reason
is that the polynomial extension of kernels does not
have any benefit in KNN because it is a monotonic
transformation of similarity values. So the results
of KNN on kernel (Ψ1+Ψ3) and Φ1 would be ex-
actly the same. We also tried different k for KNN
and k=3 seems to be the best choice in either case.
 For the four major types of relations SVM does
better than KNN, probably due to SVM’s
generalization ability in the presence of large
numbers of features. For the last three types with
many fewer examples, performance of SVM is not
as good as KNN. The reason we think is that
training of SVM on these types is not sufficient.

We tried different training parameters for the types
with fewer examples, but no dramatic
improvement obtained.
 We also evaluated our approach on the official
ACE RDR test data and obtained very competitive
scores.3 The primary scoring metric4 for the ACE
evaluation is a 'value' score, which is computed by
deducting from 100 a penalty for each missing and
spurious relation; the penalty depends on the types
of the arguments to the relation. The value scores
produced by the ACE scorer for nwire and bnews
test data are 71.7 and 68.0 repectively. The value
score on all data is 70.1.5 The scorer also reports an
F-score based on full or partial match of relations
to the keys. The unweighted F-score for this test
produced by the ACE scorer on all data is 76.0%.
For this evaluation we used nearest neighbor to
determine argument ordering and relation
subtypes.
 The classification scheme in our experiments is
one-against-all. It turned out there is not so much
confusion between relation types. The confusion
matrix of predictions is fairly clean. We also tried
pairwise classification, and it did not help much.

6 Discussion

In this paper, we have shown that using kernels to
combine information from different syntactic
sources performed well on the entity relation
detection task. Our experiments show that each
level of syntactic processing contains useful
information for the task. Combining them may
provide complementary information to overcome
errors arising from linguistic analysis. Especially,
low level information obtained with high reliability
helped with the other deep processing results. This
design feature of our approach should be best
employed when the preprocessing errors at each
level are independent, namely when there is no
dependency between the preprocessing modules.
The model was tested on text with annotated
entities, but its design is generic. It can work with

3 As ACE participants, we are bound by the participation
agreement not to disclose other sites’ scores, so no direct
comparison can be provided.
4 http://www.nist.gov/speech/tests/ace/ace04/software.htm
5 No comparable inter-annotator agreement scores are avail-
able for this task, with pre-defined entities. However, the
agreement scores across multiple sites for similar relation
tagging tasks done in early 2005, using the value metric,
ranged from about 0.70 to 0.80.

425

noisy entity detection input from an automatic
tagger. With all the existing information from other
processing levels, this model can be also expected
to recover from errors in entity tagging.

7 Further Work

Kernel functions have many nice properties. There
are also many well known kernels, such as radial
basis kernels, which have proven successful in
other areas. In the work described here, only linear
combinations and polynomial extensions of kernels
have been evaluated. We can explore other kernel
properties to integrate the existing syntactic
kernels. In another direction, training data is often
sparse for IE tasks. String matching is not
sufficient to capture semantic similarity of words.
One solution is to use general purpose corpora to
create clusters of similar words; another option is
to use available resources like WordNet. These
word similarities can be readily incorporated into
the kernel framework. To deal with sparse data,
we can also use deeper text analysis to capture
more regularities from the data. Such analysis may
be based on newly-annotated corpora like
PropBank (Kingsbury and Palmer, 2002) at the
University of Pennsylvania and NomBank (Meyers
et al., 2004) at New York University. Analyzers
based on these resources can generate regularized
semantic representations for lexically or
syntactically related sentence structures. Although
deeper analysis may even be less accurate, our
framework is designed to handle this and still
obtain some improvement in performance.

8 Acknowledgement

This research was supported in part by the Defense
Advanced Research Projects Agency under Grant
N66001-04-1-8920 from SPAWAR San Diego,
and by the National Science Foundation under
Grant ITS-0325657. This paper does not necessar-
ily reflect the position of the U.S. Government. We
wish to thank Adam Meyers of the NYU NLP
group for his help in producing deep dependency
analyses.

References
M. Collins and S. Miller. 1997. Semantic tagging using

a probabilistic context free grammar. In Proceedings
of the 6th Workshop on Very Large Corpora.

N. Cristianini and J. Shawe-Taylor. 2000. An introduc-
tion to support vector machines. Cambridge Univer-
sity Press.

A. Culotta and J. Sorensen. 2004. Dependency Tree
Kernels for Relation Extraction. In Proceedings of
the 42nd Annual Meeting of the Association for
Computational Linguistics.

D. Gildea and M. Palmer. 2002. The Necessity of Pars-
ing for Predicate Argument Recognition. In Proceed-
ings of the 40th Annual Meeting of the Association
for Computational Linguistics.

N. Kambhatla. 2004. Combining Lexical, Syntactic, and
Semantic Features with Maximum Entropy Models
for Extracting Relations. In Proceedings of the 42nd
Annual Meeting of the Association for Computa-
tional Linguistics.

P. Kingsbury and M. Palmer. 2002. From treebank to
propbank. In Proceedings of the 3rd International
Conference on Language Resources and Evaluation
(LREC-2002).

C. D. Manning and H. Schutze 2002. Foundations of
Statistical Natural Language Processing. The MIT
Press, page 454-455.

A. Meyers, R. Grishman, M. Kosaka and S. Zhao. 2001.
Covering Treebanks with GLARF. In Proceedings of
the 39th Annual Meeting of the Association for
Computational Linguistics.

A. Meyers, R. Reeves, Catherine Macleod, Rachel
Szekeley, Veronkia Zielinska, Brian Young, and R.
Grishman. 2004. The Cross-Breeding of Dictionar-
ies. In Proceedings of the 5th International Confer-
ence on Language Resources and Evaluation (LREC-
2004).

S. Miller, H. Fox, L. Ramshaw, and R. Weischedel.
2000. A novel use of statistical parsing to extract in-
formation from text. In 6th Applied Natural Lan-
guage Processing Conference.

K.-R. Müller, S. Mika, G. Ratsch, K. Tsuda and B.
Scholkopf. 2001. An introduction to kernel-based
learning algorithms, IEEE Trans. Neural Networks,
12, 2, pages 181-201.

V. N. Vapnik. 1998. Statistical Learning Theory. Wiley-
Interscience Publication.

D. Zelenko, C. Aone and A. Richardella. 2003. Kernel
methods for relation extraction. Journal of Machine
Learning Research.

Shubin Zhao, Adam Meyers, Ralph Grishman. 2004.
Discriminative Slot Detection Using Kernel Methods.
In the Proceedings of the 20th International Confer-
ence on Computational Linguistics.

426

