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Abstract senses, semi-supervised learning methods have re-
ceived great attention recently.

Semi-supervised methods for WSD are character-
ized in terms of exploiting unlabeled data in learning
procedure with the requirement of predefined sense
inventory for target words. They roughly fall into
three categories according to what is used for su-
pervision in learning process: (1) using external re-
sources, e.g., thesaurus or lexicons, to disambiguate
word senses or automatically generate sense-tagged
corpus, (Lesk, 1986; Lin, 1997; McCarthy et al.,
2004; Seo et al., 2004; Yarowsky, 1992), (2) exploit-
ing the differences between mapping of words to
senses in different languages by the use of bilingual
corpora (e.g. parallel corpora or untagged monolin-
gual corpora in two languages) (Brown et al., 1991;
Dagan and Itai, 1994; Diab and Resnik, 2002; Li and
Li, 2004; Ng et al., 2003), (3) bootstrapping sense-
tagged seed examples to overcome the bottleneck of
1 Introduction acquisition of large sense-tagged data (Hearst, 1991;

In this paper, we address the problem of word sen rov and Edelman, 1998; Mihalcea, 2004; Park et
al., 2000; Yarowsky, 1995).

disambiguation (WSD), which is to assign an appro-
priate sense to an occurrence of a word in a given AS & commonly used semi-supervised learning
context. Many methods have been proposed to de@ethod for WSD, bootstrapping algorithm works
with this problem, including supervised learning alPy iteratively classifying unlabeled examples and
gorithms (Leacock et al., 1998), semi—superviseéidding confidently classified examples into labeled
learning algorithms (Yarowsky, 1995), and unsupe,dataset using a model learned from augmented la-
vised learning algorithms (Sélze, 1998). beled dataset in previous iteration. It can be found
Supervised sense disambiguation has been vefat the affinity information among unlabeled ex-
successful, but it requires a lot of manually sensédmples is not fully explored in this bootstrapping
tagged data and can not utilize raw unannotated da@§ocess. Bootstrapping is based on a local consis-
that can be cheaply acquired. Fully unsupervise@ncy assumption: examples close to labeled exam-
methods do not need the definition of senses arfes within same class will have same labels, which
manually sense-tagged data, but their sense clusti-2Iso the assumption underlying many supervised
ing results can not be directly used in many NLPearning algorithms, such as kNN.
tasks since there is no sense tag for each instance irRecently a promising family of semi-supervised
clusters. Considering both the availability of a largdéearning algorithms are introduced, which can ef-
amount of unlabelled data and direct use of woréectively combine unlabeled data with labeled data

Shortage of manually sense-tagged data is
an obstacle to supervised word sense dis-
ambiguation methods. In this paper we in-
vestigate a label propagation based semi-
supervised learning algorithm for WSD,
which combines labeled and unlabeled
data in learning process to fully realize
a global consistency assumption: simi-
lar examples should have similar labels.
Our experimental results on benchmark
corpora indicate that it consistently out-
performs SVM when only very few la-
beled examples are available, and its per-
formance is also better than monolingual
bootstrapping, and comparable to bilin-
gual bootstrapping.
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in learning process by exploiting cluster structurén some distance measure, the larger the weight as-
in data (Belkin and Niyogi, 2002; Blum et al., sociated with this edge. The weights are defined as
2004; Chapelle et al., 1991; Szummer and Jaakkolgyows: Wi = exp(_déf) if i #jandW; =0
2001; Zhu and Ghahramani, 2002; Zhu et al., 2003%1 <i,j<n), Wheredijgis the distance (ex. Euclid-
Here we investigate a label propagation based semiapy gistance) between and x;, ando is used to
supervised learning algorithm (LP algorithm) (Zhusgntrol the weightV;;.

and Ghahramani, 2002) for WSD, which works by

representing labeled and unlabeled examples as ver- Semi-supervised Learning Method

tices in a connected graph, then iteratively propagat-

ing label information from any vertex to nearby ver-3.1 Label Propagation Algorithm

tices through weighted edges, finally inferring thg, | p algorithm (Zhu and Ghahramani, 2002), label
labels of unlabeled examples after this pmpagati%formation of any vertex in a graph is propagated
Process converges. _ _ _to nearby vertices through weighted edges until a
Compared with bootstrapping, LP algorithm isyjohal stable stage is achieved. Larger edge weights
based on a global consistency assumption.  Intygiow jabels to travel through easier. Thus the closer
itively, if there is at least one labeled example in eacfhe examples, more likely they have similar labels
cluster that consists of similar examples, then uanThe global consistency assumption).
beled examples will have the same labels as labeled|, |3he| propagation process, the soft label of each

examples in the same cluster by propagating the Igtia| jabeled example is clamped in each iteration
bel information of any example to nearby exampleg, replenish label sources from these labeled data.
according to their proximity. Thus the labeled data act like sources to push out la-
This paper is organized as follows. First, we willyg|s through unlabeled data. With this push from la-
formulate WSD problem in the context of semi-pejed examples, the class boundaries will be pushed
supervised learning in section 2. Then in sectioghrough edges with large weights and settle in gaps
3 we will describe LP algorithm and discuss theyong edges with small weights. If the data structure
difference between a supervised learning algorithiks the classification goal, then LP algorithm can use

(SVM), bootstrapping algorithm and LP algorithm.these unlabeled data to help learning classification
Section 4 will provide experimental results of LP al-pjane,

gorithm on widely used benchmark corpora. Finally | ot y0 ¢ pmxe represent initial soft labels at-
we will conclude our work and suggest possible iMiached to vertices whefE? = 1 if y; is s; and0
’ J

provement in section 5. otherwise. Letr? be the topl rows of Y and Y}
be the remaining: rows. Y7 is consistent with the
2 Problem Setup labeling in labeled data, and the initializationjf

can be arbitrary.

Let X = {z;}" , be a set of contexts of occur- i
Loy Optimally we expect that the value 8f;; across

rences of an ambiguous word, wherez; repre- giff tel _ I Dl dth |
sents the context of théth occurrence, ana is ierent classes IS as small as possiblie and the vaiue

the total number of this word’s occurrences. LegL_Wij_”W'tth Isa:)mle class '?. ast Iartge aih9053|ble.
S = {s;}5_, denote the sense tag setafThe first 'S WiTl make fabel propagation to stay within same

I examplesz,(1 < g < 1) are labeled ag, (y, € S) class._ In later experiments, we setas the aver-

and other (I+u = n) examplesey(I+1 < h < n) age distance between labeled examples from differ-

are unlabeled. The goal is to predict the sense of ent clgsses. . . )

in contextz;, by the use of label information of, ~ Definen x ”VF;FQbab"'ty transition matrid;; =

and similarity information among examplesin ~ F(j — i) = Sy, WhereT; is the probability
The cluster structure iX can be represented as ato jump from exémple:j to exampler;.

connected graph, where each vertex corresponds toCompute the row-normalized matrix by T;; =

an example, and the edge between any two examplés/ >";'_, T;,. This normalization is to maintain

x; andx; is weighted so that the closer the verticeshe class probability interpretation of.
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Figure 1: Classification result on two-moon pattern dataset 1| ,° o, it o,
(a) Two-moon pattern dataset with two labeled points, (b) clas
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sification result by SVM, (c) labeling procedure of bootstrap-
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Then LP algorithm is defined as follows: , T
9 Figure 2: Classification result of LP on two-moon pattern

1. Initially set t=0, where is iteralion index; dataset. (a) Minimum spanning tree of this dataset. The conver-
2. Propagate the label By‘*t! = TY?; gence process of LP algorithm withvarying from1 to 100 is

3. Clamp labeled data by replacing the fopw ShoWn from (b)to (0.
of Y+ with Y. Repeat from step 2 unti* con-

verges; labeled. The distance metric is Euclidian distance.
4. Assignzy(l +1 < h < n) with a labels;, We can see that the points in one moon should be

wherej = argmax;Yp;. more similar to each other than the points across the
This algorithm has been shown to converge tghoons.

a unique solution, which i§7U = lim;_, Yg} = Figure 1(b) shows the classification result of

(I — Tuu) 'TwYP (Zhu and Ghahramani, 2002). SVM. Vertical line denotes classification hyper-
We can see that this solution can be obtained witlplane, which has the maximum separating margin
out iteration and the initialization of} is not im-  with respect to the labeled points in two classes. We
portant, since}) does not affect the estimation of can see that SVM does not work well when labeled
Yy. Iis u x u identity matrix. T, andT,;, are data can not reveal the structure (two moon pattern)
acquired by splitting matri¥” after thel-th row and in each class. The reason is that the classification
thel-th column into 4 sub-matrices. hyperplane was learned only from labeled data. In

other words, the coherent structure (two-moon pat-
3.2 Comparison between SVM, Bootstrapping  tern) in unlabeled data was not explored when infer-

and LP ring class boundary.

For WSD, SVM is one of the state of the art super- Figure 1(c) shows bootstrapping procedure using
vised learning algorithms (Mihalcea et al., 2004)kNN (k=1) as base classifier with user-specified pa-
while bootstrapping is one of the state of the antameterb = 1 (the number of added examples from
semi-supervised learning algorithms (Li and Liunlabeled data into classified data for each class in
2004; Yarowsky, 1995). For comparing LP witheach iteration). Termination condition is that the dis-
SVM and bootstrapping, let us consider a datasétnce between labeled and unlabeled points is more
with two-moon pattern shown in Figure 1(a). Thethan inter-class distance (the distance betwdgn
upper moon consists of 9 points, while the loweand Bj). Each arrow in Figure 1(c) represents
moon consists of 13 points. There is only one laene classification operation in each iteration for each
beled pointin each moon, and other 20 points are uitass. After eight iterationsd; ~ Ag were tagged
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as-+1, and By ~ Bg were tagged as-1, while . . .
. Table 1: The upper two tables summarize accuracies (aver-
Ag ~ Ayp and By ~ By, were still untagged. Then aged over 20 trials) and paired t-test results of SVM and LP on

at the ninth iterationdg was tagged as$ 1 since the SENSEVAL-3 corpus with percentage of training set increasing

label of Ay was determined only by labeled points infrom 1% to 100%. The lower table lists the official result of
9 baseline (using most frequent sense heuristics) and top 3 sys-

KNN model: Ag is closer to any pointif Ao ~ As}  temsin ELS task of SENSEVAL-3.
than to any point il By ~ Bg}, regardless of the | Percentagd SVM | LPeosine | LPjs |
intrinsic structure in datadg ~ Ay andBg ~ By 11(‘;; ggz—;ﬂzﬁ) gz&%%z) giiﬁgﬁ
are closer to points in lower moon than to points in | 5e0. | 85310706 | 62.3:0.7% | 63 3£0.9%
upper moon. In other words, bootstrapping method|  50% 66.6+0.5% | 65.74+0.5% | 66.9+0.6%
uses the unlabeled data under a local consistency 75% | 68.740.4% | 67.3-0.4% | 68.7£0.3%

0, 0, 0, 0,
based strategy. This is the reason that two paiigts 100% 09 7% 68 4% 70.3%

andA;, are misclassified (shown in Figure 1(c)). Percentagg SVMVS. LFeosine | SVMVS. LPys
] p-value | Sign. | p-value | Sign.
From above analysis we see that both SVM and 1% 876.004] < | 856005] <
bootstrapping are based on a local consistency as{ 10% 1.9e-006| < 1.0e-008| <«
. 0 - ~ -
sumption. y Sov | 106006 > | 620002 ©
Finally we ran LP on a connected graph-minimum 75% 7.4e-013| > 7.1e-001| ~
spanning tree generated for this dataset, shown in|___100% - - - -

Figure 2(a). A, B, C represent three points, and [ Systems| Baseline] htsa3 | IRST-Kernels] nusels|
the edgeA — B connects the two moons. Figure [ Accuracy | 55.2% | 72.9% |  72.6% [ 72.4% |
2(b)- 2(f) shows the convergence process of LP with
t increasing froml to 100. Whent = 1, label in-
formation of labeled data was pushed to only nearby

points. After seven iteration steps£ 7), point B We used three types of features to capture con-
in upper moon was misclassified ag since it first textual information: part-of-speech of neighboring
received label information from point through the Words with position information, unordered sin-
edge connecting two moons. After another three igle words in topical context, and local collocations
eration steps (t=10), this misclassified point was rd@s same as the feature set used in (Lee and Ng,
tagged aSFl The reason Of th|S Self_correcting be_2002) except that we d|d not use SyntaCtiC rE|a.ti0nS).
havior is that with the push of label information fromFor SVM, we did not perform feature selection on
nearby points, the value dfp_; became higher SENSEVAL-3 data since feature selection deterio-

than Yz _;. In other words, the weight of edgerates its performance (Lee and Ng, 2002). When
B — C is larger than that of edg& — A, which funning LP on the three datasets, we removed the

makes it easier fos-1 label of pointC to travel to fea}tqres with occurrence frequency ((_:ounted in both
point B. Finally, whent > 12 LP converged to a training set and test set) less than 3 times.

fixed point, which achieved the ideal classification y investigated two distance measures for LP: co-
result. sine similarity and Jensen-Shannon (JS) divergence
(Lin, 1991).

4 Experiments and Results
For the three datasets, we constructed connected

4.1 Experiment Design graphs following (Zhu et al., 2003): two instances

For empirical comparison with SVM and bootstrap- ¥ Will be connected by an edgeifis amongv’s

ping, we evaluated LP on widely used benchmarh r?eﬁ‘;eSt neighbors, c()jrgf IS ar_nongu\]ssl:j'ntearest
corpora - “interest”, “line”! and the data in English 252 F(:)rrs“?rfterxgzts"u;ﬁ q “I)i/n(;(’)’sclgfp?)rra " i': igifo?qea'
lexical sample task of SENSEVAL-3 (including all 7~ = . ' §
amp ( 9% lowing (zhu et al., 2003)), while for SENSEVAL-3
57 English words ¥. : : :
data, k is 5 since the size of dataset for each word
Lavailable at http://www.d.umn.edstpederse/data.html 1N SENSEVAL-3 is much less than that of “interest”
2Available at http://www.senseval.org/senseval3 and “line” datasets.
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4.2 Experiment 1. LP vs. SVM Table 2: Accuracies from (Li and Li, 2004) and average ac-

In this experiment, we evaluated LP and Sy/Mveuracies of LP withe x b labeled examples on “interest” and
' “line” corpora. Major is a baseline method in which they al-

on the data of English lexical sample t_ask IrT\Nays choose the most frequent sense. MB-D denotes monolin-
SENSEVAL-3. We used examples from training gual bootstrapping with decision list as base classifier, MB-B

set as labeled data, and the remaining training e spresents monolingual bootstrapping with ensemble of Naive
’ ayes as base classifier, and BB is bilingual bootstrapping with

amples and all the test examples as unlabeled dagsemble of Naive Bayes as base classifier.

For each labeled set sizewe performed 20 trials. Ambiguous | Accuracies from (Li and Li, 2004)
In each trial, we randomly samplédabeled exam- words | Major | MB-D | MB-B | BB

les for each word from training set. If any sense interest | 54.6% | 54.7% | 69.3% | 75.5%
b 9 y . line 53.5% | 55.6% | 54.1% | 62.7%
was absent from the sampled labeled set, we redid = = -

; ; ; -4 Ambiguous ur results

the sampling. We conplucted experiments with dif words | #abeled examples LPrune | LPys
ferent values of, including1% x Ny train, 10% x e orost 75 15=60 502520% | 798:20%
Nuw trains 25% X Ny train, 50% X Ny train, 75% X line 6x15=90 60.3+4.5% | 59.4+3.9%

Nw,tr(m’n7 100% X Nw,train (Nw,train is the number
of examples in training set of word). SVM and LP
were evaluated using accurdtgfine-grained score) 4.3 Experiment 2: LP vs. Bootstrapping

on test set of SENSEVAL-3. Li and Li (2004) used “interest” and “line” corpora
We conducted paired t-test on the accuracy figgs test data. For the word “interest’, they used its
ures for each value df Paired t-test is not run when 5y major senses. For comparison with their re-
percentage: 100%, since there is only one pairedgyts, we took reduced “interest” corpus (constructed
accuracy figure. Paired t-test is usually used to es%y retaining four major senses) and complete “line”
mate the difference in means between normal PORorpus as evaluation data. In their algorithmis
ulations based on a set of random paired observgye number of senses of ambiguous word, and
tions. {<, >}, {<, >}, and~ correspond to p- (; = 15) is the number of examples added into clas-
value< 0.01, (0.01,0.05], and> 0.05 respectively. sified data for each class in each iteration of boot-
< (or>) means that the performance of LP is Sigstrapping. ¢ x b can be considered as the size of
nificantly better (or significantly worse) than SVM. nitial labeled data in their bootstrapping algorithm.
< (or >) means that the performance of LP is bette{ye ran LP with 20 trials on reduced “interest” cor-
(or worse) than SVM~ means that the performancepus and complete “line” corpus. In each trial, we
of LP is almost as same as SVM. randomly sampledl labeled examples for each sense
Table 1 reports the average accuracies and pairgfl “interest” or “line” as labeled data. The rest
t-test results of SVM and LP with different sizesserved as both unlabeled data and test data.
of labled data. It also lists the official results of Taple 2 summarizes the average accuracies of LP
baseline method and top 3 systems in ELS task @ the two corpora. It also lists the accuracies of
SENSEVAL-3. monolingual bootstrapping algorithm (MB), bilin-
From Table 1, we see that with small labeledyual bootstrapping algorithm (BB) on “interest” and
dataset (percentage of labeled data0%), LP per- “line” corpora. We can see that LP performs much
forms significantly better than SVM. When the perpetter than MB-D and MB-B on both “interest” and
centage of labeled data increases fi&fi to 75%,  “line” corpora, while the performance of LP is com-
the performance of Pys and SVM become almost parable to BB on these two corpora.
same, whileL P.,4;,. performs significantly worse
than SVM. 4.4 An Example: Word “use”

swe  used linear SV Mokt available  at FOr investigating the reason for LP to outperform
http://svmlight.joachims.org/. SVM and monolingual bootstrapping, we used the

“If there are multiple sense tags for an instance in trainingjata of word “use” in English lexical sample task of
set or test set, then only the first tag is considered as Corre%IENSEVAL 3 le (totally 26 |
answer. Furthermore, if the answer of the instance in test set¥ -3 as an example (totally examples

“U”, then this instance will be removed from test set. in training set and 14 examples in test set). For data
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(a) Intial Setting (b) Ground-truth fied many examples from classinto classx since

5[ 7o ‘ o[ Ty ‘ using only features occurring in training set can not
N P reveal the intrinsic structure in full dataset.
. oo%D Dbgpé» . *+i+ +f+*A<> o o For com_parisqn, we implemented monolinggal
o B @& o 0 . i o0 0 bootstrapping with kNN (k=1) as base classifier.
b T ¢ The parameteb is set as 1. Only unlabeled ex-
e oz o s Bk w7 0w o5 amples nearest to labeled examples and with the
_ swm (0 Booistapping distance less thad;, e, cass (the minimum dis-
05 D9 05 BCJ ¥ tance between labeled examples with different sense
x Q%X % 8ﬁé§<>‘A tags) will be added into classified data in each itera-
of 0%, - of 0%go 007, , | tion till no such unlabeled examples can be found.
o % OX% o o ® 5 0 “’& ¢ ¢, % Firstly we ran this monolingual bootstrapping on
sl sl this dataset to augment initial labeled data. The re-
04 502 0 02 04 08 <04 02 0 02 04 06 sultingclassified datais shownin Figure 3 (d). Then
(e Botstzpping e a 1NN model was learned on this classified data and
0 P b L we used this model to perform classification on the
0 8%@ * ﬁ&A remaining unlabeled data. Figure 3 (e) reports the
of Vgs O 0 0 of gy Y 0 A final classification result by this LINN model. We can
o § §> 0 0,0 L1 . {;o 9% seethat bootstrapping does not perform well since it
\ * ‘ is susceptible to small noise in dataset. For example,

04 2020 02 04 06 0402002 0408 i Figure 3 (d), the unlabeled examhe® happened

Figure 3: Comparison of sense disambiguation results bet-O be closest to Iab?Ied exampiethen INN model
tween SVM, monolingual bootstrapping and LP on word “use”tagged examplé with labelo. But the correct label
(a) only one labeled example for each sense of word “useyf B should be+ as shown in Figure 3 (b). This

as training data before sense disambiguatiomar{d> denote d miscl ificati foth labeled
the unlabeled examples in SENSEVAL-3 training set and te&TOr CaUsed misclassification or other uniabeled ex-

set respectively, and other five symbols, (x, A, ¢, andVv) amples that should have label

represent the labeled examples with different sense tags sam- i i
pled from SENSEVAL-3 training set.), (b) ground-truth re- In LP, the label information of examplé’ can

sult, (c) classification result on SENSEVAL-3 test set by svmtravel toB through unlabeled data. Then examgle

(accuracy- % = 21.4%), (d) classified data after bootstrap- will compete withC' and other unlabeled examples
ping, (e) classification result on SENSEVAL-3 training set andaroundB when determining the label @. In other

test set by 1NN (accuraey 1% = 42.9% ), () classifica- ’
tion result on SENSEVAL-3 training set and test set by LPVOrds, the labels of unlabeled examples are deter-

(accuracy= 1§ = 71.4%). mined not only by nearby labeled examples, but also
by nearby unlabeled examples. Using this classifi-
&ation strategy achieves better performance than the
local consistency based strategy adopted by SVM

nd bootstrapping.

visualization, we conducted unsupervised nonline
dimensionality reductiohon these 40 feature vec-
tors with 210 dimensions. Figure 3 (a) shows the?
dimensionality reduced vectors in two—dimensiona}l
space. We randomly sampled only one labeled ex-
ample for each sense of word “use” as labeled datdable 3 summarizes the performance comparison
The remaining data in training set and test set servé@tweenL Py and LP;s on three datasets. We
as unlabeled data for bootstrapping and LP. All ofan see that on SENSEVAL-3 corpusp;s per-

these three algorithms are evaluated using accuraeyy ———— . .
In the two-dimensional space, examjilas not the closest

on test set. example toA. The reason is that: (1} is not close to most

From Figure 3 (c) we can see that SVM misclassief nearby examples arounl, and B is not close to most of
- nearby examples arount}, (2) we used somap to maximally

SWe usedl somap to perform dimensionality reduction by preserve the neighborhood information between any example
computing two-dimensional, 39-nearest-neighbor-preservingnd all other examples, which caused the loss of neighborhood
embedding of 210-dimensional inpufsomap is available at information between a few example pairs for obtaining a glob-
http://isomap.stanford.edu/. ally optimal solution.

5 Experiment 3: LP.ysine VS. LPjg
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selected by minimizing the average value of function
Table 3: Performance comparison betwe&P. . and y 9 9

LP;g and the results of three model selection criteria are reld (D), H(W) or H(Yy) over 20 trials.
ported in following two tables. In the lower table; (or >) Let @ be theM x N matrix. FunctionH (@) can

means that the average value of functidfiQcosine) is lower p PR -
(or higher) thanH (Q ss), and it will result in selecting cosine measure the entropy of matr@, which is defined

(or JS) as distance measu@..:n. (or Q) represents ama- as (Dash and Liu, 2000):
trix using cosine similarity (or JS divergencg).and x denote
correct and wrong prediction results respectively, whiseans

that any prediction is acceptable. Sig = exp (—ax Qug), @
chosine VS. LPJS
Data p-value | Significance M N
SENSEVAL-3 (1%) | 1.1e-003 < HQ) ==Y Y (SizlogSi;+ (1 - S8i;)log (1 - Si;)),
SENSEVAL-3 (10%) | 8.9e-005 < =1 =1
SENSEVAL-3 (25%) | 9.0e-009 < (2)
ggmggﬁtg E?gz//og %e-gig < whereq is positive constant. The possible valug.of
- 0 .le- < P In0.5 7 _1 .. iSi
SENSEVAL-3 (100%) i X is —=5 ,V\{her_eI = N Z” Q; ;. Sisintroduced
interest 3.3e-002 > for normalization of matrixQ). For SENSEVAL-
line 8.1e-002 ~ 3 data, we calculated an overall average score of
HD) ") AYo) H(Q) by 3, ZM“%H(Qw). Ny test s the
Data cos. vs. JS| cos. vs. JS| cos. vs. JS w Ywitest
SENSEVAL3 (1%) | S () S Z=(x) _flumber of examples in test set of woed H (D),
SENSEVAL-3 (10%) | < (x) > () <(x) H(W)andH(Yy) can be obtained by replacirg
SENSEVAL-3 (25%) | < (x) > (V) <(¥) with D, W andYy; respectively.
SENSEVAL-3 (50%) | > (v) > (V) > (V) W v resp Y- o
SENSEVAL-3 (75%) | > (v/) > (V) > (/) | Table 3 reports the automatic prediction results
SENSEVAL-3 (100%) <((\0/)) > ((0)) <((\0/)) of these three criteria.
interest < > (X < :
line > () > () > () From Table 3, we can see that usikfy(\V)

€an consistently select the optimal distance measure
when the performance gap betweéir,. . and

forms significantly better that Poosine, but their LPss is very large (denoted by or>>). But H (D)
performance is almost comparable on “interest” an@ndH (Y ) fail to find the optimal distance measure
“line” corpora. This observation motivates us to auwhen only very few labeled examples are available
tomatically select a distance measure that will boogpercentage of labeled data10%).
the performance of LP on a given dataset. H (W) measures the separability of matrik.
Cross-validation on labeled data is not feasitligher value of H(W) means that distance mea-
ble due to the setting of semi-supervised learningure decreases the separability of examples in full
(I < w). In (Zhu and Ghahramani, 2002; Zhu etdataset. Then the boundary between clusters is ob-
al., 2003), they suggested a label entropy criteriopcured, which makes it difficult for LP to locate this
H(Yy) for model selection, wher& is the label boundary. Therefore higher value &f(W) results
matrix learned by their semi-supervised algorithmdn worse performance of LP.
The intuition behind their method is that good para- When labeled dataset is small, the distances be-
meters should result in confident labeling. Entropyween classes can not be reliably estimated, which
on matrixW (H(W)) is a commonly used measureresults in unreliable indication of the separability
for unsupervised feature selection (Dash and Ligf examples in full dataset. This is the reason that
2000), which can be considered here. Another po¢ (D) performs poorly on SENSEVAL-3 corpus
sible criterion for model selection is to measure th&hen the percentage of labeled data is less #5éh
entropy ofc x c inter-class distance matrik cal- For H(Yy), small labeled dataset can not reveal
culated on labeled data (denoted H$D)), where intrinsic structure in data, which may bias the esti-
D; ; represents the average distance betweeri-themation of Y;;. Then labeling confidence(Y/))
th class and thg-th class. We will investigate three can not properly indicate the performance of LP.
criteria, H(D), H(W') and H(Yy ), for model se- This may interpret the poor performancefYy,)
lection. The distance measure can be automaticalhn SENSEVAL-3 data when percentage25%.
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5 Conclusion Dagan, |. & Itai A.. 1994. Word Sense Disambiguation Using A Second Lan-
guage Monolingual CorpusComputational Linguistics, Vol. 20(4), pp. 563-

In this paper we have investigated a label propaga- >

tion based semi-supervised learning algorithm fawash, M., & Liu, H.. 2000. Feature Selection for ClusterifRAKDD(pp. 110—
. . . 21).

WSD, which fully realizes a global consistency as- )

sumption: similar examples should have similar laP/p i, &Restke.b. 200, A% e by od for ord Sense agg!

bels. In learning process, the labels of unlabeled ex-

I det . d t v b by label arst, M.. 1991. Noun Homograph Disambiguation using Local Context i
amples are determined not only by nearby labele Large Text Corpora.Proceedings of the 7th Annual Conference of the UW
examp|es, bUt also by nearby un|abe|ed examp|eS_Centrefor the New OED and Text Research: Using Corpora, 24:1, 1-41.
Compared with semi-supervised WSD methods iRarov, v. & Edelman, s.. 1998. Similarity-Based Word Sense Disambiguation
the first and second categories, our corpus based TPuarional Linguisics 24(1): 41-59.
method does not need external resources, inclugkacock, C., Miller, G.A. & Chodorow, M.. 1998. Using Corpus Statistand
. - . . WordNet Relations for Sense IdentificatidDomputational Linguistics, 24:1,
ing WordNet, bilingual lexicon, aligned parallel cor-  147-16s.
pora' Our anaIySIS and experlmental results demo[]e—e, Y.K. & Ng, H.T.. 2002. An Empirical Evaluation of Knowledge Sources an
strate the potential of this cluster assumption based Leaming Algorithms for Word Sense DisambiguatioEMNLP-2002, (pp.
algorithm. It achieves better performance than SVM '
when onIy very few labeled examples are ava”l__esk M.. 1986. Automated Word Sense Disambiguation Using Machine Read-

. . able Dictionaries: How to Tell a Pine Cone from an Ice Cream Cdre-
able, and its performance is also better than mono- ceedings of the ACM SIGDOC Conference.

Iingual bOOtStrapping and Comparable to blllnguad, H. & Li', C.. 2004. Word T'ranslla'tion Disambiguation Using Bilingl Boot-
bootstrapping. Finally we suggest an entropy based strapping.Computational Linguistics, 30(1), 1-22.
method to automatically identify a distance measungn, b.K.. 1997. Using Syntactic Dependency as Local Context to Redbtrd

that can boost the performance of LP algorithm on a S AmPiuyACL-1997

given dataset. Lin, J. 1991. Divergence Measures Based on the Shannon Entifpl. Trans-
) actions on Information Theory, 37:1, 145-150.
It has been shown that one sense per discourse

H icCarthy, D., Koeling, R., Weeds, J., & Carroll, J.. 2004. Finding Predant
p_roperty can improve thg performance of bootstrap="y Ve oo Untagged TeACL-2004,
ping algorithm (Li and Li, 2004; Yarowsky, 1995).

. .. . . . Mihalcea R.. 2004. Co-training and Self-training for Word Sense Disambigua-
This heuristics can be integrated into LP algorithm' tion. contL-2004.
by setting W.elghﬂ/Vi,j - 1 if the i-th and j-thin- L R., Chklovski, T., & Kilgariff, A.. 2004. The SENSEVAL-3 Blish
stances are in the same discourse. Lexical Sample TaskSENSEVAL-2004.

In the future we may extend the evaluation of LPNg, H.T., Wgng, B & _Chan, Y.S.. ) _2003. Exploiting Parallel Texts Vagord
algorlthm and related Cluster assumptlon based al_ Sense Disambiguation: An Empirical StudyCL-2003, pp. 455-462.
gorithms using more benchmark data for WSD. Anpark, s.8., zhang, B.T., & Kim, Y.T.. 2000. Word Sense Disambiguatip
other direction is to use feature clustering technique “2™"9 from Uniabeted DatCL-2000.
to deal with data sparseness and noisy feature pr(ﬁytﬁitge3 H.. 1998. Automatic Word Sense Discriminati€omputational Lin-
lem guistics, 24:1, 97-123.
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