
Proceedings of the 43rd Annual Meeting of the ACL, pages 314–321,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

What to do when lexicalization fails: parsing German with suffix analysis
and smoothing

Amit Dubey
University of Edinburgh
Amit.Dubey@ed.ac.uk

Abstract

In this paper, we present an unlexical-
ized parser for German which employs
smoothing and suffix analysis to achieve
a labelled bracket F-score of 76.2, higher
than previously reported results on the
NEGRA corpus. In addition to the high
accuracy of the model, the use of smooth-
ing in an unlexicalized parser allows us
to better examine the interplay between
smoothing and parsing results.

1 Introduction

Recent research on German statistical parsing has
shown that lexicalization adds little to parsing per-
formance in German (Dubey and Keller, 2003; Beil
et al., 1999). A likely cause is the relative produc-
tivity of German morphology compared to that of
English: German has a higher type/token ratio for
words, making sparse data problems more severe.
There are at least two solutions to this problem: first,
to use better models of morphology or, second, to
make unlexicalized parsing more accurate.

We investigate both approaches in this paper. In
particular, we develop a parser for German which at-
tains the highest performance known to us by mak-
ing use of smoothing and a highly-tuned suffix ana-
lyzer for guessing part-of-speech (POS) tags from
the input text. Rather than relying on smoothing
and suffix analysis alone, we also utilize treebank
transformations (Johnson, 1998; Klein and Man-
ning, 2003) instead of a grammar induced directly
from a treebank.

The organization of the paper is as follows: Sec-
tion 2 summarizes some important aspects of our

treebank corpus. In Section 3 we outline several
techniques for improving the performance of unlex-
icalized parsing without using smoothing, including
treebank transformations, and the use of suffix anal-
ysis. We show that suffix analysis is not helpful
on the treebank grammar, but it does increase per-
formance if used in combination with the treebank
transformations we present. Section 4 describes how
smoothing can be incorporated into an unlexicalized
grammar to achieve state-of-the-art results in Ger-
man. Rather using one smoothing algorithm, we use
three different approaches, allowing us to compare
the relative performance of each. An error analy-
sis is presented in Section 5, which points to several
possible areas of future research. We follow the er-
ror analysis with a comparison with related work in
Section 6. Finally we offer concluding remarks in
Section 7.

2 Data

The parsing models we present are trained and tested
on the NEGRA corpus (Skut et al., 1997), a hand-
parsed corpus of German newspaper text containing
approximately 20,000 sentences. It is available in
several formats, and in this paper, we use the Penn
Treebank (Marcus et al., 1993) format of NEGRA.

The annotation used in NEGRA is similar to that
used in the English Penn Treebank, with some dif-
ferences which make it easier to annotate German
syntax. German’s flexible word order would have
required an explosion in long-distance dependencies
(LDDs) had annotation of NEGRA more closely
resembled that of the Penn Treebank. The NE-
GRA designers therefore chose to use relatively flat
trees, encoding elements of flexible word order us-

314



ing grammatical functions (GFs) rather than LDDs
wherever possible.

To illustrate flexible word order, consider the sen-
tences Der Mann sieht den Jungen (‘The man sees
the boy’) and Den Jungen sieht der Mann. Despite
the fact the subject and object are swapped in the
second sentence, the meaning of both are essentially
the same.1 The two possible word orders are dis-
ambiguated by the use of the nominative case for
the subject (marked by the article der) and the ac-
cusative case for the object (marked by den) rather
than their position in the sentence.

Whenever the subject appears after the verb, the
non-standard position may be annotated using a
long-distance dependency (LDD). However, as men-
tioned above, this information can also be retrieved
from the grammatical function of the respective
noun phrases: the GFs of the two NPs above would
be ‘subject’ and ‘accusative object’ regardless of
their position in the sentence. These labels may
therefore be used to recover the underlying depen-
dencies without having to resort to LDDs. This is
the approach used in NEGRA. It does have limita-
tions: it is only possible to use GF labels instead of
LDDs when all the nodes of interest are dominated
by the same parent. To maximize cases where all
necessary nodes are dominated by the same parent,
NEGRA uses flat ‘dependency-style’ rules. For ex-
ample, there is no VP node when there is no overt
auxiliary verb. category. Under the NEGRA anno-
tation scheme, the first sentence above would have
a rule S � NP-SB VVFIN NP-OA and the second,
S � NP-OA VVFIN NP-SB, where SB denotes sub-
ject and OA denotes accusative object.

3 Parsing with Grammatical Functions

3.1 Model

As explained above, this paper focuses on unlexi-
calized grammars. In particular, we make use of
probabilistic context-free grammars (PCFGs; Booth
(1969)) for our experiments. A PCFG assigns each
context-free rule LHS � RHS a conditional prob-
ability Pr

�
RHS �LHS � . If a parser were to be given

POS tags as input, this would be the only distribution

1Pragmatically speaking, the second sentence has a slightly
different meaning. A better translation might be: ‘It is the boy
the man sees.’

required. However, in this paper we are concerned
with the more realistic problem of accepting text as
input. Therefore, the parser also needs a probabil-
ity distribution Pw

�
w �LHS � to generate words. The

probability of a tree is calculated by multiplying the
probabilities all the rules and words generated in the
derivation of the tree.

The rules are simply read out from the treebank,
and the probabilities are estimated from the fre-
quency of rules in the treebank. More formally:

Pr
�
RHS �LHS ��� c

�
LHS � RHS �

c
�
LHS � (1)

The probabilities of words given tags are simi-
larly estimated from the frequency of word-tag co-
occurrences:

Pw
�
w �LHS ��� c

�
LHS � w �

c
�
LHS � (2)

To handle unseen or infrequent words, all words
whose frequency falls below a threshold Ω are
grouped together in an ‘unknown word’ token,
which is then treated like an additional word. For
our experiments, we use Ω � 10.

We consider several variations of this simple
model by changing both Pr and Pw. In addition to
the standard formulation in Equation (1), we con-
sider two alternative variants of Pr. The first is a
Markov context-free rule (Magerman, 1995; Char-
niak, 2000). A rule may be turned into a Markov
rule by first binarizing it, then making independence
assumptions on the new binarized rules. Binarizing
the rule A � B1 �	�	� Bn results in a number of smaller
rules A � B1AB1 , AB1

� B2AB1B2 , �	�	� , AB1 
 
 
 Bn � 1 �
Bn. Binarization does not change the probability of
the rule:

P
�
B1 �	�	� Bn �A �

�
i � 1

∏
n

P
� � Bi �A � B1 � �	�	� � Bi 
 1 �

Making the 2nd order Markov assumption ‘forgets’
everything earlier then 2 previous sisters. A rule
would now be in the form ABi � 2Bi � 1 � BiABi � 1Bi , and
the probability would be:

P
�
B1 �	�	� Bn �A �

� i � 1

∏
n

P
�
Bi �A � Bi 
 2 � Bi 
 1 �

315



The other rule type we consider are linear prece-
dence/immediate dominance (LP/ID) rules (Gazdar
et al., 1985). If a context-free rule can be thought
of as a LHS token with an ordered list of tokens on
the RHS, then an LP/ID rule can be thought of as
a LHS token with a multiset of tokens on the RHS
together with some constraints on the possible or-
ders of tokens on the RHS. Uszkoreit (1987) argues
that LP/ID rules with violatable ‘soft’ constraints
are suitable for modelling some aspects of German
word order. This makes a probabilistic formulation
of LP/ID rules ideal: probabilities act as soft con-
straints.

Our treatment of probabilistic LP/ID rules gener-
ate children one constituent at a time, conditioning
upon the parent and a multiset of previously gener-
ated children. Formally, the the probability of the
rule is approximated as:

P
�
B1 �	�	� Bn �A �

� i � 1

∏
n

P
�
Bi �A ��� B j � j � i � �

In addition to the two additional formulations of
the Pr distribution, we also consider one variant of
the Pw distribution, which includes the suffix anal-
ysis. It is important to clarify that we only change
the handling of uncommon and unknown words;
those which occur often are handled as normal. sug-
gested different choices for Pw in the face of un-
known words: Schiehlen (2004) suggests using a
different unknown word token for capitalized ver-
sus uncapitalized unknown words (German orthog-
raphy dictates that all common nouns are capital-
ized) and Levy and Manning (2004) consider in-
specting the last letter the unknown word to guess
the part-of-speech (POS) tags. Both of these models
are relatively impoverished when compared to the
approaches of handling unknown words which have
been proposed in the POS tagging literature. Brants
(2000) describes a POS tagger with a highly tuned
suffix analyzer which considers both capitalization
and suffixes as long as 10 letters long. This tagger
was developed with German in mind, but neither it
nor any other advanced POS tagger morphology an-
alyzer has ever been tested with a full parser. There-
fore, we take the novel step of integrating this suffix
analyzer into the parser for the second Pw distribu-

tion.

3.2 Treebank Re-annotation

Automatic treebank transformations are an impor-
tant step in developing an accurate unlexicalized
parser (Johnson, 1998; Klein and Manning, 2003).
Most of our transformations focus upon one part of
the NEGRA treebank in particular: the GF labels.
Below is a list of GF re-annotations we utilise:

Coord GF In NEGRA, a co-ordinated accusative
NP rule might look like NP-OA � NP-CJ KON NP-
CJ. KON is the POS tag for a conjunct, and CJ
denotes the function of the NP is a coordinate sis-
ter. Such a rule hides an important fact: the two
co-ordinate sisters are also accusative objects. The
Coord GF re-annotation would therefore replace the
above rule with NP-OA � NP-OA KON NP-OA.

NP case German articles and pronouns are
strongly marked for case. However, the grammati-
cal function of all articles is usually NK, meaning
noun kernel. To allow case markings in articles and
pronouns to ‘communicate’ with the case labels on
the GFs of NPs, we copy these GFs down into the
POS tags of articles and pronouns. For example,
a rule like NP-OA � ART-NK NN-NK would be
replaced by NP-OA � ART-OA NN-NK. A simi-
lar improvement has been independently noted by
Schiehlen (2004).

PP case Prepositions determine the case of the NP
they govern. While the case is often unambiguous
(i.e. für ‘for’ always takes an accusative NP), at
times the case may be ambiguous. For instance,
in ‘in’ may take either an accusative or dative NP.
We use the labels -OA, -OD, etc. for unambiguous
prepositions, and introduce new categories AD (ac-
cusative/dative ambiguous) and DG (dative/genitive
ambiguous) for the ambiguous categories. For ex-
ample, a rule such as PP � P ART-NK NN-NK is
replaced with PP � P-AD ART-AD NN-NK if it is
headed by the preposition in.

SBAR marking German subordinate clauses have
a different word order than main clauses. While sub-
ordinate clauses can usually be distinguished from
main clauses by their GF, there are some GFs which
are used in both cases. This transformation adds
an SBAR category to explicitly disambiguate these

316



No suffix With suffix
F-score F-score

Normal rules 66.3 66.2
LP/ID rules 66.5 66.6
Markov rules 69.4 69.1

Table 1: Effect of rule type and suffix analysis.

cases. The transformation does not add any extra
nonterminals, rather it replaces rules such as S �
KOUS NP V NP (where KOUS is a complementizer
POS tag) with SBAR � KOUS NP V NP.

S GF One may argue that, as far as syntactic dis-
ambiguation is concerned, GFs on S categories pri-
marily serve to distinguish main clauses from sub-
ordinate clauses. As we have explicitly done this
in the previous transformation, it stands to reason
that the GF tags on S nodes may therefore be re-
moved without penalty. If the tags are necessary for
semantic interpretation, presumably they could be
re-inserted using a strategy such as that of Blaheta
and Charniak (2000) The last transformation there-
fore removes the GF of S nodes.

3.3 Method

To allow comparisons with earlier work on NEGRA
parsing, we use the same split of training, develop-
ment and testing data as used in Dubey and Keller
(2003). The first 18,602 sentences are used as train-
ing data, the following 1,000 form the development
set, and the last 1,000 are used as the test set. We re-
move long-distance dependencies from all sets, and
only consider sentences of length 40 or less for ef-
ficiency and memory concerns. The parser is given
untagged words as input to simulate a realistic pars-
ing task. A probabilistic CYK parsing algorithm is
used to compute the Viterbi parse.

We perform two sets of experiments. In the
first set, we vary the rule type, and in the second,
we report the additive results of the treebank re-
annotations described in Section 3.2. The three rule
types used in the first set of experiments are stan-
dard CFG rules, our version of LP/ID rules, and 2nd

order Markov CFG rules. The second battery of ex-
periments was performed on the model with Markov
rules.

In both cases, we report PARSEVAL labeled

No suffix With suffix
F-score F-score

GF Baseline 69.4 69.1
+Coord GF 70.2 71.5
+NP case 71.1 72.4
+PP case 71.0 72.7
+SBAR 70.9 72.6
+S GF 71.3 73.1

Table 2: Effect of re-annotation and suffix analysis
with Markov rules.

bracket scores (Magerman, 1995), with the brackets
labeled by syntactic categories but not grammatical
functions. Rather than reporting precision and recall
of labelled brackets, we report only the F-score, i.e.
the harmonic mean of precision and recall.

3.4 Results

Table 1 shows the effect of rule type choice, and Ta-
ble 2 lists the effect of the GF re-annotations. From
Table 1, we see that Markov rules achieve the best
performance, ahead of both standard rules as well as
our formulation of probabilistic LP/ID rules.

In the first group of experiments, suffix analysis
marginally lowers performance. However, a differ-
ent pattern emerges in the second set of experiments.
Suffix analysis consistently does better than the sim-
pler word generation probability model.

Looking at the treebank transformations with suf-
fix analysis enabled, we find the coordination re-
annotation provides the greatest benefit, boosting
performance by 2.4 to 71.5. The NP and PP case
re-annotations together raise performance by 1.2 to
72.7. While the SBAR annotation slightly lowers
performance, removing the GF labels from S nodes
increased performance to 73.1.

3.5 Discussion

There are two primary results: first, although LP/ID
rules have been suggested as suitable for German’s
flexible word order, it appears that Markov rules ac-
tually perform better. Second, adding suffix analysis
provides a clear benefit, but only after the inclusion
of the Coord GF transformation.

While the SBAR transformation slightly reduces
performance, recall that we argued the S GF trans-
formation only made sense if the SBAR transforma-

317



tion is already in place. To test if this was indeed the
case, we re-ran the final experiment, but excluded
the SBAR transformation. We did indeed find that
applying S GF without the SBAR transformation re-
duced performance.

4 Smoothing & Search

With the exception of DOP models (Bod, 1995), it is
uncommon to smooth unlexicalized grammars. This
is in part for the sake of simplicity: unlexicalized
grammars are interesting because they are simple
to estimate and parse, and adding smoothing makes
both estimation and parsing nearly as complex as
with fully lexicalized models. However, because
lexicalization adds little to the performance of Ger-
man parsing models, it is therefore interesting to in-
vestigate the impact of smoothing on unlexicalized
parsing models for German.

Parsing an unsmoothed unlexicalized grammar is
relatively efficient because the grammar constraints
the search space. As a smoothed grammar does not
have a constrained search space, it is necessary to
find other means to make parsing faster. Although
it is possible to efficiently compute the Viterbi parse
(Klein and Manning, 2002) using a smoothed gram-
mar, the most common approach to increase parsing
speed is to use some form of beam search (cf. Good-
man (1998)), a strategy we follow here.

4.1 Models

We experiment with three different smoothing mod-
els: the modified Witten-Bell algorithm employed
by Collins (1999), the modified Kneser-Ney algo-
rithm of Chen and Goodman (1998) the smooth-
ing algorithm used in the POS tagger of Brants
(2000). All are variants of linear interpolation, and
are used with 2nd order Markovization. Under this
regime, the probability of adding the ith child to
A � B1 �	�	� Bn is estimated as

P
�
Bi �A � Bi 
 1 � Bi 
 2 �

� λ1P
�
Bi �A � Bi 
 1 � Bi 
 2 ���

λ2P
�
Bi �A � Bi 
 1 ��� λ3P

�
Bi �A ��� λ4P

�
Bi �

The models differ in how the λ’s are estimated. For
both the Witten-Bell and Kneser-Ney algorithms,
the λ’s are a function of the context A � Bi 
 2 � Bi 
 1. By
contrast, in Brants’ algorithm the λ’s are constant

λ1 � λ2 � λ3 � 0
for each trigram x1 � x2 � x3 with c � x1 � x2 � x3 ��� 0

d3 �
	

c 
 xi � xi � 1 � xi � 2 � 
 1
c 
 xi � 1 � xi � 2 � 
 1 if c

�
xi 
 1 � xi 
 2 ��
 1

0 if c
�
xi 
 1 � xi 
 2 � � 1

d2 �
	

c 
 xi � xi � 1 � 
 1
c 
 xi � 1 � 
 1 if c

�
xi 
 1 ��
 1

0 if c
�
xi 
 1 � � 1

d1 � c 
 xi � 
 1
N 
 1

if d3 � max d1 � d2 � d3 then
λ3 � λ3 � c

�
xi � xi 
 1 � xi 
 2 �

elseif d2 � max d1 � d2 � d3 then
λ2 � λ2 � c

�
xi � xi 
 1 � xi 
 2 �

else
λ1 � λ1 � c

�
xi � xi 
 1 � xi 
 2 �

end
λ1 � λ1

λ1 � λ2 � λ � 3

λ2 � λ2
λ1 � λ2 � λ � 3

λ3 � λ3
λ1 � λ2 � λ � 3

Figure 1: Smoothing estimation based on the Brants
(2000) approach for POS tagging.

for all possible contexts. As both the Witten-Bell
and Kneser-Ney variants are fairly well known, we
do not describe them further. However, as Brants’
approach (to our knowledge) has not been used else-
where, and because it needs to be modified for our
purposes, we show the version of the algorithm we
use in Figure 1.

4.2 Method

The purpose of this is experiment is not only to im-
prove parsing results, but also to investigate the over-
all effect of smoothing on parse accuracy. Therefore,
we do not simply report results with the best model
from Section 3. Rather, we re-do each modification
in Section 3 with both search strategies (Viterbi and
beam) in the unsmoothed case, and with all three
smoothing algorithms with beam search. The beam
has a variable width, which means an arbitrary num-
ber of edges may be considered, as long as their
probability is within 4 � 10 
 3 of the best edge in a
given span.

4.3 Results

Table 3 summarizes the results. The best result in
each column is italicized, and the overall best result

318



No Smoothing No Smoothing Brants Kneser-Ney Witten-Bell
Viterbi Beam Beam Beam Beam

GF Baseline 69.1 70.3 72.3 72.6 72.3
+Coord GF 71.5 72.7 75.2 75.4 74.5
+NP case 72.4 73.3 76.0 76.1 75.6
+PP case 72.7 73.2 76.1 76.2 75.7
+SBAR 72.6 73.1 76.3 76.0 75.3
+S GF Removal 73.1 72.6 75.7 75.3 75.1

Table 3: Effect of various smoothing algorithms.

in shown in bold. The column titled Viterbi repro-
duces the second column of Table 2 whereas the col-
umn titled Beam shows the result of re-annotation
using beam search, but no smoothing. The best re-
sult with beam search is 73.3, slightly higher than
without beam search.

Among smoothing algorithms, the Brants ap-
proach yields the highest results, of 76.3, with the
modified Kneser-Ney algorithm close behind, at
76.2. The modified Witten-Bell algorithm achieved
an F-score of 75.7.

4.4 Discussion

Overall, the best-performing model, using Brants
smoothing, achieves a labelled bracketing F-score
of 76.2, higher than earlier results reported by Dubey
and Keller (2003) and Schiehlen (2004).

It is surprisingly that the Brants algorithm per-
forms favourably compared to the better-known
modified Kneser-Ney algorithm. This might be due
to the heritage of the two algorithms. Kneser-Ney
smoothing was designed for language modelling,
where there are tens of thousands or hundreds of
thousands of tokens having a Zipfian distribution.
With all transformations included, the nonterminals
of our grammar did have a Zipfian marginal distri-
bution, but there were only several hundred tokens.
The Brants algorithm was specifically designed for
distributions with fewer tokens.

Also surprising is the fact that each smoothing al-
gorithm reacted differently to the various treebank
transformations. It is obvious that the choice of
search and smoothing algorithm add bias to the final
result. However, our results indicate that the choice
of search and smoothing algorithm also add a degree
of variance as improvements are added to the parser.
This is worrying: at times in the literature, details

of search or smoothing are left out (e.g. Charniak
(2000)). Given the degree of variance due to search
and smoothing, it raises the question if it is in fact
possible to reproduce such results without the nec-
essary details.2

5 Error Analysis

While it is uncommon to offer an error analysis for
probabilistic parsing, Levy and Manning (2003) ar-
gue that a careful error classification can reveal pos-
sible improvements. Although we leave the imple-
mentation of any improvements to future research,
we do discuss several common errors. Because the
parser with Brants smoothing performed best, we
use that as the basis of our error analysis.

First, we found that POS tagging errors had a
strong effect on parsing results. This is surpris-
ing, given that the parser is able to assign POS tags
with a high degree of accuracy. POS tagging results
are comparable to the best stand-alone POS taggers,
achieving results of 97.1% on the test set, match-
ing the performance of the POS tagger described
by Brants (2000) When GF labels are included (e.g.
considering ART-SB instead of just ART), tagging
accuracy falls to 90.1%. To quantify the effect of
POS tagging errors, we re-parsed with correct POS
tags (rather than letting the parser guess the tags),
and found that labelled bracket F-scores increase
from 76.3 to 85.2. A manual inspection of 100 sen-
tences found that GF mislabelling can accounts for
at most two-thirds of the mistakes due to POS tags.
Over one third was due to genuine POS tagging er-
rors. The most common problem was verb mistag-
ging: they are either confused with adjectives (both

2As an anonymous reviewer pointed out, it is not always
straightforward to reproduce statistical parsing results even
when the implementation details are given (Bikel, 2004).

319



Model LB F-score
This paper 76.3
Dubey and Keller (2003) 74.1
Schiehlen (2004) 71.1

Table 4: Comparison with previous work.

take the common -en suffix), or the tense was incor-
rect. Mistagged verb are a serious problem: it entails
an entire clause is parsed incorrectly. Verb mistag-
ging is also a problem for other languages: Levy and
Manning (2003) describe a similar problem in Chi-
nese for noun/verb ambiguity. This problem might
be alleviated by using a more detailed model of mor-
phology than our suffix analyzer provides.

To investigate pure parsing errors, we manu-
ally examined 100 sentences which were incorrectly
parsed, but which nevertheless were assigned the
correct POS tags. Incorrect modifier attachment ac-
counted for for 39% of all parsing errors (of which
77% are due to PP attachment alone). Misparsed co-
ordination was the second most common problem,
accounting for 15% of all mistakes. Another class
of error appears to be due to Markovization. The
boundaries of VPs are sometimes incorrect, with the
parser attaching dependents directly to the S node
rather than the VP. In the most extreme cases, the
VP had no verb, with the main verb heading a sub-
ordinate clause.

6 Comparison with Previous Work

Table 4 lists the result of the best model presented
here against the earlier work on NEGRA parsing de-
scribed in Dubey and Keller (2003) and Schiehlen
(2004). Dubey and Keller use a variant of the lex-
icalized Collins (1999) model to achieve a labelled
bracketing F-score of 74.1%. Schiehlen presents a
number of unlexicalized models. The best model on
labelled bracketing achieves an F-score of 71.8%.

The work of Schiehlen is particularly interest-
ing as he also considers a number of transforma-
tions to improve the performance of an unlexicalized
parser. Unlike the work presented here, Schiehlen
does not attempt to perform any suffix or morpho-
logical analysis of the input text. However, he does
suggest a number of treebank transformations. One
such transformation is similar to one we prosed here,

the NP case transformation. His implementation is
different from ours: he annotates the case of pro-
nouns and common nouns, whereas we focus on ar-
ticles and pronouns (articles are pronouns are more
strongly marked for case than common nouns). The
remaining transformations we present are different
from those Schiehlen describes; it is possible that an
even better parser may result if all the transforma-
tions were combined.

Schiehlen also makes use of a morphological ana-
lyzer tool. While this includes more complete infor-
mation about German morphology, our suffix analy-
sis model allows us to integrate morphological am-
biguities into the parsing system by means of lexical
generation probabilities.

Levy and Manning (2004) also present work on
the NEGRA treebank, but are primarily interested
in long-distance dependencies, and therefore do not
report results on local dependencies, as we do here.

7 Conclusions

In this paper, we presented the best-performing
parser for German, as measured by labelled bracket
scores. The high performance was due to three fac-
tors: (i) treebank transformations (ii) an integrated
model of morphology in the form of a suffix ana-
lyzer and (iii) the use of smoothing in an unlexical-
ized grammar. Moreover, there are possible paths
for improvement: lexicalization could be added to
the model, as could some of the treebank transfor-
mations suggested by Schiehlen (2004). Indeed, the
suffix analyzer could well be of value in a lexicalized
model.

While we only presented results on the German
NEGRA corpus, there is reason to believe that the
techniques we presented here are also important to
other languages where lexicalization provides lit-
tle benefit: smoothing is a broadly-applicable tech-
nique, and if difficulties with lexicalization are due
to sparse lexical data, then suffix analysis provides
a useful way to get more information from lexical
elements which were unseen while training.

In addition to our primary results, we also pro-
vided a detailed error analysis which shows that
PP attachment and co-ordination are problematic
for our parser. Furthermore, while POS tagging is
highly accurate, the error analysis also shows it does

320



have surprisingly large effect on parsing errors. Be-
cause of the strong impact of POS tagging on pars-
ing results, we conjecture that increasing POS tag-
ging accuracy may be another fruitful area for future
parsing research.

References

Franz Beil, Glenn Carroll, Detlef Prescher, Stefan Rie-
zler, and Mats Rooth. 1999. Inside-Outside Estima-
tion of a Lexicalized PCFG for German. In Proceed-
ings of the 37th Annual Meeting of the Association for
Computational Linguistics, University of Maryland,
College Park.

Daniel M. Bikel. 2004. Intricacies of Collins’ Parsing
Model. Computational Linguistics, 30(4).

Don Blaheta and Eugene Charniak. 2000. Assigning
function tags to parsed text. In Proceedings of the 1st
Conference of the North American Chapter of the ACL
(NAACL), Seattle, Washington., pages 234–240.

Rens Bod. 1995. Enriching Linguistics with Statistics:
Performance Models of Natural Language. Ph.D. the-
sis, University of Amsterdam.

Taylor L. Booth. 1969. Probabilistic Representation of
Formal Languages. In Tenth Annual IEEE Symposium
on Switching and Automata Theory, pages 74–81.

Thorsten Brants. 2000. TnT: A statistical part-of-speech
tagger. In Proceedings of the 6th Conference on Ap-
plied Natural Language Processing, Seattle.

Eugene Charniak. 2000. A Maximum-Entropy-Inspired
Parser. In Proceedings of the 1st Conference of North
American Chapter of the Association for Computa-
tional Linguistics, pages 132–139, Seattle, WA.

Stanley F. Chen and Joshua Goodman. 1998. An empiri-
cal study of smoothing techniques for language model-
ing. Technical Report TR-10-98, Center for Research
in Computing Technology, Harvard University.

Michael Collins. 1999. Head-Driven Statistical Models
for Natural Language Parsing. Ph.D. thesis, Univer-
sity of Pennsylvania.

Amit Dubey and Frank Keller. 2003. Parsing German
with Sister-head Dependencies. In Proceedings of the
41st Annual Meeting of the Association for Computa-
tional Linguistics, pages 96–103, Sapporo, Japan.

Gerald Gazdar, Ewan Klein, Geoffrey Pullum, and Ivan
Sag. 1985. Generalized Phase Structure Grammar.
Basil Blackwell, Oxford, England.

Joshua Goodman. 1998. Parsing inside-out. Ph.D. the-
sis, Harvard University.

Mark Johnson. 1998. PCFG models of linguis-
tic tree representations. Computational Linguistics,
24(4):613–632.

Dan Klein and Christopher D. Manning. 2002. A* Pars-
ing: Fast Exact Viterbi Parse Selection. Technical Re-
port dbpubs/2002-16, Stanford University.

Dan Klein and Christopher D. Manning. 2003. Accu-
rate Unlexicalized Parsing. In Proceedings of the 41st
Annual Meeting of the Association for Computational
Linguistics, pages 423–430, Sapporo, Japan.

Roger Levy and Christopher D. Manning. 2003. Is it
Harder to Parse Chinese, or the Chinese Treebank? In
Proceedings of the 41st Annual Meeting of the Associ-
ation for Computational Linguistics.

Roger Levy and Christopher D. Manning. 2004. Deep
Dependencies from Context-Free Statistical Parsers:
Correcting the Surface Dependency Approximation.
In Proceedings of the 42nd Annual Meeting of the As-
sociation for Computational Linguistics.

David M. Magerman. 1995. Statistical Decision-Tree
Models for Parsing. In Proceedings of the 33rd Annual
Meeting of the Association for Computational Linguis-
tics, pages 276–283, Cambridge, MA.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Micheal Schiehlen. 2004. Annotation Strategies for
Probabilistic Parsing in German. In Proceedings of
the 20th International Conference on Computational
Linguistics.

Wojciech Skut, Brigitte Krenn, Thorsten Brants, and
Hans Uszkoreit. 1997. An annotation scheme for
free word order languages. In Proceedings of the 5th
Conference on Applied Natural Language Processing,
Washington, DC.

Hans Uszkoreit. 1987. Word Order and Constituent
Structure in German. CSLI Publications, Stanford,
CA.

321


