Dependency Tredet Trandation: Syntactically Informed Phrasal SMT

ChrisQuirk, Arul Menezes
Microsoft Research
One Microsoft Way
Redmond, WA 98052
{chrisqg, arulm}@microsoft.com

Abstract

We describe a novel approach to
statistical machine trandlation that
combines syntactic information in the
source language with recent advances in
phrasal trandation. This method requires a
source-language dependency parser, target
language word segmentation and an
unsupervised word alignment component.
We align a paralel corpus, project the
source dependency parse onto the target
sentence, extract dependency tredet
trandation pairs, and train a tree-based
ordering model. We describe an efficient
decoder and show that using these tree-
based models in combination with
conventional SMT models provides a
promising approach that incorporates the
power of phrasal SMT with the linguistic
generality availablein a parser.

1. Introduction

Ove the past decade, we have witnessed a
revolution in the field of machine tranglation
(MT) toward statistical or corpus-based methods.
Yet despite this success, datistical machine
tranglation (SMT) has many hurdles to overcome.
While it excels at trandating domain-specific
terminology and fixed phrases, grammatical
generalizations are poorly captured and often
mangled during trandation (Thurmair, 04).

1.1. Limitations of string-based phrasal SMT

State-of-the-art phrasal SMT systems such as
(Koehn et al., 03) and (Voge « al., 03) mode
tranglations of phrases (here, strings of adjacent
words, not syntactic constituents) rather than
individual words. Arbitrary reordering of words is
allowed within memorized phrases, but typically

271

Colin Cherry
University of Alberta
Edmonton, Alberta
Canada T6G 2E1
colinc@cs.ualberta.ca

only a small amount of phrase reordering is
allowed, modeled in terms of offset positions at
the string level. This reordering model is very
limited in terms of linguistic generalizations. For
instance, when tranglating English to Japanese, an
ideal system would automatically learn large-
scale typological differences: English SVO
clauses generally become Japanese SOV clauses,
English post-modifying prepositional phrases
become Japanese pre-modifying postpositional
phrases, etc. A phrasal SMT system may learn the
internal reordering of specific common phrases,
but it cannot generalize to unseen phrases that
share the same linguistic structure.

In addition, these systems are limited to
phrases contiguous in both source and target, and
thus cannot learn the generalization that English
not may trandate as French ne...pas except in the
context of specific intervening words.

1.2. Previouswork on syntactic SMT*

The hope in the SMT community has been that
the incorporation of syntax would address these
issues, but that promise has yet to be realized.

One simple means of incorporating syntax into
SMT is by re-ranking the n-best list of a basdine
SMT system using various syntactic models, but
Och et al. (04) found very little positive impact
with this approach. However, an n-best list of
even 16,000 trandations captures only a tiny
fraction of the ordering possibilities of a 20 word
sentence; re-ranking provides the syntactic model
no opportunity to boost or prune large sections of
that search space.

Inversion Transduction Grammars (Wu, 97), or
ITGs, treat trandation as a process of paralle
parsing of the source and target language via a
synchronized grammar. To make this process

* Note that since this paper does not address the word aignment problem
directly, we do not discuss the large body of work on incorporating syntactic
information into the word aignment process.

Proceedings of the 43rd Annual Meeting of the AGhges 271-279,
Ann Arbor, June 200502005 Association for Computational Linguistics

computationally efficient, however, some severe
simplifying assumptions are made, such as using
a single non-terminal labd. This results in the
model simply learning a very high leve
preference regarding how often nodes should
switch order without any contextual information.
Also these trandation models are intrinsically
word-based; phrasal combinations are not
modeled directly, and results have not been
competitive with the top phrasal SMT systems.

Along similar lines, Alshawi et al. (2000) treat
tranglation as a process of simultaneous induction
of source and target dependency trees using head-
transduction; again, no separate parser is used.

Yamada and Knight (01) employ a parser in the
target language to train probabilities on a set of
operations that convert a target language tree to a
source language string. This improves fluency
dightly (Charniak et a., 03), but fails to
significantly impact overall tranglation quality.
This may be because the parser is applied to MT
output, which is notoriously unlike native
language, and no additional insight is gained via
source language analysis.

Lin (04) trandates dependency trees using
paths. Thisis thefirst attempt to incorporate large
phrasal SMT-style memorized patterns together
with a separate source dependency parser and
SMT models. However the phrases are limited to
linear paths in the tree, the only SMT model used
is a maximum likelihood channel model and there
is no ordering model. Reported BLEU scores are
far below the leading phrasal SMT systems.

MSR-MT (Menezes & Richardson, 01) parses
both source and target languages to obtain a
logical form (LF), and trandates source LFs using
memorized aligned LF patterns to produce a
target LF. It utilizes a separate sentence
realization component (Ringger et al., 04) to turn
this into a target sentence. As such, it does not use
a target language mode during decoding, relying
instead on MLE channel probabilities and
heuristics such as pattern size. Recently Aue ¢ al.
(04) incorporated an LF-based language model
(LM) into the system for a small quality boost. A
key disadvantage of this approach and related
work (Ding & Palmer, 02) is that it requires a
parser in both languages, which severely limits
the language pairs that can be addressed.

272

2. Dependency Treelet Translation

In this paper we propose a hovel dependency tree-
based approach to phrasal SMT which uses tree-
based ‘phrases’ and a tree-based ordering model
in combination with conventional SMT models to
produce state-of -the-art tranglations.

Our system employs a sourcelanguage
dependency parser, a target language word
segmentation component, and an unsupervised
word alignment component to learn tredet
trandations from a parald sentence-aligned
corpus. We begin by parsing the source text to
obtain dependency trees and word-segmenting the
target side, then applying an off-the-shelf word
alignment component to the bitext.

The word alignments are used to project the
source dependency parses onto the target
sentences. From this aligned parallel dependency
corpus we extract a tredet translation model
incorporating source and target tredet pairs,
where a tredet is defined to be an arbitrary
connected subgraph of the dependency tree. A
unique feature is that we allow tregets with a
wildcard root, effectively allowing mappings for
siblings in the dependency tree. This allows us to
model important phenomena, such as not ... =
ne...pas. We also train a variety of dstatistical
models on this aligned dependency tree corpus,
including a channel modd and an order model.

To trandate an input sentence, we parse the
sentence, producing a dependency tree for that
sentence. We then employ a decoder to find a
combination and ordering of treclet translation
pairs that cover the source tree and are optimal
according to a set of models that are combined in
alog-linear framework asin (Och, 03).

This approach offers the following advantages
over dtring-based SMT systems: Instead of
limiting learned phrases to contiguous word
sequences, we allow tranglation by all possible
phrases that form connected subgraphs (treelets)
in the source and target dependency trees. Thisis
a powerful extension: the vast majority of
surface-contiguous phrases are also treelets of the
tree; in addition, we gain discontiguous phrases,
including combinations such as verb-object,
article-noun, adjective-noun etc. regardiess of the
number of intervening words.

| 1 L |

startup properties and options

Figure 1. An example dependency tree.

Another magjor advantage is the ability to
employ more powerful models for reordering
source language constituents. These models can
incorporate information from the source analysis.
For example, we may mode directly the
probability that the trandlation of an object of a
preposition in English should precede the
corresponding postposition in Japanese, or the
probability that a pre-modifying adjective in
English tranglates into a post-modifier in French.

2.1. Parsing and alignment

We require a source language dependency parser
that produces unlabeled, ordered dependency
trees and annotates each source word with a part-
of-speech (POS). An example dependency treeis
shown in Figure 1. The arrows indicate the head
annotation, and the POS for each candidate is
listed underneath. For the target language we only
require word segmentation.

To obtain word alignments we currently use
GIZA++ (Och & Ney, 03). We folow the
common practice of deriving many-to-many
alignments by running the IBM models in both
directions and combining the results heuristically.
Our heuristics differ in that they constrain many-
to-one alignments to be contiguous in the source
dependency tree. A detailed description of these
heuristics can be found in Quirk et a. (04).

2.2. Projecting dependency trees

Given a word aligned sentence pair and a source
dependency tree, we use the alignment to project
the source structure onto the target sentence. One-
to-one alignments project directly to create a
target tree isomorphic to the source. Many-to-one
alignments project similarly; since the ‘many’
source nodes are connected in the tree, they act as
if condensed into a single node. In the case of
one-to-many alignments we project the source
node to the rightmost? of the ‘many’ target words,
and make the rest of the target words dependent
onit.

2|f the target language i s Japanese, leftmost may be more appropriate.

273

|] Vo]

startup properties and options

propriétés et options de démarrage

(a) Word alignment.
| ! XN

startup properties and options

propriétés de démarrage et options
(b) Dependencies after initial projection.
1 Ve

startup properties and options

propriétés et options de démarrage

(c) Dependencies after reattachment step.
Figure 2. Projection of dependencies.

Unaligned target words® are attached into the
dependency structure as follows: assume there is
an unaligned word t; in position j. Let i < j and k
> j be the target positions closest to j such that t;
depends on t, or vice versa: attach t; to the lower
of t or t. If al the nodes to the l€eft (or right) of
position j are unaligned, attach t; to the left-most
(or right-most) word that is aligned.

The target dependency tree created in this
process may not read off in the same order as the
target string, since our alignments do not enforce
phrasal cohesion. For instance, consider the
projection of the parsein Figure 1 using the word
alignment in Figure 2a. Our algorithm produces
the dependency tree in Figure 2b. If we read off
the leaves in a left-to-right in-order traversal, we
do not get the original input string: de démarrage
appears in the wrong place.

A second reattachment pass corrects this
situation. For each node in the wrong order, we
reattach it to the lowest of its ancestors such that
it isin the correct place relative to its siblings and
parent. In Figure 2c, reattaching démarrage to et
suffices to produce the correct order.

3 Source unaligned nodes do not present aproblem, with the exception that if
the root is undigned, the projection process produces aforest of target trees
anchored by adummy root.

2.3. Extractingtreelet translation pairs

From the aligned pairs of dependency trees we
extract all pairs of aligned source and target
tredets along with word-level alignment linkages,
up to a configurable maximum size. We also keep
tredet counts for maximum likelihood estimation.

2.4. Order mod€

Phrasal SMT systems often use a model to score
the ordering of a set of phrases. One approach is
to pendize any deviation from monotone
decoding; another is to estimate the probability
that a source phrase in position i trandates to a
target phrasein position j (Koehn et al., 03).

We attempt to improve on these approaches by
incorporating syntactic information. Our model
assigns a probability to the order of a target tree
given a source tree. Under the assumption that
congtituents generally move as a whole, we
predict the probability of each given ordering of
modifiers independently. That is, we make the
following simplifying assumption (where c is a
function returning the set of nodes modifying t):

P(order(T) |S,T) = H P(order(c(t)) | S,T)

teT
Furthermore, we assume that the position of each
child can be modeled independently in terms of a
head-relative position:
P(order (c(t))|S,T) = H P(pos(m,t) |S,T)
mec(t)

Figure 3a demonstrates an aligned dependency
tree pair annotated with head-relative positions;
Figure 3b presents the same information in an
aternate tree-like representation.

We currently use a small set of features
reflecting very local information in the
dependency tree to model P(pos(m,t) | S T):

e Thelexical items of the head and modifier.

e Thelexica items of the source nodes aligned
to the head and modifier.

e The part-of-speech ("cat") of the source nodes
aligned to the head and modifier.

e The head-relative position of the source node
aligned to the source modifier. *

As an example, consider the children of
propriété in Figure 3. The head-relative positions

4 One can dsoind ude features of s blings to produce aMarkov ordering
model. However, we found that this had little impact in practice.

274

the Cancel property uses these

I 1

l[1

settings

propriété Cancel utilise ces paramétres

the Cancel

/

T | H

(a) Head annotation representation

uses

property settings

Cancel

propriété paramétres

utilise

(b) Branching structure representation.

Figure 3. Aligned dependency tree pair, annotated with
head-rdative positions

of its modifiers la and Cance are -1 and +1,
respectively. Thus wetry to predict as follows:
P(pos(my) =-1 |

lex(my)="la", lex(h)="propriété",

lex(src(my))="the", lex(src(h)="property",

cat(src(my))=Determiner, cat(src(h))=Noun,

position(src(my))=-2) -

P(pos(ny) = +1|

lex(mp)="Cancel", lex(h)="proprié&é",

lex(src(my))="Canced", lex(src(h))="property",

cat(src(mg))=Noun, cat(src(h))=Noun,

position(src(ny))=-1)
The training corpus acts as a supervised training
set: we extract atraining feature vector from each
of the target language nodes in the aligned
dependency tree pairs. Together these feature
vectors are used to train a decision tree
(Chickering, 02). The distribution at each leaf of
the DT can be used to assign a probability to each
possible target language position. A more detailed
descriptionis availablein (Quirk et al., 04).

2.5. Other models

Channedl Models: We incorporate two distinct
channel models, a maximum likelihood estimate
(MLE) model and a modd computed using
Model-1 word-to-word alignment probabilities as
in (Voge et al., 03). The MLE modd effectively
captures non-literal phrasal trandations such as
idioms, but suffers from data sparsity. The word-

to-word model does not typically suffer from data
sparsity, but prefers more literal trandations.
Given a set of tredet trandation pairs that
cover a given input dependency tree and produce
a target dependency tree, we mode the
probability of source given target as the product
of the individual treelet translation probabilities:
we assume a uniform probability distribution over
the decompositions of atreeinto treelets.
Target Mode: Given an ordered target language
dependency tree, it istrivial to read off the surface
string. We evaluate this string using a trigram
model with modified Kneser-Ney smoothing.
Miscellaneous Feature Functions: The log-linear
framework allows us to incorporate other feature
functions as ‘models’ in the translation process.
For instance, using fewer, larger treelet translation
pairs often provides better translations, since they
capture more context and allow fewer possibilities
for search and model error. Therefore we add a
feature function that counts the number of phrases
used. We also add a feature that counts the
number of target words, this acts as an
insertion/del etion bonus/penalty.

3. Decoding

The challenge of tree-based decoding is that the
traditional left-to-right decoding approach of
string-based systems is inapplicable. Additional
challenges are posed by the need to handle
tred ets—perhaps discontiguous or overlapping—
and a combinatorially explosive ordering space.

Our decoding approach is influenced by ITG
(Wu, 97) with several important extensions. First,
we employ tredet trandlation pairs instead of
single word trandations. Second, instead of
modeling rearrangements as either preserving
source order or swapping source order, we allow
the dependents of a node to be ordered in any
arbitrary manner and use the order model
described in section 2.4 to estimate probabilities.
Finally, we use a log-linear framework for model
combination that allows any amount of other
information to be model ed.

We will initially approach the decoding
problem as a bottom up, exhaustive search. We
define the set of all possible tredet translation
pairs of the subtree rooted at each input node in
the following manner: A treelet trandation pair x
is said to match the input dependency tree S iff

275

installed
software is on
the computer

your
(a) Example input dependency tree.
installed
on
computer
your

votre

ordinateur

sur

installés

(b) Exampletredet trandation pair.
Figure 4. Example decoder structures.

there is some connected subgraph S that is
identical to the source side of x. We say that x
covers all thenodes in S and is rooted at source
node s, where s is the root of matched subgraph
S.

We first find all tredet trandation pairs that
match the input dependency tree. Each matched
pair is placed on a list associated with the input
node where the match is rooted. Moving bottom-
up through the input dependency tree, we
compute a list of candidate tranglations for the
input subtree rooted at each node s, as follows:

Consider in turn each treelet trandation pair x
rooted at s. The tredlet pair X may cover only a
portion of the input subtree rooted at s. Find all
descendents s of s that are not covered by x, but
whose parent s' is covered by x. At each such
node s" look at all interleavings of the children of
s' specified by x, if any, with each trandation t'
from the candidate translation list® of each child
s. Each such interleaving is scored using the
models previously described and added to the
candidate tranglation list for that input node. The
resultant trandation is the best scoring candidate
for theroot input node.

As an example, see the example dependency
tree in Figure 4a and treclet tranglation pair in 4b.
This tredet tranglation pair covers all the nodesin
4a except the subtrees rooted at software and is.

® Computed by the previous application of this procedureto s during the
bottom-up traversa.

We first compute (and cache) the candidate
translation lists for the subtrees rooted at software
and is, then construct full trandlation candidates
by attaching those subtree trandlations to installés
in al possible ways. The order of sur relative to
installésis fixed; it remains to place the trandated
subtrees for the software and is. Note that if c is
the count of children specified in the mapping and
r is the count of subtrees translated via recursive
calls, then there are (c+r+1)!/(c+1)! orderings.
Thus (1+2+1)!/(1+1)! = 12 candidate translations
are produced for each combination of translations
of the software and is.

3.1. Optimality-preserving optimizations

Dynamic Programming

Converting this exhaustive search to dynamic
programming relies on the observation that
scoring a trandation candidate at a node depends
on the following information from its
descendents: the order model requires features
from the root of a translated subtree, and the
target language model is affected by the first and
last two words in each subtree. Therefore, we
need to keep the best scoring trandlation candidate
for a given subtree for each combination of (head,
leading bigram, trailing bigram), which is, in the
worst case, O(V°), where V is the vocabulary size.
The dynamic programming approach therefore
does not alow for great savings in practice
because a trigram target language modd forces
consideration of context external to each subtree.

Duplicate elimination

To diminate unnecessary ordering operations, we
first check that a given set of words has not been
previously ordered by the decoder. We use an
order-independent hash table where two trees are
considered equal if they have the same tree
structure and lexical choices after sorting each
child list into a canonical order. A simpler
alternate approach would be to compare bags-of-
words. However since our possible orderings are
bound by the induced tree structure, we might
overzealously prune a candidate with a different
tree structure that allows a better target order.

3.2. Lossy optimizations

The following optimizations do not preserve
optimality, but work well in practice.

276

N-best lists
Instead of keeping the full list of trandation
candidates for a given input node, we keep a top-
scoring subset of the candidates. While the
decoder is no longer guaranteed to find the
optimal trandation, in practice the quality impact
is minimal with alist size> 10 (see Table 5.6).
Variable-sized n-best lists: A further speedup
can be obtained by noting that the number of
trandations using a given tredet par is
exponential in the number of subtrees of the input
not covered by that pair. To limit this explosion
we vary the size of the n-best list on any recursive
call in inverse proportion to the number of
subtrees uncovered by the current treelet. This has
the intuitive appeal of allowing a more thorough
exploration of large tredlet trandation pairs (that
are likely to result in better trandations) than of
smaller, less promising pairs.

Pruning treelet translation pairs

Channed model scores and tredet size are

powerful predictors of trandlation quality.

Heuristically pruning low scoring tredet

trandlation pairs before the search starts allows

the decoder to focus on combinations and
orderings of high quality treelet pairs.

o Only keep those tredlet trandation pairs with
an MLE probability above a threshold t.

e Given a sat of treele trandlation pairs with
identical sources, keep those with an MLE
probability within aratio r of the best pair.

e At each input node, keep only thetop k trecl et
tranglation pairs rooted at that node, as ranked
first by size, then by MLE channel model
score, then by Modd 1 score. The impact of
this optimization is explored in Table 5.6.

Greedy ordering

The complexity of the ordering step at each node
grows with the factorial of the number of children
to be ordered. This can be tamed by noting that
given a fixed pre- and post-modifier count, our
order model is capable of evaluating a single
ordering decision independently from other
ordering decisions.

One version of the decoder takes advantage of
this to severely limit the number of ordering
possibilities considered. Instead of considering all
interleavings, it considers each potential modifier
position in turn, greedily picking the most

English French
Training Sentences 570,562
Words 7,327,251 | 8,415,882
Vocabulary 72,440 80,758
Singletons 38,037 39,496
Test Sentences 10,000
Words 133,402 | 153,701

Table 4.1 Data characteristics

probable child for that slot, moving on to the next
dot, picking the most probable among the
remaining children for that slot and so on.

The complexity of greedy ordering is linear,
but at the cost of a noticeable drop in BLEU score
(see Table 5.4). Under default settings our system
tries to decode a sentence with exhaustive
ordering until a specified timeout, at which point
it falls back to greedy ordering.

4. Experiments

We evaluated the trandlation quality of the system
using the BLEU metric (Papineni et al., 02) under
a variety of configurations. We compared against
two radicaly different types of systems to
demonstrate the competitiveness of this approach:
e Pharaoh: A leading phrasal SMT decoder
(Koehn et al., 03).
e The MSR-MT system described in Section 1,
an EBMT/hybrid MT system.

4.1. Data

We used a parald English-French corpus
containing 1.5 million sentences of Microsoft
technical data (eq., support articles, product
documentation). We selected a cleaner subset of
this data by eliminating sentences with XML or
HTML tags aswell as very long (>160 characters)
and very short (<40 characters) sentences. We
held out 2,000 sentences for development testing
and parameter tuning, 10,000 sentences for
testing, and 250 sentences for lambda training.
We ran experiments on subsets of the training
data ranging from 1,000 to 300,000 sentences.
Table 4.1 presents details about this dataset.

4.2. Training

We parsed the source (English) side of the corpus
using NLPWIN, a broad-coverage rule-based
parser developed at Microsoft Research able to

277

produce syntactic analyses at varying levels of
depth (Heidorn, 02). For the purposes of these
experiments we used a dependency tree output
with part-of-speech tags and unstemmed surface
words.

For word aignment, we used GIZA++,
following a standard training regimen of five
iterations of Modd 1, five iterations of the HMM
Modd, and five iterations of Model 4, in both
directions.

We then projected the dependency trees and
used the aligned dependency tree pairs to extract
tredet trandlation pairs and train the order model
as described above. The target language model
was trained using only the French side of the
corpus, additional data may improve its
performance. Finally we trained lambdas via
Maximum BLEU (Och, 03) on 250 hed-out
sentences with a single reference trandation, and
tuned the decoder optimization parameters (n-best
list size, timeouts etc) on the devel opment test set.

Pharaoh

The same GIZA++ alignments as above were
used in the Pharaoh decoder. We used the
heuristic combination described in (Och & Ney,
03) and extracted phrasal trandation pairs from
this combined alignment as described in (Koehn
et al., 03). Except for the order model (Pharaoh
uses its own ordering approach), the same models
were used: MLE channel model, Modd 1 channel
model, target language model, phrase count, and
word count. Lambdas were trained in the same
manner (Och, 03).

MSR-MT

MSR-MT used its own word alignment approach
as described in (Menezes & Richardson, 01) on
the same training data. MSR-MT does not use
lambdas or atarget language model.

5. Reaults

We present BLEU scores on an unseen 10,000
sentence test set using a single reference
tranglation for each sentence. Speed numbers are
the end-to-end translation speed in sentences per
minute. All results are based on a training set size
of 100,000 sentences and a phrase size of 4,
except Table 5.2 which varies the phrase size and
Table 5.3 which varies the training set size

Results for our system and the comparison
systems are presented in Table 5.1. Pharaoh
monotone refers to Pharaoh with phrase
reordering disabled. The difference between
Pharaoh and the Tredet system is significant at
the 99% confidence level under a two-tailed
paired t-test.

We also ran experiments varying different
system parameters. Table 5.4 explores different
ordering strategies, Table 5.5 looks at the impact
of discontiguous phrases and Table 5.6 looks at
the impact of decoder optimizations such as
tredet pruning and n-best list size.

Ordering strategy BLEU | Sentsmin
BLEU Score | Sents/min No order model (monotone) | 35.35 | 39.7
Pharaoh monotone | 37.06 4286 Greedy ordering 38.85 | 13.1
Pharaoch 38.83 162 Exhaustive (default) 40.66 | 10.1
MSR-MT 35.26 453 . :
Tredet 20.66 101 Table 5.4 Effect of ordering strategies

Table 5.1 System comparisons

Table 5.2 compares Pharaoh and the Treelet
system at different phrase sizes. While all the
differences are statistically significant at the 99%
confidence level, the wide gap at smaller phrase
sizes is particularly striking. We infer that
whereas Pharaoh depends heavily on long phrases
to encapsulate reordering, our dependency tree-
based ordering model enables credible
performance even with single-word ‘phrases’. We
conjecture that in a language pair with large-scale
ordering differences, such as English-Japanese,
even long phrases are unlikely to capture the
necessary reorderings, whereas our tree-based
ordering model may prove more robust.

Max. size Tredet BLEU Pharach BLEU
1 37.50 23.18
2 39.84 32.07
3 40.36 37.09
4 (default) 40.66 38.83
5 40.71 39.41
6 40.74 39.72

Table 5.2 Effect of maximum treelet/phrase size

Table 5.3 compares the same systems at different
training corpus sizes. All of the differences are
statistically significant at the 99% confidence
level. Noting that the gap widens at smaller
corpus sizes, we suggest that our tree-based
approach is more suitable than string-based
phrasal SMT when trandating from English into
languages or domains with limited parallel data.

BLEU Score | Sentsmin

Contiguous only 40.08 11.0

Allow discontiguous | 40.66 10.1

Table 5.5 Effect of allowing treelets that correspond to
discontiguous phrases

BLEU Score | Sents/min
Pruning treelets
Keeptop 1 28.58 144.9
...top3 39.10 21.2
...top5 40.29 14.6
... top 10 (default) 40.66 10.1
... top 20 40.70 35
Keep all 40.29 3.2
N-best list size
1-best 37.28 175.4
5-best 39.96 79.4
10-best 40.42 23.3
20-best (default) 40.66 10.1
50-best 39.39 3.7

Table 5.6 Effect of optimizations
6. Discussion

We presented a novel approach to syntactically-
informed statistical machine translation that
leverages a parsed dependency tree representation
of the source language via a tree-based ordering
model and treelet phrase extraction. We showed
that it significantly outperforms a leading phrasal
SMT system over a wide range of training set
sizes and phrase sizes.

Congtituents vs. dependencies: Most attempts at

1k 3k 10k 30k 100k 300k
Pharaoh 17.20 22.51 27.70 33.73 38.83 42.75
Tredet 18.70 25.39 30.96 35.81 40.66 44.32

Table 5.3 Effect of training set size on tredl et trandation and comparison system

278

syntactic SMT have relied on a constituency
analysis rather than dependency analysis. While
this is a natural starting point due to its well-
understood nature and commonly available tools,
we fed that this is not the most effective
representation for syntax in MT. Dependency
analysis, in contrast to constituency analysis,
tends to bring semantically related eements
together (e.g., verbs become adjacent to all their
arguments) and is better suited to lexicalized
models, such as the ones presented in this paper.

7. Futurework

The most important contribution of our system is
a linguistically motivated ordering approach
based on the source dependency tree, yet this
paper only explores one possible modd. Different
model structures, machine learning techniques,
and target feature representations all have the
potential for significant improvements.

Currently we only consider the top parse of an
input sentence. One means of considering
aternate possibilities is to build a packed forest of
dependency trees and use this in decoding
tranglations of each input sentence.

As noted above, our approach shows particular
promise for language pairs such as English-
Japanese that exhibit large-scale reordering and
have proven difficult for string-based approaches.
Further experimentation with such language pairs
is necessary to confirm this. Our experience has
been that the quality of GIZA++ alignments for
such language pairs is inadequate. Following up
on ideas introduced by (Cherry & Lin, 03) we
plan to explore ways to leverage the dependency
tree to improve alignment quality.

References

Alshawi, Hiyan, Srinivas Bangalore, and Shona
Douglas. Learning dependency trandation models
as collections of finitestate head transducers.
Computational Linguistics, 26(1):45-60, 2000.

Aue, Anthony, Arul Menezes, Robert C. Moore, Chris
Quirk, and Eric Ringger. Statigical machine
trandation using labeled semantic dependency
graphs. TMI 2004.

Charniak, Eugene, Kevin Knight, and Kenji Yamada.
Syntax-based language models for statistical
machinetrandation. MT Summit 2003.

279

Cherry, Colin and Dekang Lin. A probability modd to
improve word alignment. ACL 2003.

Chickering, David Maxwell. The WinMine Toolkit.
Microsoft Research Technical Report: MSR-TR-
2002-103.

Ding, Yuan and Martha Palmer. Automatic learning of
parald dependency tredet pairs. IJICNLP 2004.

Heidorn, George. (2000). “Intelligent writing
assisance”. In Dale e a. Handbook of Natural
Language Processing, Marcel Dekker.

Koehn, Philipp, Franz Josef Och, and Daniel Marcu.
Statistical phrase based trandation. NAACL 2003.

Lin, Dekang. A path-based transfer model for machine
trandation. COLING 2004.

Menezes, Arul and Stephen D. Richardson. A best-
first alignment a gorithm for automatic extraction of
transfer mappings from bilingual corpora. DDMT
Workshop, ACL 2001.

Och, Franz Josef and Hermann Ney. A systematic
comparison of various statistical aignment models,
Computational Linguistics, 29(1):19-51, 2003.

Och, Franz Josef. Minimum error rate training in
statistical machine trandation. ACL 2003.

Och, Franz Josef, et al. A smorgasbord of features for
statistical machinetrandation. HLT/NAACL 2004.

Papineni, Kishore, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. BLEU: a method for automatic
evaluation of machinetrandation. ACL 2002.

Quirk, Chris, Arul Menezes, and Calin Cherry.
Dependency Tree Trandation. Microsoft Research
Technica Report: MSR-TR-2004-113.

Ringger, Eric, et al. Linguigtically informed statistical
models of congtituent structure for ordering in
sentence realization. COLING 2004.

Thurmair, Gregor. Comparing rule-based and
dtatistical MT output. Workshop on the amazing
utility of parallel and comparable corpora, LREC,
2004.

Vogd, Stephan, Ying Zhang, Fel Huang, Alicia
Tribble, Ashish Venugopal, Bing Zhao, and Alex
Waibel. The CMU statigtical machine trandation
system. MT Summit 2003.

Wu, Dekai. Stochadtic inverson transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguigtics, 23(3):377-403, 1997.

Yamada, Kenji and Kevin Knight. A syntax-based
statistical trandation model. ACL, 2001.

