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Abstract e Each underlying formu corresponds to a set
of candidatesyYEN(u). To obtain the unique
Stochastic Optimality Theory (Boersma, surface form, the candidate set is successively
1997) is a widely-used model in linguis- filtered according to the order of constraints, so
tics that did not have a theoretically sound that only the most harmonic candidates remain
learning method previously. In this pa- after each filtering. If only 1 candidate is left
per, a Markov chain Monte-Carlo method in the candidate set, it is chosen as the optimal
is proposed for learning Stochastic OT output.

Grammars. Following a Bayesian frame-
work, the goal is finding the posterior dis-

tribution of the grammar given the rela-

tive frequencies of input-output pairs. The
Data Augmentation algorithm allows one

to simulate a joint posterior distribution by

iterating two conditional sampling steps.

This Gibbs sampler constructs a Markov
chain that converges to the joint distribu-
tion, and the target posterior can be de-
rived as its marginal distribution.

The popularity of OT is partly due to learning al-
gorithms that induce constraint ranking from data.
However, most of such algorithms cannot be ap-
plied to noisy learning data. Stochastic Optimality
Theory (Boersma, 1997) is a variant of Optimality
Theory that tries to quantitatively predict linguis-
tic variation. As a popular model among linguists
that are more engaged with empirical data than with
formalisms, Stochastic OT has been used in a large
body of linguistics literature.

1 Introduction In Stochastic OT, constraints are regarded as

independent normal distributions with unknown

Optimality Theory (Prince and Smolensky, 1993)..n5 and fixed variance. As a result, the stochastic

is a linguistic theory that dominates the field of,,qiraint hierarchy generates systematic linguistic

phonology, and some areas of morphology and syQz jation. For example, consider a grammar with
tax. The standard version of OT contains the follows .qstraints 0, ~ N(u1,02), Cy ~ N(uz,0?)

ing assumptions: C3 ~ N(us,o?), and 2 competing candidates for a

e Agrammar is a set of ordered constraif{t€’; : given inputz:
/L:]-a )N}a>)1

e Each constraintC; is a function: ¥* — p(.) | C1 Co Cj
{0,1,---}, wherex* is the set of strings in the r ~ y |77, 0 0 1
language; r ~ y | 23] 1 1 0

*The author thanks Bruce Hayes, Ed Stabler, Yingnian Wu, Table 1: A Stochastic OT grammar
Colin Wilson, and anonymous reviewers for their comments. with 1 input and 2 outputs
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The probabilitiesp(.) are obtained by repeatedlywork, the learning problem is formalized as find-
sampling the 3 normal distributions, generating theng the posterior distributionof ranking values (G)
winning candidate according to the ordering of congiven the information on constraint interaction based
straints, and counting the relative frequencies in then input-output pairs (D). The posterior contains all
outcome. As a result, the grammar will assign northe information needed for linguists’ use: for exam-
zero probabilities to a given set of outputs, as showple, if there is a grammar that will generate the exact
above. frequencies as in the data, such a grammar will ap-
The learning problem of Stochastic OT involvegpear as a mode of the posterior.
fitting a grammarG € RY to a set of candidates In computation, the posterior distribution is sim-
with frequency counts in a corpus. For exampleylated with MCMC methods because the likeli-
if the learning data is the above table, we need thood function has a complex form, thus making
find an estimate of? = (u1, u2, u3)* so that the a maximum-likelihood approach hard to perform.
following ordering relations hold with certain prob- Such problems are avoided by using ata Aug-
abilities: mentationalgorithm (Tanner and Wong, 1987) to
make computation feasible: to simulate the pos-
(1) terior distributionG ~ p(G|D), we augment the
parameter space and simulate a joint distribution
(G,Y) ~ p(G,Y|D). It turns out that by setting

The current method for fitting Stochastic OT Mody, a4 yne yalye of constraints that observe the de-

els, used by many linguists, is the Gradual Learns—. . . .

. : ired ordering, simulating from(G,Y|D) can be

I(QE :‘ :goEthfm (t?]LA) (Boetrsmi and I-Ilayesb, 200.1)'achieved with &Gibbs samplerwhich constructs a
OOKS Tor the COITect ranking values by UsiNGy,an.oy chain that converges to the joint posterior

the following heuristic, which resembles gradienhis,[ribution (Geman and Geman, 1984; Gelfand and

descent. First, an mput-output pair IS sampled_ frorgmith, 1990). | will also discuss some issues related
the data; second, an ordering of the constraints {8 efficiency in implementation

sampled from the grammar and used to generate an o _ o
output; and finally, the means of the constraints aré@  The difficulty of a maximum-likelihood
updated so as to minimize the error. The updating approach

is done by adding or subtracting a “plasticity” ValueNaturaIIy, one may consider “frequency matching”
that goes to zero over time. The intuition behind,g estimating the grammar based on the maximum-
GLA is that it does “frequency matching”, i.e. 100k-ikelihood criterion. Given a set of constraints and
ing for a better match between the output frequensandidates, the data may be compiled in the form of
cies of the grammar and those in the data. (1), on which the likelihood calculation is based. As
As it turns out, GLA does not work in all cages an example, given the grammar and data set in Table

and its lack of formal foundations has been quest, the likelihood ofd="max{C1,C2} > C3” can
tioned by a number of researchers (Keller anfle written asP(d|u1, yo, 13)=

Asudeh, 2002; Goldwater and Johnson, 2003). 0 0 1 oy 27T,

However, considering the broad range of linguistic 1 — Jooo oo gz e3P { =5 } dx dy

data that has been analyzed with Stochastic OT, it wheref — (2 — 1+ p3,y — pio + i), ands
Ty — ) ’

seems unadvisable to reject this model because fine jgentity covariance matrix. The integral sign
the absence of theoretically sound learning met%llows from the fact that botl; — Cy, Cy — Cs
ods. Rather, a general solution is needed to evaA ’

) ] R Ycare normal, since each constraint is independently
uate Stochastic OT as a model for linguistic Va”ahormally distributed.

tion. In this paper, | introduce an algorithm for learn- If we treat each data as independently generated

ing Stochastic OT grammars using Markov chaify, ihe grammar, then the likelihood will be a prod-
Monte-Carlo methods. Within a Bayesian framey, .+ ot s ch integrals (multiple integrals if many con-

Up to translation by an additive constant. _Str_aims are intgragting). One may gttempt to max-
>Two examples included in the experiment section. See 6.&nize such a likelihood function using numerical

max{C1,Ca} > Cs; with probability.77
max{C1,Cy} < C3; with probability .23
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methods, yet it appears to be desirable to avoid like- those that observé. Then we letd vary
lihood calculations altogether. with its frequency in the data, and obtain

3 The missing data scheme for learning a sample op(Y'|G, D);
Stochastic OT grammars — Once we have the values Bfthat respect

the ranking relationd), G becomes in-
dependent oD. Thus, samplingz from
p(G|Y, D) becomes the same as sampling
from p(G|Y).

The Bayesian approach tries to explgr@=|D),
the posterior distribution. Notice if we take the
usual approach by using the relationshigs| D)
p(D|G) - p(G), we will encounter the same prob-
lem as in Segtion 2. Ther_efore we _need a fe_asibl& Gibbs sampler for the joint posterior —

way of samplingp(G|D) without having to derive p(G,Y|D)

the closed-form op(D|G). ’

The key idea here is the so-called “missing data®he interdependence 6 andY helps design iter-
scheme in Bayesian statistics: in a complex mode#tive algorithms for sampling(G,Y'|D). In this
fitting problem, the computation can sometimes bgase, since each step samples from a conditional
greatly simplified if we treat part of the unknowndistribution {(G|Y, D) or p(Y|G, D)), they can be
parameters as data and fit the model in successig@mbined to form a Gibbs sampler (Geman and Ge-
stages. To apply this idea, one needs to observe ttiaén, 1984). In the same order as described in Sec-
Stochastic OT grammars are learned frominal tion 3, the two conditional sampling steps are imple-
data as seen in (1). In other words, only one asmented as follows:
pect of the structure generated by those normal dis-
tributions — the ordering of constraints — is used 1. Sample an ordering relatiod according to

to generate outputs. the prior p(D), which is simply normalized
This observation points to the possibility of  frequency counts; sample a vector of con-

treating the sample values of constrainfs = straint values; = {Z/l»t"‘ ,yn} from thte nor-

(41,40, ,yn) that satisfy the ordering relations ~ mal distributionsV (1", 02), .-, N (s, 02)

as missing data. It is appropriate to refer to them  such thaty observes the ordermg th

as “missing” because a language learner obviously )

cannot observe real numbers from the constraints,2- Repeat Step 1 and obtai samples of miss-

which are postulated by linguistic theory. When  ing data: y',---,y"; sample it from

the observed data are augmented with missing data N (3_; y! /M, o*/M).

and become eomplete datanodel, computation be-

comes significantly simpler. This type of idea is of- The grammarG = (u1,---,un), and the su-

ficially known asData Augmentatior{Tanner and perscript®) represents a sample ¢ in iteration

Wong, 1987). More specifically, we also make thé. As explained in 3, Step 1 samples missing data

following intuitive observations: from p(Y'|G, D), and Step 2 is equivalent to sam-
pling from p(G|Y, D), by the conditional indepen-

e The Complete data model consists of 3 randorﬁence ofG and D g|\/en Y. The normal postenor

variables: the observed ordering relatiaRs djstribution N(, v /M, o2 /M) is derived by us-
the grammarG, and the missing samples ofing »(G|Y) p(y‘g) (@), wherep(Y'|@) is nor-
constraint valued” that generate the ordering mal, andp(G) ~ N (10, o) is chosen to be an non-
D. informative prior withoy — co.

M (the number of missing data) is not a crucial
parameter. In our experiment®] is set to the total
— For each fixed,, values oft” thatrespect  number of observed forrfis Although it may seem

can be obtained easily onCeis given: we thato? /M is small for a largel/ and does not play

just sample fronp(Y'|G) and only keep

e (G andY are interdependent:

- 4Other choices of/, e.g. M = 1, lead to more or less the
3Notice even computing the gradient is non-trivial. same running time.
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a significant role in the sampling pf ™), the vari- Ordering RelationD p(D)

ance of the sampling distribution is a necessary in- Cl>max{C2,C4}

gredient of the Gibbs sampfer max{C3,C5}>C4 4
Under fairly general conditions (Geman and Ge- C3>max{C2,C4}

man, 1984), the Gibbs sampler iterates these two max{C2, C4}>C1

steps until it converges to a unique stationary dis- max{C2, C3,C5}>C1 3

tribution. In practice, convergence can be monitored C3>C1

by calculating cross-sample statistics from multiple | max{C3, C4,C5} > max{C1,C2} | .3

Markov chains with different Starting pOintS (Gel- Table 3: The ordering relationd andp(D)

man and Rubin, 1992). After the simulation is computed from Table 2.

stopped at convergence, we will have obtained a
perfect sample op(G,Y|D). These samples can
be used to derive our target distributip(z| D) by
simply keeping all th& components, singg(G|D)

is a marginal distribution op(G,Y'|D). Thus, the
sampling-based approach gives us the advantage
doing inference without performing any integration

Here each ordering relation has several conjuncts,
and the number of conjuncts is equal to the number
of competing candidates for each given input. These
conjuncts need to hold simultaneously because each
wi]nning candidate needs to be more harmonic than
a?l other competing candidates. The probabilities
p(D) are obtained by normalizing the frequencies of
5 Computational issues in implementation the surface forms in the original data. This will have

i i ) ) the consequence of placing more weight on lexical
In this section, | will sketch some key steps in thqtems that occur frequently in the corpus.
implementation of the Gibbs sampler. Particular at-

tention is paid to sampling(Y'|G, D), since a direct 52 Samplingp(Y' |G, D) under complex
implementation may require an unrealistic running ordering relations

time. A direct implementatiorp(Y'|G,d) is straightfor-
ward: 1) first obtainV samples fromV Gaussian
distributions; 2) check each conjunct to see if the
The prior probabilityp(D) determines the number ordering relation is satisfied. If so, then keep the
of samples (missing data) that are drawn under easlample; if not, discard the sample and try again.
ordering relation. The following example illustrates However, this can be highly inefficient in many
how the orderingD andp(D) are calculated from cases. For example, ifi constraints appear in the
data collected in a linguistic analysis. Consider @rdering relationd and the sample is rejected, the
data set that contains 2 inputs and a few output$y — m random numbers for constraints not appear-
each associated with an observed frequency in tleg in d are also discarded. Wherhas several con-

5.1 Computingp(D) from linguistic data

lexicon: juncts, the chance of rejecting samples for irrelevant
constraints is even greater.

Cl €2 C3 C4 C5 Freq. In order to save the generated random
rojyn| 010 104 numbers, the vectorY can be decom-

yiz| 10000 3 posed into its 1-dimensional components

yig| 0110 170 (Y1,Ys,---,Yy). The problem then becomes

ya 0 0 1 0 0] 0 samplingp(Y1, --- , Yn|G, D). Again, we may use
T2y 110 0 0 3 conditional sampling to draw; one at a time: we
y2/0 0 1 1 1] 0 keepy;..; andd fixed®, and drawy; so thatd holds

Table 2: A Stochastic OT grammar with 2 inputs for 3. There are now two cases:dfolds regardless

4 ®) 2y i .
The three ordering relations (corresponding to 8 ¥i» then any sample from (x;, 0%) will do;
attested outputs) and D) are computed as follows: otherwise, we will need to draw; from a truncated

- ®Here we usey,; for all components of except thei-th
5As required by the proof in (Geman and Geman, 1984). dimension.
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normal distribution. with the sampling op(G|Y, D). Notice the order in
To illustrate this idea, consider an example usedhichYj is updated is fixed, which makes our imple-
earlier whered="max{c1,c2} > ¢3”, and the ini- mentation an instance of tleystematic-scaibbs

tial sample and parameters apd”, 5" »{")) = sampler (Liu, 2001). This implementation may be
(Mgo) Méo) Mg,o)) = (1,-1,0). improved even further by utilizing the structure of

the ordering relatiorl, and optimizing the order in
whichY; is updated.

Sampling dist. Y; Y, Ys

p(Y1lp1,Y1 > y3) | 2.3799 | -1.0000, O 5.3 Model identifiability

p(Ya|pu2) 23799 | -0.7591] O Identifiability is related to the uniqueness of solu-

p(Ys|ps, Y3 <y1) | 2.3799| -0.7591| -1.0328| tjon in model fitting. GivenN constraints, a gram-

p(Ya|p) -1.4823| -0.7591| -1.0328| mar G e RN is not identifiable becaus€ + C

p(Ya|p2, Y2 > y3) | -1.4823| 2.1772 | -1.0328| il have the same behavior & for any constant

p(Ys|ps, Y3 <yo) | -1.4823| 2.1772| 1.0107 | (¢ = (cy,--- ,cp). To remove translation invariance,
Table 4: Conditional sampling steps for in Step 2 the average ranking value is subtracted
p(Y|G, d) = p(Y1, Yo, Ya|pr, iz, p3, d) from G, such thad _, y; = 0.

Notice that in each step, the sampling density is Another problem related to identifiability arises

either just a normal, or a truncated normal distribulnen the da‘Fa contains the so-called “categorical
i.e., there may be data of the follow-

tion. This is because we only need to make sure th_gprr;inati_on",
d will continue to hold for the next samplgl+), N9 form:
which differs fromy(®) by just 1 constraint. ¢1 > ¢y With probability 1.

In our experiment, sampling from truncated noryy theory, the mode of the posterior tends to infin-
mal distributions is realized by using the idearef ity and the Gibbs sampler will not converge. Since
jection sampling to sample from a truncated nor-paying categorical dominance relations is a com-
mal’ 7(z) = zi5 - N1, 0) Izsey, wefirstfindan  mon practice in linguistics, we avoid this problem
envelopedensity functiong(z) that is easy to sam- py truncating the posterior distributi®iy 7}, x,
ple directly, such that, () is uniformly bounded by where K is chosen to be a positive number large
M - g(x) for some constant/ that does not depend enough to ensure that the model be identifiable. The
onz. It can be shown that once each sampfeom  role of truncation/renormalization may be seen as a
g(x) is rejected with probability () = 1 — ]Q?;f;), strong prior that makes the model identifiable on a
the resulting histogram will provide a perfect sampléounded set.
for m.(z). In the current work, the exponential dis- A third problem related to identifiability occurs
tribution g(x) = Aexp {—Az} is used as the enve- when the posterior has multiple modes, which sug-
lope, with the following choices fok and the rejec- gests that multiple grammars may generate the same
tion ratior(x), which have been optimized to lower output frequencies. This situation is common when

the rejection rate: the grammar contains interactions between many
constraints, and greedy algorithms like GLA tend to

N = TV ¢ +40” find one of the many solutions. In this case, one
202 can either introduce extra ordering relations or use

r(z) = exp { (z +c)? + oz +6) — 02)\(2)} informative priors to samplg(G|Y'), so that the in-
2 2 ference on the posterior can be done with a relatively

Putting these ideas together, the final version osrmall number of samples.

Gibbs sampler is constructed by implementing Step-4  Posterior inference

1 in Section 4 as a sequence of conditional sandnce the Gibbs sampler has converged to its station-
pling steps forp(Y;|Y;;,d), and combining them gary distribution, we can use the samples to make var-

"Notice the truncated distribution needs to be re-normalized ®The implementation of sampling from truncated normals is
in order to be a proper density. the same as described in 5.2.
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ious inferences on the posterior. In the experimentssign equal probabilities to the 3 candidates. The
reported in this paper, we are primarily interested iposterior samples and histograms are displayed in
the mode of the posterior margifial(.;| D), where  Figure 1. Using the median of the marginal posteri-

i =1,---,N.Incases where the posterior marginabrs, the estimated grammar generates an exact fit to
is symmetric and uni-modal, its mode can be estthe frequencies in the input data.

mated by the sample median.

In real linguistic applications, the posterior **
marginal may be a skewed distribution, and many
modes may appear in the histogram. In these cases W‘M\ WM !’.M ‘M
more sophisticated non-parametric methods, such ag \‘ w H o
kernel density estimation, can be used to estimates
the modes. To reduce the computation in |dent|fy|ng> h l’ \ |
multiple modes, a mixture approximation (by EI\/I «NW wm }\ \w
algorithm or its relatives) may be necessary. \ || | I m H

800 1000 “2 1 o
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6 Experiments
Figure 1: Posterior marginal samples and histograms for

6.1 llokano reduplication Experiment 2.

The following llokano grammar and data set, used.2 Spanish diminutive suffixation
in (Boersma and Hayes, 2001), illustrate a compl

o . “he second experiment uses linguistic data on Span-
type of constraint interaction: the interaction be P g P

) €ish diminutives and the analysis proposed in (Arbisi-
tween the three constraints COMPLEX-ONSET, Kelm, 2002). There are 3 base forms, each as-

ALIGN, and /D ENTj([long]) cannot be factored o, o4 with 2 diminutive suffixes. The gram-

into interactions between 2 constraints. For ar%ar consists of 4 constraints: ALIGN(TE,Word R)
given candidate to be optimal, the constraint thaK[/IAX _00(V), DEP-IO and BaéeTooLittIe ’The d:ata’
prefers such a candidate must simultaneously dom-

presents the problem of learning from noise, since
inate the other two constraints. Hence it is not im-

0 Stochastic OT grammar can provide an exact fit
mediately clear whether there is a grammar that will

o the data: the candidate [ubita] violates an extra
assign equal probability to the 3 candidates.

constraint compared to [liri.ito], and [ubasita] vio-

/HRED-bwaja/| p(.) | *C-ONS AL Ipp lates the same constraint as [liryosito]. Yet unlike
bu:.bwa.ja .33 1 0 1 [lityosito], [ubasita] is not observed.

bwaj.bwa.ja | .33 2 0 © Input | Output Freq.[]A M D B
bub.wa.ja 33 0 1 0 Juba/ | [ubita] 100 1 0 1
Table 5: Data for llokano reduplication. [ubasita] 0|1 0 0 O
Since it does not address the problem of identifi- fmar/ [marEsﬂo] 5/0 0 10
ability, the GLA does not always converge on this — [r.n.a.rsno] 5|0 0 0 1
data set, and the returned grammar does not always/“ryO/ [I!”"tol 910 1 00
fit the input frequencies exactly, depending on the [liryosito] 111 0 0 0O

choice of paramete:lf% Table 6: Data for Spanish diminutive suffixation.

In comparison, the Gibbs sampler converges In the results found by GLA, [marEsito] always
quickly!?, regardless of the parameters. The resulias a lower frequency than [marsito] (See Table 7).
suggests the existence of a unique grammar that withis is not accidental. Instead it reveals a problem-
W(M ), andp(ui|D) is a marginal of ati_c use of heuristic_s in_G_LJ@: since the constraint
p(G|D). roomEs ' B is violated by [ubita], it is always demoted when-

198 gH reported results of averaging many runs of the algo€ver the underlying form /uba/ is encountered dur-

rithm. Yet there appears to be significant randomness in eagfig learning. Therefore, even though the expected
run of the algorithm.

Hwithin 1000 iterations. 12Thanks to Bruce Hayes for pointing out this problem.
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model assigns equal values tg@ and 4 (corre- data as in 6.2, results of fitting Max-Ent (using con-
sponding toD and B, respectively),us is always jugate gradient descent) and Stochastic OT (using
less thanuy, simply because there is more chanc&ibbs sampler) are reported in Table 8:

of penalizingD rather tharB. This problem arises [Tnput | Output Obs[ SOT ME ME.,,
precisely because of the heuristic (i.e. demoting| /uba/ | [ubita] 100% | 95% 100%  97.5%
; ; [ubasita] 0% | 5% 0% 2.5%
the constralnt_that prefers the wrong candidate) tha fmar | [marEsito] | 50% | 50% 50%  48.8%
GLA uses to find the target grammar. [marsito] 50% | 50% 50% 51.2%
The Gibbs sampler, on the other hand, does not /liryo/ | [liri.ito] 90% | 95%  90%  91.4%
lliryosito] | 10% | 5%  10%  8.6%

depend on heuristic rules in its search. Since modes
of the posteriop(us|D) andp(u| D) reside in neg- Table 8: Comparison of Max-Ent and Stochastic OT models
ative infinity, the posterior is truncated by, <k, It can be seen that the Max-Ent model, in the ab-
with K = 6, based on the discussion in 5.3. Resence of a smoothing prior, fits the data perfectly by
sults of the Gibbs sampler and two runs of G2A assigning positive weights to constrailsndD. A

are reported in Table 7. less exact fit (denoted by ME) is obtained when
put T Output ObsT Gibbs GLA  GLA; th2e smoothing Gaussian prior is used V\pm_: _0,_
Tuba/ | [ubita] 100% | 95%  96% _ 96% o; = 1. But as observed in 6.2, an exact fit is im-
J— {uba{szita_l] | 53‘(’;1 558’@ ??Q/OO/ 22/00/ possible to obtain using Stochastic OT, due to the
mar marEsito (] (] () (] . . g .
[marsito] 50% | 50%  62%  55% difference in the way variation is generate_d by the
Tliryol | [firi.ito] 90% | 95%  96% 91.4% models. Thus it may be seen that Max-Ent is a more
fliryosito] | 10% | 5% 4%  8.6% powerful class of models than Stochastic OT, though
Table 7: Comparison of Gibbs sampler and GLA it is not clear how the Max-Ent model's descriptive
. . ower is related to generative linguistic theories like
7 A comparison with Max-Ent models ghonology g g

Previously, problems with the GL’A have inspired ~ Although the abundance of well-behaved opti-
other OT-like models of linguistic variation. Onemization algorithms has been pointed out in favor
such proposal suggests using the more well-knowef Max-Ent models, it is the author’s hope that the
Maximum Entropymodel (Goldwater and Johnson,MCMC approach also gives Stochastic OT a sim-
2003). In Max-Ent models, a gramméf is also ilar underpinning. However, complex Stochastic

parameterized by a real vector of weights = OT models often bring worries about identifiability,
(w1, --- ,wy), but the conditional likelihood of an whereas the convexity property of Max-Ent may be
outputy given an inpute is given by: viewed as an advantatfe

8 Discussion

ex Wi fi\Y, T
p(ylz) = 5 fjp%ii ii(fgj(z,)i)} (2)  From anon-Bayesian perspective, the MCMC-based

approach can be seen as a randomized strategy for
where f;(y, ) is the violation each constraint as-8Ming a grammar. Computing resources make it
signs to the input-output pajt, y). p_os&ble to explore the entire space of grammars and

discover where good hypotheses are likely to occur.

Clearly, Max-Ent is a rather different type ofI hi have f q he f v vi
model from Stochastic OT, not only in the usent Is paper, we have focused on the irequently vis-

of constraint ordering, but also in the objective'tecj areas of th_e hypothe3|s space. :
function (conditional likelihood rather than likeli-  't'S Worth pointing out that the Graduate Learming
hood/posterior). However, it may be of interest tdAIgorlthm can also be seen from this perspective.,
compare these two types of models. Using the sanﬁb%1 e_xgmmatlor_] OT the GLA shows that when the
plasticity term is fixed, parameters found by GLA

L5The two runs here both use 0.002 and 0.0001 as the fin@lSO form a Markov chai® € RN, ¢t = 1,2, ...

plasticity. The initial plasticity and the iterations are set to ZTherefore, assuming the model is identifiable, it

and 1.0e7. Slightly better fits can be found by tuning thesepa-

rameters, but the observation remains the same. Concerns about identifiability appear much more fre-
143see (Keller and Asudeh, 2002) for a summary. quently in statistics than in linguistics.
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seems possible to use GLA in the same way as therrent research on the “initial bias” in language ac-
MCMC methods: rather than forcing it to stop, wequisition can be formulated as priors (eaithful-
can run GLA until it reaches stationary distributionhess LowHayes, 2004)) from a Bayesian perspec-
if it exists. tive.

However, it is difficult to interpret the results Implementing these extensions will merely in-
found by this “random walk-GLA” approach: the volve modifyingp(G|Y, D), which we leave for fu-
stationary distribution of GLA may not be the targeture work.
distribution — the posteriop(G|D). To construct
a Markov chain that converges p0G|D), one may References
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