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Abstract (Mani et al., 1999) (Zajic et al., 2004), but we fo-
cus exclusively on the K&M formulation. Though
In Statistics-Based Summarization - Step  the problem is simpler, it is still pertinent to cur-
One: Sentence Compressjdfnight and rent needs; generation of captions for television and
Marcu (Knight and Marcu, 2000) (K&M) audio scanning services for the blind (Grefenstette,
present a noisy-channel model for sen-  1998), as well as compressing chosen sentences for
tence compression. The main difficulty headline generation (Angheluta et al., 2004) are ex-
in using this method is the lack of data; amples of uses for sentence compression. In addi-
Knight and Marcu use a corpus of 1035 tion to simplifying the task, K&M'’s noisy-channel
training sentences. More data is not easily ~ formulation is also appealing.
available, so in addition to improving the In the following sections, we discuss the K&M
original K&M noisy-channel model, we noisy-channel model. We then present our cleaned
create unsupervised and semi-supervised up, and slightly improved noisy-channel model. We
models of the task. Finally, we point out  also develop unsupervised and semi-supervised (our
problems with modeling the task in this  term for a combination of supervised and unsuper-
way. They suggest areas for future re-  vised) methods of sentence compression with inspi-
search. ration from the K&M model, and create additional
constraints to improve the compressions. We con-

. clude with the problems inherent in both models.
1 Introduction

Summarization in general, and sentence compres- The Noisy-Channel M odel

sion in particular, are popular topics. Knight and

Marcu (henceforth K&M) introduce the task of5 1 Thek&M Modd

statistical sentence compressionStatistics-Based

Summarization - Step One: Sentence Compressidihe K&M probabilistic model, adapted from ma-
(Knight and Marcu, 2000). The appeal of this prob€hine translation to this task, is the noisy-channel
lem is that it produces summarizations on a smaihodel. In machine translation, one imagines that a
scale. It simplifies general compression problemsitring was originally in English, but that someone
such as text-to-abstract conversion, by eliminatingdds some noise to make it a foreign string. Analo-
the need for coherency between sentences. Thgeusly, inthe sentence compression model, the short
model is further simplified by being constrainedstring is the original sentence and someone adds
to word deletion: no rearranging of words takesoise, resulting in the longer sentence. Using this
place. Others have performed the sentence comprésxmework, the end goal is, given a long sentence
sion task using syntactic approaches to this probleimto determine the short sentene¢hat maximizes
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P(s|1). By Bayes Rule, Any compression given a zero expansion probability
according to the training data is instead assigned a
P(l]s)P(s) (1) very small probability. A tree extractor (Langkilde,
P(l) 2000) collects the short sentences with the highest
score forP(s | 1).

Ps|l) =

The probability of the long sentencB(!) can be ig-
nored when finding the maximum, because the long2  Our Noisy-Channel Model

sentence s the same in every case. Our starting implementation is intended to follow

, P(s) 'S t'he source model: the probablllty that the K&M model fairly closely. We use the same
is the original sentence.P(l | s) is the channel . : :

- . 1067 pairs of sentences from the Ziff-Davis cor-

model: the probability the long sentence is the ex- . : .

: : _pus, with 32 used as testing and the rest as train-

panded version of the short. This framework in-

o . ing. The main difference between their model and
dependently models the grammaticality ©f{with , . :
. . ours is that instead of using the rather ad-hoc K&M
P(s)) and whethers is a good compression df

(P(L]s)) language model, we substitute the syntax-based lan-
T guage model described in (Charniak, 2001).

The K&M model uses parse trees for the sen= . . .
. . We slightly modify the channel model equation to
tences. These allow it to better determine the proba- gnty fy d

bility of the short sentence and to obtain alignmentlssetﬁe(l |r§t))a:bi|1;ex%ﬁ°ngc(jld|in8)ﬁil:i;ziléxgesrﬁﬁzeet;dback
from the training data. In the K&M model, the P Y g

into s to getl. We determine this probability also

sentence probability is determined by combining %Sing the Charniak language model.

probabilistic context free grammar (PCFG) with a .
) " We require an extra parameter to encourage com-
word-bigram score. The joint rules used to create the

. o ression. We cr velopment cor f2 n-
compressions are generated by aligning the nodesIo fess ° e create a development corpus of 25 se

t8nces from the training data in order to adjust this
the short and long trees in the training data to deter- 9 )
. . . parameter. That we require a parameter to encourage
mine expansion probabilitied ! | )). compression is odd as K&M required a parameter to
Recall that the channel model tries to find the P d P

. . ) discourage compression, but we address this pointin
probability of the long string with respect to the 9t pres: P
short string. It obtains these probabilities by ali nEhe penultimate section.

9. P Y a9 Another difference is that we only generate short

ing nodes in the parsed parallel training corpus, and_ . .
. . - .. — versions for which we have rules. If we have never
counting the nodes that align as “joint events.” Fo

example, there might b8 — NP VP PPin the long before seen the long version, we leave it alone, and

. ) in the rare case when we never see the long version
sentence an® — NP VPin the short sentence; we : :
. - .~ as an expansion of itself, we allow only the short
count this as one joint event. Non-compressions, .
L Version. We do not use a packed tree structure, be-
where the long version is the same as the short, are "
. o cause we make far fewer sentences. Additionally,
also counted. The expansion probability, as used In . .
the channel model, is given by as we are traversing the list of rules to compress the
' sentences, we keep the list capped at the 100 com-
count(joint(l,s)) pressions with the highe#t.,,q..4(! | s). We even-
(@) tually truncate the list to the best 25, still based upon
Pexpand(l | S)-
wherecount(joint(l, s)) is the count of alignments ,
of the long rule and the short. Many compressioné€-3 SPecial Rules
do not align exactly. Sometimes the parses do n@ne difficulty in the use of training data is that so
match, and sometimes there are deletions that are to@mny compressions cannot be modeled by our sim-
complex to be modeled in this way. In these casgde method. The rules it does model, immediate
sentence pairs, or sections of them, are ignored. constituent deletion, as in taking out tA®VP , of
The K&M model creates a packed parse forest a8 — ADVP , NP VP . are certainly common, but
all possible compressions that are grammatical witthany good deletions are more structurally compli-

respect to the Penn Treebank (Marcus et al., 1993)ated. One particular type of rule, suchNiB(1) —

Peapana(l | 5) = count(s)
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NP(2) CC NP(3)where the parent has at least oneersions ofNP — DT NNare itself (with count of 3)
child with the same label as itself, and the resultingndNP — DT JJ NN (with count of 4), yielding a
compression is one of the matching children, suckum of 7.

as, hereNP(2) There are several hundred rules of Finally, P(NP— DT NN| NP — DT NN) = 4/7.
this type, and it is very simple to incorporate into ouThe count oNP — DT NN = 4, and since the short
model. (NP — DT NN) is the same as above, the count of

There are other structures that may be commahe possible long versions is again 7.
enough to merit adding, but we limit this experiment  In this way, we approximate, ,.,.nq(l | s) with-
to the original rules and our new “special rules.”  out parallel data.

Since some of these “training” pairs are likely
to be fairly poor compressions, due to the artifi-
One of the biggest problems with this model of senciality of the construction, we restrict generation of
tence compression is the lack of appropriate trairshort sentences to not allow deletion of the head
ing data. Typically, abstracts do not seem to corPf any subtree. None of the special rules are ap-
tain short sentences matching long ones elsewhepéed. Other than the above changes, the unsuper-
in a paper, and we would prefer a much larger conised model matches our supervised version. As will
pus. Despite this lack of training data, very good€ shown, this rule is not constraining enough and
results were obtained both by the K&M model anchllows some poor compressions, but it is remarkable
by our variant. We create a way to compress sefhat any sort of compression can be achieved with-
tences without parallel training data, while stickingout training data. Later, we will describe additional
as closely to the K&M model as possible. constraints that help even more.

The source model stays the same, and we still _ . _
pay a probability cost in the channel model for ev4 Semi-Supervised Compression

ery subtree deleted. However, the way we determingscayse the supervised version tends to do quite

Pespana(l | 5) changes because we no longer have ge| ang its main problem is that the model tends
parallel text. We create joint rules using only the firs, pick longer compressions than a human would,

section (0.mrg) of the Penn Treebank. We count 8jf seems reasonable to incorporate the unsupervised
probabilistic context free grammar (PCFG) expanyersion into our supervised model, in the hope of

sions, and then match up similar rules as UNSUPELetiing more rules to use. In generating new short
vised joint events. sentences, if we have compression probabilities in

‘We change Equation 2 to calcula®,pand(s | 1) the supervised version, we use those, including the
without parallel data. First, let us defireo (shorter special rules. The only time we use an unsupervised

version of) to bexry svo 7 iff the righthand side of o hression probability is when there is no super-
r1 is a subsequence of the righthand sidexofThen  isaq version of the unsupervised rule.
define

3 Unsupervised Compression

5 Additional Constraints
count(l)

Pezpand(l | 8) = - (3) Even with the unsupervised constraint from section
2s.t. s swo v count(l') 3, the fact that we have artificially created our joint
This is best illustrated by a toy example. Considerules gives us some fairly ungrammatical compres-
a corpus with just 7 rules: 3 instancesMiP — DT  sions. Adding extra constraints improves our unsu-
JJ NNand 4 instances dfiP — DT NN pervised compressions, and gives us better perfor-
P(NP— DT JJNN| NP — DT JJNN)= 1. To mance on the supervised version as well. We use a
determine this, you divide the countdP — DT JJ  program to label syntactic arguments with the roles
NN = 3 by all the possible long versions BI°P —  they are playing (Blaheta and Charniak, 2000), and
DT JJ NN= 3. the rules for complement/adjunct distinction given
P(NP— DT JINN|NP — DT NN) = 3/7. The by (Collins, 1997) to never allow deletion of the

count ofNP — DT JJ NN= 3, and the possible long complement. Since many nodes that should not
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be deleted are not labeled with their syntactic roldained by using our special rules. Figure 2 shows
we add another constraint that disallows deletion dhe parse trees of the original pair of short and long

NPs. versions. The relevant expansionN$® — NP1 ,
PP in the long version and simpliP1in the short
6 Evaluation version. The supervised version that includes the

special rules learned this particular common special
As with Knight and Marcu’s (2000) original work, . b P P

th 32 ¢ . - tcjoint rule from the training data and could apply it
We use e same o Sentence pairs as our 1est “pfine example case. This supervised version com-

pu? Ie?r\]nng us W.'th ;035_ trr]?_mmg palrs.t After ?dl'ﬁresses better than either version of the supervised
Jtl;]s |Sg Ie SUpe;VISbeilg tmt% pf‘“"‘.”?e e‘rj, \{[ve 0 oisy-channel model that lacks these rules. The un-
€ development set back into the training data. supervised version does not compress at all, whereas

We presented four judges with nine compressegl s semi_supervised version is identical with the bet-
versions of each of the 32 long sentences: A humags, supervised version

generated short version, the K&M version, our first

supervised version, our supervised version with our Example 2 shows how unsupervised and semi-
pel ’ 1P . : _ ﬁupervised techniques can be used to improve com-
special rules, our supervised version with speci

ul nd additional constraint un i géression. Although the final length of the sentences
L(Jaress"oi o ?s gr ?‘Secdo era'lons’ .tohuadud.ts.grl?zl c§nl roughly the same, the unsupervised and semi-
version, ol up V! version wit i supervised versions are able to take the action of
straints, our semi-supervised version, and our sem

supervised version with additional constraints Thdeleting the parenthet_ic_al. Deleting parentheses was
. _ ' ever seen in the training data, so it would be ex-
Jlﬁdges were gskl_ed t? rste tr:]e sentences in two wa ?emely unlikely to occur in this case. The unsuper-
the grammaticality of the short sentences on a scalg_ , version, on the other hand, sees HelRtN

from 1 to 5, and the importance of the short SeNtH NP rrb andPRN — NP in its training data, and

tence, or how well the compressed version retain . : . - .
the impbortant words from E)he oriainal. also on e semi-supervised version capitalizes on this par-
P ginal, Ricular unsupervised rule.

scale from 1 to 5. The short sentences were ran- . -
Example 3 shows an instance of our initial super-
domly shuffled across test cases. . . .
. . vised versions performing far worse than the K&M
The results in Table 1 show compression rates . .
: model. The reason is that currently our supervised
as well as average grammar and importance scores , :
. model only generates compressions that it has seen
across judges.

L before, unlike the K&M model, which generates all
There are two main ideas to take away from thes

its. First ¢ q : ith Eossible compressionS— S, NP VP never occurs
results. FIrst, we can get good compressions WIthO y, training data, and so a good compression does
paired training data. Second, we achieved a go

boost by addi dditional traints in t t exist. The unsupervised and semi-supervised
oostbya ".‘g our additional constraints In tWo o} ions do better in this case, and the supervised
the three versions.

Note that i . . hat arbit gi version with the added constraints does even better.
ote that Importance 1S a somewnat arbitrary dis- Example 4 gives an example of the K&M model

tinction, since according 'to our judgeal O.f the being outperformed by all of our other models.
computer-generated versions do as well in impor-
tance as the human-generated versions. 7 Problemswith Noisy Channel M odels of
6.1 Examplesof Results Sentence Compression

In Figure 1, we give four examples of most compresTo this point our presentation has been rather nor-
sion techniques in order to show the range of perfornal; we draw inspiration from a previous paper, and
mance that each technique spans. In the first two ework at improving on it in various ways. We now
amples, we give only the versions with constraintsgeviate from the usual by claiming that while the
because there is little or no difference between th&M model works very well, there is a technical
versions with and without constraints. problem with formulating the task in this way.
Example 1 shows the additional compression ob- We start by making our noisy channel notation a
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original: Many debugging features, including user-defibeghk points and
variable-watching and message-watching windows, have aéded.

human: Many debugging features have been added.

K&M: Many debugging features, including user-defined peiahd
variable-watching and message-watching windows, have added.

supervised: Many features, including user-defined breakgand variable-watching

and windows, have been added.
super (+ extra rules, constraints): Many debugging feathexe been added.
unsuper (+ constraints): Many debugging features, innlyidiser-defined break

points and variable-watching and message-watching wisdbave been added.
semi-supervised (+ constraints):  Many debugging feathass been added.

original: Also, Trackstar supports only the critical patetiod (CPM) of project
scheduling.

human: Trackstar supports the critical path method of ptageheduling.

K&M: Trackstar supports only the critical path method (CPdfischeduling.

supervised: Trackstar supports only the critical path we{CPM) of scheduling.

super (+ extra rules, constraints): Trackstar supportg thel critical path method (CPM) of scheduling.

unsuper (+ constraints): Trackstar supports only thecatipath method of project scheduling.

semi-supervised (+ constraints):  Trackstar supports thecritical path method of project scheduling.

original: The faster transfer rate is made possible by an-pfoprietary data

buffering algorithm that off-loads lock-manager funcgdnom the Q-bus
host, Raimondi said.

human: The algorithm off-loads lock-manager functiongrittie Q-bus host.

K&M: The faster rate is made possible by a MTI-proprietaryadauffering algorithm
that off-loads lock-manager functions from the Q-bus hBsimondi said.

supervised: Raimondi said.

super (+ extra rules): Raimondi said.

super (+ extra rules, constraints): The faster transferisatnade possible by an MTI-proprietary data buffering
algorithm, Raimondi said.

unsuper (+ constraints): The faster transfer rate is magdsilge, Raimondi said.

semi-supervised (+ constraints):  The faster transferisateade possible, Raimondi said.

original: The SAS screen is divided into three sections: fongvriting programs, one for
the system'’s response as it executes the program, and dahodtput tables
and charts.

human: The SAS screen is divided into three sections.

K&M: The screen is divided into one

super (+ extra rules): SAS screen is divided into three @estione for writing programs, and a third

for output tables and charts.
super (+ extra rules, constraints): The SAS screen is divi® three sections.
unsupervised: The screen is divided into sections: one fibingy programs, one for the system'’s
response as it executes program, and third for output tabl@sharts.
unsupervised (+ constraints): Screen is divided into teestions: one for writing programs, one for the
system’s response as it executes program, and a third fpuoiatbles and charts.
semi-supervised: The SAS screen is divided into threemetione for writing programs, one for
the system’s response as it executes the program, and &thodtput tables
and charts.
semi-super (+ constraints): The screen is divided intoetsextions: one for writing programs, one for the
system’s response as it executes the program, and a thicdifiout tables
and charts.

Figure 1: C@r%ression Examples



compression rat¢ grammar| importance
humans 53.33% 4.96 3.73
K&M 70.37% 4.57 3.85
supervised 79.85% 4.64 3.97
supervised with extra rules 67.41% 4.57 3.66
supervised with extra rules and constraint68.44% 4.77 3.76
unsupervised 79.11% 4.38 3.93
unsupervised with constraints 77.93% 4.51 3.88
semi-supervised 81.19% 4.79 4.18
semi-supervised with constraints 79.56% 4.75 4.16

Table 1: Experimental Results

short: | (S (NP (JJ Many) (JJ debugging) (NNS features))

(VP (VBP have) (VP (VBN been) (VP (VBN added))))(. .))

long: | (S (NP (NP (JJ Many) (JJ debugging) (NNS features))(, ,)

(PP (VBG including) (NP (NP (JJ user-defined)(NN break)(Ndtsts)
(CC and)(NN variable-watching))

(CC and)(NP (JJ message-watching) (NNS windows))))(, ,))

(VP (VBP have) (VP (VBN been) (VP (VBN added))))(. .))

Figure 2: Joint Trees for special rules

bit more explicit: rolot rolot
argmazgp(s,L=s|l,L=1) = (4) vp Vv
L=sWwlL=1|sL= N /p\
a‘rg maajsp(s7 S)p( ) | 87 8) Vb np Vb np
Here we have introduced explicit conditioning bL nlns bL ../\nns
eventsL, = [ andL = s to state that that the sen- Y | Y ]{ |
tence in question is either the long version or the toys large toys

short version. We do this because in order to get the
equation that K&M (and ourselves) start with, it isFigure 3: A compression example — trees A and B

necessary to assume the following respectively
p(s,L=s) = p(s) (5)
p(l,L=1|s,L=s) = p([s)  (6) tomake. In fact, it compromises the entire enter-

This means we assume that the probability of, Say’prlse. To see this, however, we must descend into
as a short (compressed) sentence is simply its pro‘glOre details.

ability as a sentence. This will be, in general, false. Let us consider a simplified version of a K&M
One would hope that real compressed sentences &@mple, but as reinterpreted for our model: how
more probable as a member of the set of compressHtg Noisy channel model assigns a probability of the
sentences than they are as simply a member of &pmpressed treed) in Figure 3 given the original
English sentences. However, neither K&M, nor welreeB.

have a large enough body of compressed and origi- We compute the probabilitigs(A) andp(B | A)

nal sentences from which to create useful languagses follows (Figure 4): We have divided the probabil-
models, so we both make this simplifying assumpities up according to whether they are contributed by
tion. At this point it seems like a reasonable choicé¢he source or channel models. Those from the source
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p(A) p(B | A) tree-bank pre-terminals can only expand into words
p(s — vp | H(s)) p(s —vp|s— vp) p(ji — large | jj — large) = 1. Thus the last fraction
p(vp — vbnp | H(vp))  p(vp — vbnp | vp — vbnp) in Equation 7 is equal to one and can be ignored.
p(np — nns | H(np)) p(np — jinns | np — nns) For a compression to occur, it needs to be less de-
p(vb — buy | H(vb)) p(vb — buy | vb — buy) sirable to add an adjective in the channel model than
p(nns — toys | H(nns))  p(nns — toys | nns — toys) in the source model. In fact, the opposite occurs.
p(ii — large| H(jj)) The likelihood of almost any constituent deletion is

far lower than the probability of the constituents all
Figure 4: Source and channel probabilities for combeing left in. This seems surprising, considering that

pressingB into A the model we are using has had some success, but
it makes intuitive sense. There are far fewer com-

p(B) p(B | B) pression alignments than total alignments: identical

p(s — vp | H(s)) p(s —vp|s— vp) parts of sentences are almost sure to align. So the

(B (

( (

(vp — vbnp | H(vp))  p(vp — vbnp | vp — vbnp) most probable short sentence should be very barely
p(np — jinns [ H(np))  p(np — jinns | np — jinns) compressed. Thus we add a weighting factor to

( (

(nn (nn

(i (i

S

p(vb — buy | H(vb)) ~ p(vb — buy|vb — buy)  compress our supervised version further.
p(nns — toys | H(nns))  p(nns — toys | nns — toys) K&M also, in effect, weight shorter sentences
p(ii — large | H(jj)) p(ii — large| jj — large) more strongly than longer ones based upon their lan-
guage model. In their papers on sentence compres-
Figure 5: Source and channel probabilities for leavsion, they give an example similar to our “buy large
ing B asB toys” example. The equation they get for the channel
probabilities in their example is similar to the chan-
model are conditioned on, e.gi(np) the history in nel probabilities we give in Figures 3 and 4. How-
terms of the tree structure around the noun- phrasgver their source probabilities are different. K&M
In a pure PCFG this would only include the label o id not have a true syntax-based language model
the node. In our language model it includes muc p use as we have. Thus they d|V|(_jed the Iangl_J_age
more, such as parent and grandparent heads. model into two parts. Pa.rt one assigns p'I’ObabI|ItIeS
Again, following K&M. contrast this with the to the grammar rules using a probabilistic context-
gain, foflowing free grammar, while part two assigns probabilities
probabilities assigned when the compressed tree S 9 P gns p
t the words using a bi-gram model. As they ac-

identical to the original (Figure 5).
Expressed like this it is somewhat daunting, bul'anWIEOI(‘:]e in (Knight and Marcu, 2002), the word

notice that if all we want is to see which probabllltyb'gram probabilities are also included in the PCFG

L . robabilities. So in their versions of Figures 3 and
is higher (the compressed being the same as the orlg- they haveboth p(toys | nns) (from the PCFG)

inal or truly compressed) then most of these terms nd p(toys | buy) for the bigram probability. In

cancel, and we get the rule, prefer the truly Comthls model, the probabilities do not sum to one, be-
pressed if and only if the following ratio is greater
cause they pay the probabilistic price for guessing

than one. . .

the word “toys” twice, based upon two different con-
p(np — nns | H(np)) p(np — jjnns | np — nns) ditioning events. Based upon this language model,
p(np — jinns | H(np)) p(np — jinns | np — jj nns) they prefer shorter sentences.

1 To reiterate this section’s argument: A noisy
channel model isot by itself an appropriate model
for sentence compression. In fact, the most likely
In the numerator are the unmatched probabilitieshort sentence will, in general, be the same length
that go into the compressed sentence noisy chaas the long sentence. We achieve compression by
nel probability, and in the denominator are those foweighting to give shorter sentences more likelihood.
when the sentence does not undergo any change. Wefact, what is really required is some model that
can make this even simpler by noting that becaugdakes “utility” into account, using a utility model

p(jj — large| jj — large)
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