Boosting-based parse reranking with subtree features

Taku Kudo * Jun Suzuki Hideki Isozaki
NTT Communication Science Laboratories.
2-4 Hikaridai, Seika-cho, Soraku, Kyoto, Japan

{taku,jun,isozaki t@cslab.kecl.ntt.co.jp

Abstract formance. However, they are highly task dependent

and require careful design to create the optimal fea-

This paper introduces a new application of boost-ture set for each task. Kernel methods offer an ele-
ing for parse reranking. Several parsers have beegant solution to these problems. They can work on a
proposed that utilize the all-subtrees representapotentially huge or even infinite number of features
tion (e.g., tree kernel and data oriented parsing)without a loss of generalization. The best known
This paper argues that such an all-subtrees represernel for modeling a tree is the tree kernel (Collins
sentation is extremely redundant and a comparaand Duffy, 2002), which argues that a feature vec-
ble accuracy can be achieved using just a smalfor is implicitly composed of the counts of subtrees.

set of subtrees. We show how the boosting algoAlthough kernel methods are general and can cover

rithm can be applied to the all-subtrees representaalmost all useful features, the set of subtrees that is

tion and how it selects a small and relevant featureused is extremely redundant. The main question ad-

set efficiently. Two experiments on parse rerank-dressed in this paper concerns whether it is possible

ing show that our method achieves comparable oto achieve a comparable or even better accuracy us-
even better performance than kernel methods anthg just a small and non-redundant set of subtrees.
also improves the testing efficiency. In this paper, we present a new application of
boosting for parse reranking. While tree kernel

_ implicitly uses the all-subtrees representation, our

1 Introduction boosting algorithm uses éxplicitly. Although this

Recent work on statistical natural language par$€tup makes the feature space large, /iRgorm

ing and tagging has exploretiscriminativetech- regularization achived by boosting automatically se-

niques. One of the novel discriminative approachd§cts @ small and relevant feature set. Such a small
is reranking where discriminative machine Iearningfeature set is useful in practlce,_as it is interpretable
algorithms are used to rerank thebest outputs of 2nd makes the parsing (reranking) time faster. We

generative or conditional parsers. The discriming2/SO incorporate a variant of the branch-and-bound

tive reranking methods allow us to incorporate variteéchnique to achieve efficient feature selection in

ous kinds of features to distinguish the correct parggich boosting iteration.
tree from all other candidates.

With such feature design flexibility, it is non-
trivial to employ an appropriate feature set that hag/e describe the general setting of parse reranking.
a good discriminative ability for parse reranking. IQ
early studies, feature sets were given heuristically b
simply preparing task-dependefgiature templates
(Collins, 2000; Collins, 2002). These ad-hoc solu-
tions might provide us with reasonable levels of per-

*Currently, Google Japan Inc., taku@google.com e Let Y(x) be a function that returns a set of candi-

2 General setting of parse reranking

Training datdl" is a set of input/output pairs, e.g.,
= {{x1,¥1),-.-,(Xr,yL)}, wherex; is an in-
put sentence, angl; is a correct parse associated
with the sentence;.

189

Proceedings of the 43rd Annual I\/_Ieetin%] of the AGages 189-196,
Ann Arbor, June 200502005 Association for Computational Linguistics

date parse trees for a particular sentexice 2.2 Definition of feature function

e We assume thay(x;) contains the correct parse !tiS non-trivial to define an appropriate feature func-
treey;, i.e.,yi € Y(x;) * tion ®(y) that has a good ability to distinguish the

correct parseg; from all other candidates
o Let ®(y) € R be a feature function that maps In early studies, the feature functions were given
the given parse treg into R? space.w € R?is heuristically by simply preparinéeature templates
a parameter vector of the model. The output parg€ollins, 2000; Collins, 2002). However, such
y of this model on input sentence is given as: heuristic selections are task dependent and would
Y = argmaxcy iy w - e(y). not cover all useful features that contribute to overall
: . racy.
There are two questions as regards this formul&CcUracy . .
. . When we select the special family of loss func-
tion. One is how to set the parametsvs and the .
tions, the problem can be reduced to a dual form that

other is how to design the feature functidly). We depends only on the inner products of two instances
briefly describe the well-known solutions to these b y P

two problems in the next subsections. ®(y1) - @(y). This property is important as we can
use akernel trickand we do not need to provide an

2.1 Parameter estimation explicit feature function. For example, tree kernel
(Collins and Duffy, 2002), one of the convolution
kernels, implicitly maps the instance represented in
a tree into all-subtrees space. Even though the fea-
ture space is large, inner products under this feature
space can be calculated efficiently using dynamic

We usually adopt a general loss functibnss(w),
and set the parametess that minimize the loss,
i.e.,w = argmin, cg« Loss(w). Generally, the loss
function has the following form:

L programming. Tree kernel is more general than fea-
Loss(w) =Y L(w, ®(yi), %), ture templates since it can use the all-subtrees repre-
i=1 sentation without loss of efficiency.

whereL(w, ®(y;),x;) is an arbitrary loss function.
We can design a variety of parameter estimatiod RankBoost with subtree features

methods by changing the loss function. The foIIowA imol i lated to k Ibased
ing three loss functiond,ogLoss, HingeLoss, and simpie question related 1o kernel-based parse

Boost Loss, have been widely used in parse rerank[eranking asks whethatl subtrees are really needed

to construct the final parametevs. Suppose we

ing tasks. have twolarge treest and¢’, wheret’ is simply gen-
LogLoss = —log Z exp w-[®(y;) — ®(y)] erated by attaching a single node tdn most cases,
YEV(x:) these two trees yield an almost equivalent discrimi-
HingeLoss = Y max(0,1—w-[®(y:;)— ®(y)]) hative ability, since they are very similar and highly
YEV(x:) correlated with each other. Even when we exploit all
BoostLos = Y exp —w:[®(yi) — d(y)] subtrees, most of them are extremely redundant.
yEY(xi) The motivation of this paper is based on the above

LogLoss is based on the standard maximum Iike_tCJbseryatlon.dV\(/jetthlnk that Otﬂy ? srlnall set Otf SUb'A
lihood optimization, and is used with maximum en-c€S 1S Needed 1o express the final parameters.

tropy models. HingeLoss captures the errors only co:r_lpact,]crltljr_w—redur:Fjant, af‘td. h!g:ﬂy relfv;nt fe:;u_;re
whenw - [B(y;) — ®(y)]) < 1. This loss is closely set is useful in practice, as it is interpretable and in-

related to the maximum margin strategy in SymSTeases the parsing (reranking) speed.

(Vapnik, 1998). BoostLoss is analogous to the To realize this goal, we propose a new boosting-
boosting algorithm and is used in (Collins 2000based reranking algorithm based on the all-subtrees
Collins, 2002) ’ representation. First, we describe the architecture of

_ _ N our reranking method. Second, we show a connec-
*In the real setting, we cannot assume this condition. Inth|§ bet b i d SYM dd ibe h
case, we select the parse tgethat is the most similar tg; and ion be W_een OOS_ Ing an S, and describe how
takey as the correct parse trge. the algorithm realizes the sparse feature representa-

190

G) 3.3 RankBoost algorithm

The parameter estimation method we adopt is a vari-
© © ant of the RankBoost algorithm introduced in (Fre-
und et al., 2003). Collins et al. used RankBoost to
parse reranking tasks (Collins, 2000; Collins, 2002).
The algorithm proceeds fdk iterations and tries to
Figure 1: Labeled ordered tree and subtree relatiominimize the BoostLoss for given training data

At each iteration, a single feature (hypothesis) is
tion described above. chosen, and its weight is updated.
Suppose we have current parameters:

t”¢t

3.1 Preliminaries

Let us introduce a labeled ordered tree (or simply w = {wi,wa, ..., wy} € R™.
'tree’), its definition and notations, first.

Definition 1 Labeled ordered tree (Tree)

A labeled ordered tree is a tree where each node ,
associated with a label and is ordered among its sififough an incremerat
lings, that is, there is a first child, second child, third W
child, etc.

Definition 2 Subtree After the update, the new loss is given:

Lett andu be labeled ordered trees. We say that § §

matches., or tis asubtree of. (t C u), ifthere is a Loss(w” (1.5)) = doexp = Wi - [B(yi) —2y)] - (1)
one-to-one functiog from nodes irt to u, satisfying b yEYe

the conditions: (1)) preserves the parent-daughter The RankBoost algorithm iteratively selects the op-
relation, (2)v preserves the sibling relation, (3) timal pair (k, 6) that minimizes the loss, i.e.,
preserves the labels.

New parametersv*;, sy € R™ are then given by
i§electing a single featudeand updating the weight

(k,5) :{wl,wg,...,wk—i—é,...,wm}.

(k,6) = argminLoss(w* 1 5).

We denote the number of nodestias|¢|. Figure 1 (k,5)
shows an example of a labeled ordered tree and its
subtree and non-subtree. By setting the differential of (1) at O, the following

optimal solutions are obtained:

3.2 Feature space given by subtrees

. . g T - LWy
We first assume that a parse tigés represented in * = argmax M— M » andg = log =, (2)
a labeled ordered tree. Note that the outputs of part- g
of-speech tagging, shallow parsing, and dependentherewlg — Zi,yey(xi) D(yi,y) - I[I(ty Cy;) —
analysis can be modeled as labeled ordered trees.f (¢, C y) = bl, b € {+1,—-1}, andD(y;,y) =

The feature sef consists of all subtrees seen inexp(—w - [®(y;) — O(y))).
the training data, i.e., Following (Freund et al., 2003; Collins, 2000), we
F=Uiyeyun{t | £ Sy} introduce smoothing to prevent the case when either

Wt orw, is 08
The feature mappin@(y) is then given by letting
the existence of a treebe a single dimension, i.e., §= %log

P =1{I(t; C oIty C 11
&)=l €5).. I € y)} € 40,17, The function Y(x) is usually performed by a
wherel(-) is the indicator functiomn = |F|, and probabilistic history-based parser, which can output
{t1,...,tm} € F. The feature space is essentiallyhot only a parse tree but the log probability of the
the same as that of tree kerriel " in our experi i .
periments, optimal settings f&f were selected

fStrictly speaking, tree kernel uses the cardinality of eachy using development data.
subtree §For simplicity, we fixe at 0.001 in all our experiments.

W; +eZ

—k _ whereZ = D(ys,y) ande € RT.
Wtz > D(yi,y) ande

LYEYV(x;)

191

tree. We incorporate the log probability into thelt is non-trivial to find the optimal tre¢; that maxi-
reranking by using it as a feature: mizesgain(t;), since the number of subtrees is ex-
B ponential to its size. In fact, the problem is known
oy) = ALy It Cy)- o I{tm S ¥)}, and to be NP-hard (Yang, 2004). However, in real appli-
wo = {wo,wi,wa, .., Wi}, cations, the problem is manageable, since the max-
where L(y) is the log probability of a treg un- imum number of subtrees is usually bounded by a
der the base parser and is the parameter af(y). constant. To solve the problem efficiently, we now
Note that the update algorithm (2) does not allow ugdopt a variant of the branch-and-bound algorithm,
to calculate the parameter,, since (2) is restricted similar to that described in (Kudo and Matsumoto,
to binary features. To prevent this problem, we usé004)
the approximation technique introduced in (Freund o _
et al., 2003). 4.1 Efficient Enumeration of Trees
Abe and Zaki independently proposed an efficient
method, rightmost-extensignfor enumerating all
Recent studies (Schapire et al., 1993t$eh, 2001) subtrees from a given tree (Abe et al., 2002; Zaki,
have shown that both boosting and SVMs (Vapnikpp02). First, the algorithm starts with a set of trees
1998) work according to similar strategies: conconsisting of single nodes, and then expands a given
structing optimal parametens that maximize the tree of size(n—1) by attaching a new node to it to
smallest margirbetween positive and negative eX-obtain trees of size&. However, it would be inef-
ampIeS. The critical difference is the definition Ofﬁcient to expand nodes at arbitrary positions of the
margin or the way they regularize the vecter tree, as duplicated enumeration is inevitable. The
(RatSCh, 2001) shows that the iterative feature Selegj'gorithm’ rightmost extensiorL avoids such dup“_
tion performed in boosting asymptotically realizesated enumerations by restricting the position of at-
anli-norm ||w||; regularization. In contrast, it is tachment. Here we give the definition of rightmost
well known that SVMs are reformulated as 87 extension to describe this restriction in detail.

norm||wy||, regularized algorithm. _— , : _
The relationship between two regularizations hagefinition 3 Rightmost Extension (Abe etal., 2002;

been studied in the machine learning communit%ak" 2002,) .
(Perkins et al., 2003) reported thiatnorm should L.ett andt’ be IapeIEd Qrdered tregs. We/stéy; a
be chosen for a problem where most given featurdfNtmost extension f if and only ift andt’ satisfy
areirrelevant On the other handg-norm should be the f/o_llowmg three cond_mons: _ _
chosen when most given features eeevant An (1)t IS created by adding a single node #o(i.e.,

i : tct'and|t|+1=|t'|)
advantage of thé -norm regularizer is that it often | : o)
leads to sparse solutions where mogtare exactly (2) A node is added to a node existing on the unique

0. The features assigned zero weight are thought P@th from the root to the rightmost leaf (rightmost-

beirrelevantfeatures as regards classifications. path) int. _ _ .

The [1-norm regularization is useful for our set—(3) A node is added as the rightmost sibling.
ting, since most features (subtrees) are redundant
and irrelevant, and these redundant features are a@ensider Figure 2, which illustrates example ttee
tomatically eliminated. with labels drawn from the sef = {a,b,c}. For
the sake of convenience, each node in this figure has
its original number (depth-first enumeration). The
In each boosting iteration, we have to solve the foltightmost-path of the treeis (a(c(b))), and it oc-
lowing optimization problem: curs at positiond, 4 and6 respectively. The set of
rightmost extended trees is then enumerated by sim-
ply adding a single node to a node on the rightmost
path. Since there are three nodes on the rightmost
where gain(ty) = ‘\/ Wi —/ Wk_‘- path and the size of the label set i$3 |£|), a to-

3.4 Sparse feature representation

4 Efficient Computation

k = argmaxgain(ty,),

k=1,...m

192

rightmost extension t’ e Size constraint
Larger trees are usually less effective to discrimi-
nation. Thus, we give a size thresheldand use
subtrees whose size is no greater thaithis con-
straint is easily realized by controlling the right-
most extension according to the size of the trees.
e Frequency constraint
The frequency-based cut-off has been widely used
in feature selections. We employ a frequency
thresholdf, and use subtrees seen on at least one
tal of 9 trees are enumerated from the original treeparse for at leasf different sentences. Note that
t. By repeating the rightmost-extension process rea similar branch-and-bound technique can also be
cursively, we can create a search space in which alhpplied to the cut-off. When we find that the fre-
trees drawn from the sét are enumerated. qguency of a treeis no greater thayi, we can safely
prune the space spanned froras the frequencies
of any super-treeg D ¢ are also no greater thah
Rightmost extension defines a canonical seaighpseydo iterations
space in which we can enumerate all subtrees fromifter several 5- or 10-iterations of boosting, we al-
a given set of trees. Here we consider an uppeternately perform 100- or 300 pseudo iterations, in
bound of the gain that allows subspace pruning inyhich the optimal feature (subtree) is selected from
this canonical search space. The following obserthe cache that maintains the features explored in the
vation provides a convenient way of computing anprevious iterations. The idea is based on our ob-
upper bound of thgain(ty) for any super-treérr servation that a feature in the cache tends to be re-
of £ used as the number of boosting iterations increases.
Observation 1 Upper bound of thgain (t;) Pseudo iterations converge very fast, and help the
z((){k?:ny t 2 tr, the gain of 7 is bounded by o and-bound algorithm find new features that
are not in the cache.

gain(ty) = M*\%

Figure 2: Rightmost extension

4.2 Pruning

5 Experiments

< W AW .

s max(y W, w) 5.1 Parsing Wall Street Journal Text

< max(y Wi W) = (i), In our experiments, we used the same data set that
since ty Dtp = W < WP, be {+1,-1}. used in (Collins, 2000). Sections 2-21 of the Penn

We can efficiently prune the search space spanngaeebank were used as training dajca_, and section
by the rightmost extension using the upper bound &3 was used as test data. The training _data con-
gain u(t). During the traverse of the subtree Iatticetalns about 40’0_00, sentences, each of which ha; an
built by the recursive process of rightmost extensiorfV©'29€ of 27 distinct parses. Of the 40,000 train-

we always maintain the temporally suboptimal gair'lng sentences, the first 36,000 s_entences were _used
7 of all the previously calculated gains.jift) < to perform the RankBoost algorithm. The remain-

the gain of any super-trgé D £ is no greater than, ing 4,000 sentences were used as development data.

and therefore we can safely prune the search spalxlcgdelz of (Collins, 1999) was used to parse both

spanned from the subtreeln contrast, ifu(t) > 7, the training and test data.

we cannot prune this space, since there might be a 10 captur_e the lexical information of the parse
super-tre¢’ D ¢ such thayain(t') > . trees, we did not use a standard CFG tree but a

lexicalized-CFG tree where each non-terminal node
4.3 Ad-hoc techniques has an extra lexical node labeled with the head word

In real applications, we also employ the following®f the constituent. Figure 3 shows an example of the
practical methods to reduce the training costs. lexicalized-CFG tree used in our experiments. The

193

TOP MODEL < 40 Words (2245 sentences)
' [R | LP [CBs[0CBs|[2CBs

s CO99 | 88.5%)| 88.7%) 0.92[66.7%)| 87.1%
(saw) NP VP CHOO | 90.1%) 90.1%| 0.74| 70.1%)| 89.6%
T CO00 |90.1%) 90.4%| 0.74| 70.3%)| 89.6%

() PRP(saw) VBD = NP CO02 |89.1%|89.4%) 0.85| 69.3%) 88.2%

| saw (gir) DT NN Boosting| 89.9%| 90.1%| 0.77| 70.5%] 89.4%

(,'jl iIrI MODEL| < 100 Words (2416 sentences)

9 [R | LP |CBs[0CBs[2CBs

Figure 3: Lexicalized CFG tree for WSJ parsing CO99 |88.1%)88.3%| 1.06|64.0%]| 85.1%
head word, e.g., (saw), is put as a leftmost constituent CHOO |89.6%]| 89.5%) 0.88|67.6%| 87.7%
CO00 |89.6%)]| 89.9%)| 0.87|68.3%| 87.7%

: } COO02 |88.6%] 88.9%) 0.99| 66.5%| 86.3%
size parameterand frequency parametgmwere ex- | Gl | 60304l 89 69| 0.90| 67.9% 87.5%
perimentally set a6 and 10, respectively. As the

periments with more unrestricted parameters LR/LP = labeled recall/precision. CBs is the average number
?f cross brackets per sentence. 0 CBs, and 2CBs are the per-

Table 1 lists results on test data for the Model2 o
(Collins, 1999), for several previous studies, and fof 3 . i
our best model. We achieve recall and precision dfe: €OL99 = Model 2 of (Collins, 1999). CHOO = (Char-
89.3/9689.6% and 89.9%/90.1% for sentences wit2k 2000), CO00=(Collins, 2000). CO02=(Collins and Duffy,
< 100 words andk 40 words, respectively. The 2002).

method shows a 1.2% absolute improvement in aYsterbj search and backward A* search. Note that
erage precision and recall (from 88.2% to 89.4% foghis search algorithm yields optimatbest results
sentences< 100 words), a 10.1% relative reduc-jn terms of the CRFs score. Each sentence has at
tion in error. (CO”inS, 2000) achieved 896%/8990/9“05t 20 distinct parses. The log probability from
recall and precision for the same datasets (sefhe CRFs shallow parser was incorporated into the
tences< 100 words) using boosting and manu-reranking. Following (Collins, 2000), the training
ally constructed features. (Charniak, 2000) extendget was split into 5 portions, and the CRFs shallow
PCFG and achieves similar performance to (Collingarser was trained on 4/5 of the data, then used to
2000). The tree kernel method of (Collins andjecode the remaining 1/5. The outputs of the base
Duffy, 2002) uses the all-subtrees representation airser, which consist of base phrases, were con-
achieves 88.6%/88.9% recall and precision, whic{erted into right-branching trees by assuming that
are slightly worse than the results obtained with ougyo adjacent base phrases are in a parent-child re-
model. (Bod, 2001) also uses the all-subtrees repregionship. Figure 4 shows an example of the tree
sentation with a very different parameter estimatiofyr shallow parsing task. We also put two virtual
method, and realizes 90.06%/90.08% recall and preindes, left/right boundaries, to capture local transi-
cision for sentences of 40 words. tions. The size parameterand frequency parameter

f were experimentally set &tand5, respectively.

Table 2 lists results on test data for the baseline
We used the same data set as the CoNLL 20Q0RFs parser, for several previous studies, and for
shared task (Tjong Kim Sang and Buchholz, 2000bur best model. Our model achieves a 94.12 F-
Sections 15-18 of the Penn Treebank were used agasure, and outperforms the baseline CRFs parser
training data, and section 20 was used as test dataand the SVMs parser (Kudo and Matsumoto, 2001).

As a baseline model, we used a shallow pars€Zhang et al., 2002) reported a higher F-measure
based on Conditional Random Fields (CRFs), verwith a generalized winnow using additional linguis-
similar to that described in (Sha and Pereira, 2003)ic features. The accuracy of our model is very simi-
CRFs have shown remarkable results in a numbéar to that of (Zhang et al., 2002) without using such
of tagging and chunking tasks in NLR-best out- additional features. Table 3 shows the results for our
puts were obtained by a combination of forwardest model per chunk type.

entage of sentences with 0 gr2 crossing brackets, respec-

5.2 Shallow Parsing

194

TOP Precision| Recall | Fs-;
N'P ADJP | 80.35% | 73.41%] 76.72

s ADVP | 83.88% | 82.33%]| 83.10
PRP VP CONJP| 42.86% | 66.67%| 52.17
(I_)/I'\(R) VBE/\NP INTJ 50.00% | 50.00% | 50.00
-y . LST 0.00% | 0.00% | 0.00

(L) saw (R) DT NN EOS NP 94.45% | 94.36%| 94.41
(L)/\agim) PP 97.24% | 98.07%| 97.65

PRT 76.92% | 75.47%| 76.19
SBAR 90.70% | 89.35%| 90.02
Figure 4: Tree representation for shallow parsing VP 93.95% | 94.72%| 94.33
Represented in a right-branching tree with two virtual nodes Overall | 94.11% | 94.13%) 94.12
Table 3: Results of shallow parsing per chunk type

MODEL Fg—y .
CRFs (baseline) 93.76 tree (SBAR(IN(for))(NP(VP(TO)))) has a large positive

8 SVMs-voting(Kudo and Matsumoto, 200193.91 weight, while the tregSBAR((IN(for))(NP(0)))) has a

RW + linguistic feature{Zhang et al., 2002)| 94.17 negative weight. The improvement on subordinate
Boosting (our model) ' 94.12) phrases is considerable. We achieve 19% of the rel-

- ative error reduction for subordinate phrase (from
Table 2: Results of shallow parsing 87.68 to 90.02 in F-measure)

F3—; is the harmonic mean of precision and recall.

The testing speed of our model is much higher
than that of other models. The speeds of rerank-
ing for WSJ parsing and shallow parsing are 0.055
6.1 Interpretablity and Efficiency sec./sent. and 0.042 sec./sent. respectively, which

i are fast enough for real applicatiohs
The numbers of active (non-zero) features selectecg g PP

by boosting are around 8,000 and 3,000 in the W&J2 Relationship to previous work

parsing and shallow parsing, respectively. Although K | the all-subt tati i
almost all the subtrees are used as feature cana—ljr-ee ernel uses the all-subtrees representation no

dates, boosting selects a small and highly releval E(plicitly but implicitly by reducing the problem to

subset of features. When we explicitly enumerat e calculation of the inner-products of two trees.

the subtrees used in tree kernel, the number of a he _|mpl|(_:|t_calculat|on ylel_ds a p_ractlcal computa-
tion in training. However, in testing, kernel meth-

tive features might amount to millions or more. Note . ber of k | luati hich
that the accuracies under such sparse feature spaggg require a numboer ot kerne! evaiuations, whic
re too heavy to allow us to realize real applications.

are still comparable to those obtained with tree kel"'\’-l/I iree K | ds o | te ad
nel. This result supports our first intuition that we OTEOVET, tree kernel needs o Incorporate a decay

do not always need all the subtrees to construct ﬂ{gctor to_downwglght the contrlbutl_on of larger sub-
parameters, trees. It is non-trivial to set the optimal decay factor

: as the accuracies are sensitive to its selection.
The sparse feature representations are useful in _ _ ,
Similar to our model, data oriented parsing (DOP)

practice as they allow us to analyze what kinds of X
features are relevant. Table 4 shows examples pyethods (Bod, 1998) deal with the all-subtrees rep-

active features along with their weights,. In the rgsentation explicitly. 'Since the exact computa-
shallow parsing tasks, subordinate phrases (SBAIQ n 9f scpres for DOPI IS h(;P-comp;Iete, sevefrffal_ ap-
are difficult to analyze without seeing long depenp ox!man??]s ar_(i' errg'?fye o %ertorm ane 'C'Zntl
dencies. Subordinate phrases usually precede a s8ft>"J: 1€ critical dllierence beween our mode
tence (NP and VP). However, Markov-based shafNd DOP is that our model leads to an extremely

low parsers, such as MEMM or CRFs, cannot C‘,Jllos_parse solution and automatically eliminates redun-

ture such a long dependency. Our model automa‘i!—lant subtlrees. with the DOP m(;athor?s,f(B%d, 2001)
ically selects useful subtrees to obtain an improvéEE S0 employs constraints (e.g., depth of subtrees) to

ment on subordinate phrases. Itis interesting that the Ywe ran these tests on a Linux PC with Pentium 4 3.2 Ghz.

6 Discussion

195

WSJ parsing

w

active trees that contain the wdfid”

0.3864
0.3326
0.2196
0.1748

-1.1217
-1.1634
-1.3574
-1.8030

(VP(NP(NNS(plants)))(PP(in)))
(VP(VP(PP)(PP(in)))(VP))
(NP(VP(VP(PP)(PP(in)))))
(S(NP(NNP))(PP(in)(NP)))

(PP(in)(NP(NP(effect))))
(VP(yield)(PP(PP))(PP(in)))
(NP(PP(in)(NP(NN(way)))))
(NP(PP(in)(NP(trading)(JJ))))

shallow parsing

active trees that contain the phrdS8AR”

w
1.4500
0.6177
0.6173
0.5644

-0.9034
-0.9181]
-1.0695
-1.1699

(SBAR(IN(for))(NP(VP(TO))))
(VP(SBAR(NP(VBD)))
(SBAR(NP(VP())))
(VP(SBAR(NP(VP(3J)))))

(SBAR(IN(for))(NP(O)))
(SBAR(NP(O)))
(ADVP(NP(SBAR(NP(VP)))))
(SBAR(NP(NN)(NP)))

Table 4: Examples of active features (subtrees)
All trees are represented in S-expression. In the shallow parsirJI% .
ku Kudo and Yuji Matsumoto.

task,O is a special phrase that means “out of chunk”.

i E
select relevant subtrees and achieves the best results

Rens Bod. 2001. What is the minimal set of fragments that
achieves maximal parse accuracy? Pioc. of ACL pages
66-73.

Eugene Charniak. 2000. A maximum-entropy-inspired parser.
In Proc. of NAACL.pages 132-139.

Michael Collins and Nigel Duffy. 2002. New ranking algo-
rithms for parsing and tagging: Kernels over discrete struc-
tures, and the voted perceptron.Rroc. of ACL

Michael Collins. 1999. Head-Driven Statistical Models for
Natural Language Parsing Ph.D. thesis, University of
Pennsylvania.

Michael Collins. 2000. Discriminative reranking for natural
language parsing. IRroc. of ICML, pages 175-182.

Michael Collins. 2002. Ranking algorithms for named-entity
extraction: Boosting and the voted perceptron.Phoc. of
ACL, pages 489-496.

Yoav Freund, Raj D. lyer, Robert E. Schapire, and Yoram
Singer. 2003. An efficient boosting algorithm for combining
preferencesJournal of Machine Learning Research933—
969.

Taku Kudo and Yuji Matsumoto. 2001. Chunking with support
vector machines. IRroc. of NAACL pages 192-199.

2004. A boosting algo-
rithm for classification of semi-structured text. Rroc. of
MNLP, pages 301-308.

for WSJ parSIng However these technlques are né‘rnon Perkins, Kevin LaCkeI‘, and James Thiler. 2003. Graft-

ing: Fast, incremental feature selection by gradient descent

be_‘sed on the regularization framevyork focused on in function space.Journal of Machine Learning Research
this paper and do not always eliminate all the re- 3:1333-1356.
dundant subtrees. Even using the methods of (Bogynnar. mtsch. 2001 Robust Boosting via Convex Optimiza-

2001), millions of subtrees are still exploited, which

leads to inefficiency in real problems.

7 Conclusions

tion. Ph.D. thesis, Department of Computer Science, Uni-
versity of Potsdam.

Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun
Lee. 1997. Boosting the margin: a new explanation for the
effectiveness of voting methods. PRroc. of ICML, pages

In this paper, we presented a new application of 322-330.

boosting for parse reranking, in which all subtreegej sha and Fernando Pereira. 2003. Shallow parsing with
are potentially used as distinct features. Although conditional random fields. IProc. of HLT-NAACL pages

this set-up greatly increases the feature space, th

e213—220.

l;-norm regularization performed by boosting seErik F. Tjong Kim Sang and Sabine Buchholz. 2000. Introduc-

lects a compact and relevant feature set. Our model

tion to the CoNLL-2000 Shared Task: Chunking. Rroc.
of CoNLL-2000 and LLL-20Q(rages 127-132.

achieved a comparable or even better accuracy than

kernel methods even with an extremely small nu

ber of features (subtrees).

References

Keniji Abe, Shinji Kawasoe, Tatsuya Asai, Hiroki Arimura, and

m

Vladimir N. Vapnik. 1998.Statistical Learning TheoryWiley-
Interscience.

Guizhen Yang. 2004. The complexity of mining maximal fre-
guent itemsets and maximal frequent patterns.Pioc. of
SIGKDD.

Mohammed Zaki. 2002. Efficiently mining frequent trees in a

Setsuo Arikawa. 2002. Optimized substructure discovery forest. InProc. of SIGKDD pages 71-80

for semi-structured data. Rroc. of PKDD pages 1-14.

Rens Bod. 1998Beyond Grammar: An Experience Based The-
ory of Language CSLI Publications/Cambridge University

Press.

Tong Zhang, Fred Damerau, and David Johnson. 2002. Text
chunking based on a generalization of winnadaurnal of
Machine Learning ResearcB:615-637.

