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Abstract

Sitting at the intersection between statis-
tics and machine learning, Dynamic
Bayesian Networks have been applied
with much success in many domains, such
as speech recognition, vision, and compu-
tational biology. While Natural Language
Processing increasingly relies on statisti-
cal methods, we think they have yet to
use Graphical Models to their full poten-
tial. In this paper, we report on experi-
ments in learning edit distance costs using
Dynamic Bayesian Networks and present
results on a pronunciation classification
task. By exploiting the ability within the
DBN framework to rapidly explore a large
model space, we obtain a 40% reduc-
tion in error rate compared to a previous
transducer-based method of learning edit
distance.

Introduction

Another important development has been the use
of data-driven methods for the automatic learning of
edit costs, such as in (Ristad and Yianilos, 1998) in
the case of string edit distance and in (Neuhaus and
Bunke, 2004) for graph edit distance.

In this paper we revisit the problem of learn-
ing string edit distance costs within the Graphi-
cal Models framework. We apply our method to
a pronunciation classification task and show sig-
nificant improvements over the standard Leven-
shtein distance (Levenshtein, 1966) and a previous
transducer-based learning algorithm.

In section 2, we review a stochastic extension of
the classic string edit distance. We present our DBN-
based edit distance models in section 3 and show re-
sults on a pronunciation classification task in sec-
tion 4. In section 5, we discuss the computational
aspects of using our models. We end with our con-
clusions and future work in section 6.

2 Stochastic Models of Edit Distance
Let s* = s152...5,, De asourcestring over a source

Edit distance (ED) is a common measure of the simlphabetd, andm the length of the strings] is the
ilarity between two strings. It has a wide rangesubstrings;...s; ands’ is equal to the empty string,
of applications in classification, natural language, wheni > j. Likewise,t} denotes darget string
processing, computational biology, and many othesver a target alphabéi, andn the length oft’.

fields. It has been extended in various ways; for A source string can be transformed into a target
example, to handle simple (Lowrance and Wagnestring through a sequence eflit operations We
1975) or (constrained) block transpositions (Leuschvrite (s, t) ((s,t) # (¢, €)) to denote aredit opera-

et al., 2003), and other types of block operation in which the symbok is replaced by. If s=¢
tions (Shapira and Storer, 2003); and to measusndi#e, (s, t) is aninsertion If s#¢ andt=e, (s, t)
similarity between graphs (Myers et al., 2000; Kleinjs adeletion Whens#e¢, t #e ands#t, (s,t) is a
1998) or automata (Mohri, 2002).

This material was supported by NSF under Grant No. Iss- 1h€ string edit distance](sy", 1) betweens{"
0326276.

substitution In all other casess, ¢) is anidentity.

andt} is defined as the minimum weighted sum of
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the number of deletions, insertions, and substitution8(Z;=z;, s, t} | 0), 1<i</, wherezi:<zi(s), zgt)>,
required to transforns}” into ¢} (Wagner and Fis- in the form

cher, 1974). AO(m - n) Dynamic Programming fns(ty,) for zgs):e;zft):tbi
(DP) algorithm exists to compute the ED between () Fel(s,) for 2 —5 .0 _
. . . . 2;) oK i 7 air <
:\évsusr;rilggls. The algorithm is based on the foIIowmgQ Foub (s, ty,) for (zl(s?’ Zl(t)) = (Sa, ;)
o d(s77 1) +7({si. ), 0 otherwise -
d(si, 1) = min | d(s;,67)) +7({e,1;),

wherey", Q(z) =1; a; = Y\_} L), (resp.b;)
is the index of the source (resp. Jtarget) string gen-
erated up to théth edit operation; ang®**, f4¢! and
wab are functions mapping t@, 1].> Context in-

d(s7 87 + v ((s0,t))
with d(e,e)=0 and-~y : {(s,t)[(s,t) # (¢,€)} — R+
a cost function. Whern maps non-identity edit op-
erations to unity and identities to zero, string ED idependence is not to be taken here to méan

often referred to as thieevenshtein distance does not depend o, o f,. It depends on them

To learn the edit distance costs from data, RiStat%rough theglobal contextwhich forcesZ? to gen-
and Yianilos (1998) use a generative model (henc%'rate(s’ln, 7). The RY model ismemorlyless and

fortlh refterreddto as tr}R\t( _model'bas%d Ion amem- .., niext-independeMCl).
oryless transducer ot string pairs.  below we sum- Equation 2, also implicitly enforces theonsis-

marize their main idea and introduce our nmat'orf’ency constraintthat the pair of symbols output,
which will be useful later on. (s)” _(b)

We are interested in modeling thejointprobability(zi ’tzi )t,ha?rees dW'tth ghe actualtpglrto;ﬁymbols,
P(STssT", T} | ) of observing the source/target(s‘”’ i), tha neeas 1o ge generaied at srep or
string pair (s7*, t7') given model parameter®s S; der for the total yieldy(z7), to equal the string pair.

(resp. T.), 1<i<m, is a random variable (RV) as- The RY stophastlc model is S|mllar to the one in-
; . : troduced earlier by Bahl and Jelinek (1975). The

sociated with the event of observing a source (res%.ff ‘s that the Bahl del i |

target) symbol at position ifference is that the Bahl model is memoryless

To model the edit operations, we introduce a hidglncl context-dependerfMCD); the f functions are

den RV, Z, that takes values itA U e x BU €) \ now indexed bys,, (or t,, or both) such that

{(e,€)}. Z can be thought of as mndom vector 2: @5, (2) =1 V5, I ge_neral, context depen-
with two componentsz(®) and Z(®). dence can be extended to include up to the whole

i i—1 m _
We can then write the joint probability source (and/or target) string, 1 8ai> Sa;+1- Sey
moan eral other types of dependence can be exploited as
P(s",t7|0) as : : . .
will be discussed in section 3.

P(s1",t1|0) :ZZ P(Z{=2{, ™17 |60) (1) Both the Ristad and the Bahl transducer mod-
{fw(2)=<sT 17>, max(m,n)<b<m-+n} els give exponentially smaller probability to longer
wherev(z}) is theyield of the sequence!: the strings and edit sequences. Ristad presents an al-

ternate explicit model of the joint probability of

string pair output by the transducer. . .
Equation 1 says that the probability of a par_the length of the source and target strings. In this

ticular pair of strings is equal to the sum of theparametrization the probability OT the length of an
probabilities of all possible ways to generate thgdlt sequence does not necessarily decrease geomet-

pair by concatenating the edit operations..z,. If rically. A similar effect can be achieved by modeling

we make the assumption that there is no depeﬁhe length of the hidden edit sequence explicitly (see

dence between edit operations, we call our modgFCt'on 3).

memoryless P(Z¢, s7, 7| §) can then be factored 3 DBNSs for Learning Edit Distance

as IL; P(Z;,s{",t7|6). In addition, we call the Dynamic Bayesian Networks (DBNs), of which
modelcontext-independetitwe can writeQ(z;) = Hidden Markov Models (HMMs) are the most fa-

We follow the convention of using capital letters for ran- By convention,s,, = e for a; > m. Likewise,t;, =  if

dom variables and lowercase letters for instantiations of randoty > n. f"*(¢) = f%(e) = f*“*(¢,¢) = 0. This takes care
variables. of the case when we are past the end of a string.
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mous representative, are well suited for modeling frame ¢ (P) | frame 1 ¢C) | frame 2 (E)
stochastic temporal processes such as speech and
neural signals. DBNs belong to the larger family of
Graphical Models (GMs). In this paper, we restrict end
ourselves to the class of DBNs and use the terms
DBN and GM interchangeably. For an example in
which Markov Random Fields are used to compute
a context-sensitive edit distance see (Wei, 2504).

There is a large body of literature on DBNs and
algorithms associated with them. To briefly de-
fine a graphical model, it is a way of representingrigure 1: DBN for the memory-less transducer
a (factored probability distribution using a graph. model. Unshaded nodes are hidden nodes with prob-
Nodes of the graph correspond to random variableabilistic dependencies with respect to their parents.
and edges to dependence relations between the vaMiedes with stripes are deterministic hidden nodes,
ables* To doinferenceor parameter learning us- i.e., they take a unique value for each configuration
ing DBNSs, various generic exact or approximatef their parents. Filled nodes are observed (they can
algorithms exist (Lauritzen, 1996; Murphy, 2002;be either stochastic or deterministic). The graph
Bilmes and Bartels, 2003). In this section we startemplate is divided into three frames. The center
by introducing a graphical model for the MCI trans-frame is repeatedn + n — 2 times to yield a graph
ducer then present four additional classes of DBMith a total ofm +n frames, the maximum number
models: context-dependent, memory (where an edif edit operations needed to transforft into ¢7.
operation can depend on past operations), direCiutgoing light edges mean the parent is a switch-
(HMM-like), and length models (in which we ex- ing variable with respect to the child: depending on
plicity model the length of the sequence of editgshe value of the switching RV, the child uses different
to avoid the exponential decrease in likelihood oCPTs and/or a different parent set.

longer sequences). A few other models are dis- N
cussed in section 4.2. conditional probability tablgCPT).

) Common to all the frames in fig. 1, are position
3.1 Memoryless Context-independent Model  pys , andp, which encode the current positions in
Fig. 1 shows a DBN representation of the memome source and target strings resp.; source and target
ryless context-independent transducer model (Se§ymbols,s andt; the hidden edit operatiorZ; and
tion 2). The graph representdemplatewhich con-  consistency nodes: andte, which enforce the con-
sists, in general, of three partspelogug achunk  gjstency constraint discussed in section 2. Because
and anepilogue The chunk is repeated as manysf symmetry we will explain the upper half of the
times as necessary to model sequences of arbitragyanh involving the source string unless the target

length. The product oinrolling the template is a hajf s different. We drop subscripts when the frame
Bayesian Network organized into a given number ok mber is clear from the context.

frames The prologue and the epilogue often differ |, he first frame,a andb are observed to have
from the chunk because they model boundary coRy|ye 1, the first position in both stringsa and b

ditions, such as ensuring that the end of both stringgsiermine the value of the symbolgndt. Z takes
is reached at or before the last frame. arandom valuéz(®), z(0)). sc has the fixed observed
Associated with each node is a probability funcygjue 1. The only configurations of its parens,

tion that maps the node’s parent values to the valuggq s, that satisfyP(sc = 1|s, z) > 0 are such that
the node can take. We will refer to that function as 7(s) = 5) or (Z() = ¢ and Z # (e, €)). This is the

3While the Markov Edit Distancentroduced in the paper CONsistency constraint in equation 2.
takes local statistical dependencies into account, the edit costs|n the following frame, the position RV, de-

are still fixed and not corpus-driven. . . . .
“The concept ofl-separatioris useful to read independence pends ona; and 7. If Z, is an insertion (l'e'

relations encoded by the graph (Lauritzen, 1996). Z{S) = ¢ the source symbol in the first frame is
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not output), theru, retains the same value as; frascio. (R Fraiet (0 frdie 2 L6
otherwiseus is incremented by to point to the next et
symbol in the source string.

Theend RV is an indicator of when we are past
the end of both source and target strings-(m and
b > n). end is also aswitching parenpf Z; when )
end = 0, the CPT ofZ is the same as described
above: a distribution over edit operations. When
end =1, Z takes, with probability 1, a fixed value
outside the range of edit operations but consistent Figure 2:Context-dependent model.
with s and¢. This ensures 1) no “null” statéd ¢))
is required to fill in the value ofZ until the end indirect dependence on whether there was an inser-

of the graph is reached; our likelihoods and modeion in the previous step because ; = s; might be
parameters therefore do not become dependent gfrelated with the everﬂ(f)l e
the amount of “null” padding; and 2) no probability 3 3 Memory Model !
mass is taken from the other statesZodis is the case Memory models are another easy extension of the
with the special termination symbol # in the originaly5sic model as fig. 3 shows. Depending on whether
RY model. We found empirically that the use of i variableH;_; linking Z;_; to Z; is stochastic
ther a null or an end state hurts performance {0 & geterministic, there are several models that can
small but significant degree. be implemented:; for example, a latent factor mem-
In the last frame, two new nodes make their apory model when# is stochastic. The cardinality of
pearance.send andtend ensure we arat or past g determines how much the information from one
the end of the two strings (the Ryvhid only checks  frame to the other is “summarized.” With a deter-
that we are past the end). That is wvdgnd depends  mjnjstic implementation, we can, for example, spec-
onbotha andZ. If a >m, send (observedto be 1)is ify the usualP(Z;|Z;_1) memory model whett is
1 with probability1. If a <m, thenP(send=1)=0 3 simple copy ofZ or haveZ; depend on the type of

and the whole Sequen@( has zero probablllty If edit Operation in the previous frame.
a =m, thensend only gets probability greater than

zero if Z is not an insertion. This ensures the last
source symbol is indeed consumed.

Note that we can obtain the equivalent of the to-
tal edit distance cost by usingterbi inferenceand
adding acost; variable as a deterministic child of the
random variableZ; : in each frame the cost is equal
to cost;—1 plus0 when Z; is an identity, or plusl
otherwise.

framne 0 (P) frame 1 {(C) frane 2 (E)

3.2 Context-dependent Model

Adding context dependence in the DBN frameworlgigyre 3: Memory model. Depending on the type of
is quite natural. In fig. 2, we add edges from dependency betweef; and H;, the model can be

sprev;, andsnext; 10 Z;. Thesc node is no longer |atent variable based or it can implement a deter-
required because we can enforce the consistengynistic dependency on a function 6f

constraint viathe CPT of given its parentssnext; )

is an RV whose value is set to the symbol atéhe1 ~ 3-4  Direct Model

position of the string, i.esnext;=s,,+1. Likewise, The direct modelin fig. 4 is patterned on the clas-
sprev; = sq,—1. The Bahl model (1975) uses a desic HMM, where the unrolled length of graph is the
pendency or; only. Note thats; _; is not necessar- same as the length of the sequence of observations.
ily equal tos,,—1. Conditioning ons;_; induces an The key feature of this model is that we are required
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to consume a target symbol per frame. To achiey frame 0 frame 2 (E)
that, we introduce two RVsins, with cardinality inclen neisn inclen
2, anddel, with cardinality at mostn. The depen- = a2
dency ofdel onins is to ensure the two events nevetrinilen
happen concomitantly. At each frame,is incre- e
mented either by the value @kl in the case of a

(possibly block) deletion or by zero or one depend *
ing on whether there was an insertion in the previous¢
frame. An insertion also forcesto take value:. z

frame 0 (P) | frame 1 (C} frame 2 (E)

send

tc

t tend

b.

Figure 5:Length unrolling model.

surface formt7, we need to find the set of words
W s.t. W = argmaz,, P(w|t}). There are several
ways we could model the probabilify(w|t}). One
Figure 4:Direct model. way is to assume a generative model whereby a word

: : : n rf ronunciati re rel via an
In essence the direct model is not very differ” & d a surface pronunciatiaf} are related via a

ent from the context-dependent model in that her'épdirly'tr.]g canomca;lhp;onur:c!atlosgn ?[f v a;nd at'
too we learn the conditional probabilitie3(t;|s;) stochaslic process that explains the transtormation

(which are implicit in the CD model). from s7" to 7. This is summa_rlzed in equgtlpn 3.
C(w) denotes the set of canonical pronunciations of
3.5 Length Model w
While th_is model (fig. 5) is more complex than W= argmaxZP(w|sT)P(s’1”,t’f) 3)
the previous ones, much of the network structure
is “control logic” necessary to simulate variable
length-unrolling of the graph template. The key ide
is that we have a new stochastic hidden R¥len,
whose value added to that of the RWilen deter-
mines the number of edit operations we are allowed

A counter variablecounter is used to keep track . .
. It is straightforward to create a DBN to model the
of the frame number and when the required num-

ber is reached, the R¥tReqLen is triggered. If at joint probabil'ityP(w, ST t.’f).by adding a word RV
that point we have just reached the end of one of th nd a cgnonlcaldprlonunmatlon RV on top of any of
strings while the end of the other one is reached i€ previous models. _ e

this frame or a previous one, then the variabiel There are other pronunciation classification ap-

is explained(it has positive probability). Otherwise, proaches with various emphases. For example,

the entire sequence of edit operations up to that poiﬁentzepotporljlos and Kokkinakis Elii& use 'j[”\l/ll'(\/lls
has zero probability. 0 convert phoneme sequences to their most likely

o o orthographic forms in the absence of a lexicon.
4 Pronunciation Classification 41 Data
In pronunciation classification we are giverlexi- We use Switchboard data (Godfrey et al., 1992) that
con, which consists of words and their correspondhas been hand annotated in the context of the Speech
ing canonical pronunciationsWe are also provided Transcription Project (STP) described in (Green-
with surface pronunciationsind asked to find the berg et al.,, 1996). Switchboard consists of spon-
most likely corresponding words. Formally, for eachtaneous informal conversations recorded over the

v s eC(w)
If we assume uniform probabilitied®(w|s]")
?5’1” €C(w)) and use the max approximation in place
of the sum in eq. 3 our classification rule becomes
W = {w|SNC(w) £0, S=argmaxP (s, 1)} (4)

51
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phone. Because of the informal non-scripted natutance. We use uniform priors and the simple classi-
of the speech and the variety of speakers, the cdieation rule in eq. 4. We feel it is more compelling
pus presents much variety in word pronunciationghat we are able to significantly improve upon stan-
which can significantly deviate from the prototypicaldard edit distance and the MCI model without using
pronunciations found in a lexicon. Another sourceany lexicon or word model.

of pronunCiation Varlablllty is the noise intrOdUCEdMemory Models Performance improves with the
during the annotation of speech segments. Evefydition of a direct dependence &f on Z;_,. The

when the phone labels are mOStly accurate, the St%ibgest improvement (2765% ER) however comes

and end time information is not as precise and it afq conditioning OnZ-(i)l, the target symbol that

7

fects how boundary phones get aligned to the word yhthesized in the previous step. There was no

sequence. As a reference pronunciation dictionagyin ywhen conditioning on the type of edit operation
we use a lexicon of the 2002 Switchboard speegh ihe previous frame.

recognition evaluation. The lexicon contains 4000%ontext Models Interestingly, the exact opposite
entries, but we report results on a reduced dicti(}— ’

nary’ with 5000 entries corresponding to only those o the memory models is happening here when

words that appear in our train and test sets. Rist e condition on the source context (versus condi-

L . ; oning on the target context). Conditioning en
and Yianilos use a few additional lexicons, some 0 .
. . . gets us to 21.70%. With;, s;_1 we can further re-
which are corpus-derived. We did reproduce thei
) : duce the error rate to 20.26%. However, when we
results on the different types of lexicons. .
add a third dependency, the error rate worsens to

For testing we randomly divided STP data Into29.32%, which indicates a number of parameters too

9495 training words (corresponding to 9545 pronu high for the given amount of training data. Backoff,

ciations) and 912 test words (901 pronunciations nterpolation, or state clustering might all be appro-
For the Levenshtein and MCI results only, we per- P ’ gmig PP

formed ten-fold cross validation to verify we did notp”a? strategies here. _ .
pick a non-representative test set. Our models afPsition Models Because in the previous mod-
implemented using GMTK, a general-purpose DB,@_IS, wh_en conditioning on thg past, bound_ary cor_1d|-
tool originally created to explore different speections dictate that we use a different CPT in the first
recognition models (Bilmes and Zweig, 2002). Adrame, itis fair to wonder whether part of the gain
a sanity check, we also implemented the MCI modé} Witness is due to the implicit dependence on the
in C following RY’s algorithm. source-target strlln_g posmon_. The (small) improve-
The error rate is computed by calculating, for eac€nt due to conditioning afy indicates there is such
pronunciation form, the fraction of words that aref€Pendence. Also, the fact that the target position is
correctly hypothesized and averaging over the te810r® informative than the source one is likely due to

set. For example if the classifier returns five wordd1® Misalignments we observed in the phonetically
for a given pronunciation, and two of the words ardranscribed corpus, whereby the first or last phones
correct. the error rate is 3/5*100%. would incorrectly be aligned with the previous or

Three EM iterations are used for training. Addi-€xt word resp. l.e., the model might be learning
tional iterations overtrained our models. to not put much_ faith in the st_art and end pqsmons
42 Results pf the_ target strlr_1_g_, and thus it boo_s_ts deletion and

' insertion probabilities at those positions. We have
Table 1 summarizes our results using DBN basegiso conditioned on coarser-grained positions (be-
models. The basic MCI model does marginally betginning, middle, and end of string) but obtained the

ter than the Levenshtein edit distance. This is corsame results as with the fine-grained dependency.
sistent with the finding in RY: their gains come from

the joint Iearnlng_ c_;f the probabilitie& (w|sy") and extent when it is added to the MCIl and MCD mod-

P(s{",t7). Specifically, the word model accounts . . - )

for much of their gains over the Levenshtein dis—els' Belying the assumption motivating this model,
g we found that the distribution over the R¥iclen

®Equivalent to théE2 lexicon in RY. (which controls how much the edit sequence extends

Length Models Modeling length helps to a small
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beyond the length of the source string) is skewed tdhat two very different strings might still get a higher
wards small values aficlen. This indicates on that likelihood than more similar pair because, given
insertions are rare when the source string is longandt s.t. s # t, the probability of identity is obvi-
than the target one and vice-versa for deletions. ously zero and that of insertion or deletion can be

Direct Model The low error rate obtained by this quite high; and wher = ¢, the probability of in-
model reflects its similarity to the context-dependerertion (or deletion) is still positive. We observe the
model. From the two sets of results, it is clear tha$@me non-discriminative behavior when we replace,
source string context plays a crucial role in predictin the MCI model,Z; with a hidden RV.X;, where

ing canonical pronunciations from corpus ones. W& takes as values one of the four edit operations.
would expect additional gains from modeling con-

text dependencies across time here as well. 5 Computational Considerations
le’ec\'le' Zi Degg:‘]ge“des % ggge The computational complexity of inference in a
. ' graphical model is related to the state space of the
[ Baseline | none [ 3555 ] . ) )
7 3005 largest cliqgue (maximal complete subgraph) in the
editOperationType{;,_1) 36.16 graph. In general, finding the smallest such clique is
Memory StOChaﬁ;g'”afWH 23-2; NP-complete (Arnborg et al., 1987).
7 27 65 In the case of the MCI model, however, it is not
i—1 . . .
S, 51.70 difficult to show that the smallest such clique con-
T 32.06 tains all the RVs within a frame and the complex-
Context S 51 2920 ity of doing inference is orde® (mn - maz(m, n)).
si,szill,;iﬁl 5937 The reason there is a complexity gap is that the
8, Sa;+1 (54,1 in last frame) 23.14 source and target position variables are indexed by
Sis Sag—1 (s, +1 st fame) 23;(5) the frame number and we do not exploit the fact
a; . . .
Position b; 31.06 that. even though we arrive at a given source-target
a:, b; 34.17 position pair along different edit sequence paths at
Mixed ?i;si 2222 different frames, the position pair is really the same
2 1,8i 24.26 regardless of its frame index. We are investigating
Length ”g_“e gg-gg generic ways of exploiting this constraint.
[ Direct | none [ 2370 | In practice, however, state space pruning can sig-

nificantly reduce the running time of DBN infer-
Table 1:DBN based model results summary.  gnce. Ukkonen (1985) reduces the complexity of the

When we combine the best position-dependerfiassic edit distance 0(d-maz(m,n)), whered is
or memory models with the context-dependent onéljle edit distance. The intuition there is that, assum-
the error rate decreases (from 31.31% to 25.25%9 a small edit distance, the most likely alignments
when conditioning orb; and s;; and from 28.28% are such that the source position does not diverge too
to 25.75% when conditioning Of‘f_)l ands;) but not much from the target position. The same intuition.
to the extent conditioning os} alone decreases errorholds in our case: if the source and the target posi-
rate. Not shown in table 1, we also tried several othd{on do not get too far out of sync, then at each step,
models, which although they are able to produc@nly & small fraction of then - n possible source-
reasonable alignments (in the sense that the Levdigrget position configurations need be considered.
shtein distance would result in similar alignments) The direct model, for example, is quite fast in
between two given strings, they have extremely pogractice because we can restrict the cardinality of the
discriminative ability and result in error rates higherdel RV to a constant (i.e. we disallow long-span
than 90%. One such example is a model in whicleletions, which for certain applications is a reason-
Z; depends on botk; andt;. It is easy to see where able restriction) and make inference lineaniwith
the problem lies with this model once one considera running time constant proportional ¢é.
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6 Conclusion S. Greenberg, J. Hollenback, and D. Ellis. 1996. Insights

We have shown how the problem of learning edit Nt spoken language gleaned from phonetic transcrip-
distance costs from datap can be modeledg uite tion of the switchboard corpus. I€SLF, pages S24-
: ! _ quite 57,

naturally using Dynamic Bayesian Networks even . _ o
though the problem lacks the temporal or order corl> NﬁrKletmd L0, Lomputing the 3?r'1t'd'3tfagt‘;le£r?r§""ele“
straints that other problems such as speech recog-léurgg:anosyﬁqgosifrii'mbgf 5261 gpsages 91_10123
nition exhibit. This gives us confidence that other _ _ ’ _
important problems such as machine translation cahl- Laugltf)?n. t_1996.Graph|cal Models Oxford Sci-
benefit from a Graphical Models perspective. Ma- ence Fublications.
chine translation presents a fresh set of challenges Leusch, N. Ueffing, and H. Ney. 2003. A novel
because of the large combinatorial space of possible5”'“%,"[0'?”'”9I dt'_Stance lmet‘fisureMW'tn_app#ca“(?”s to

- - machine translation evaluation. Machine Transla-
alignments between the sogrce strlng and the target.tion Summit I pages 240247,

There are several extensions to this work that we . .
intend to implement or have already obtained pre¥. Levenshtein. 1966. Binary codes capable of cor-
liminary results on. One is simple and block trans- recting deletions, insertions and reversgiav. Phys.

. L . - Dokl,, 10:707-710.
position. Another natural extension is modeling edit
distance of multiple strings. R. Lowrance and R. A. Wagner. 1975. An extension

: . _ to the string-to-string correction problemJ. ACM
It is also evident from the large number of depen 22(2):177-183.

dency structures that were explored that our learn- . o .

ing algorithm would benefit from a structure learnM. Mohri. 20|02- Ed't-d'Stimce of weighted automata.

ing procedure. Maximum likelihood optimization 1 CAA volume 2608 oLecture Notes in Computer
; . . \ Sciencepages 1-23. Springer.

might, however, not be appropriate in this case, as

exemplified by the failure of some models to disK. MU;P?V- 2|O(]22.Dynam|cé BLayeS.lag)rl]\lgtV\;ﬁrksi le%pcre-
., : o . sentation, Inference and Learningh.D. thesis, U.C.

criminate between different pronunciations. Dis- g o0 "Dept of EECS, CS Division,

criminative methods have been used with significant

success in training HMMs. Edit distance Iearning?-BMyers, R.C. hWingj" and l=EE|'EF|{E' THancock.P 2000.
- . ayesian graph edit distanc rans. on Pattern
could benefit from similar methods. Analysis and Machine Intelligenc22:628—635.
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