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Abstract 

In this paper, we present an unsupervised 
methodology for propagating lexical co-
occurrence vectors into an ontology such 
as WordNet. We evaluate the framework 
on the task of automatically attaching new 
concepts into the ontology. Experimental 
results show 73.9% attachment accuracy 
in the first position and 81.3% accuracy in 
the top-5 positions. This framework could 
potentially serve as a foundation for on-
tologizing lexical-semantic resources and 
assist the development of other large-
scale and internally consistent collections 
of semantic information. 

1 Introduction 

Despite considerable effort, there is still today no 
commonly accepted semantic corpus, semantic 
framework, notation, or even agreement on pre-
cisely which aspects of semantics are most useful 
(if at all). We believe that one important reason 
for this rather startling fact is the absence of truly 
wide-coverage semantic resources. 

Recognizing this, some recent work on wide 
coverage term banks, like WordNet (Miller 1990) 
and CYC (Lenat 1995), and annotated corpora, 
like FrameNet (Baker et al. 1998), Propbank 
(Kingsbury et al. 2002) and Nombank (Meyers et 
al. 2004), seeks to address the problem.  But man-
ual efforts such as these suffer from two draw-
backs: they are difficult to tailor to new domains, 
and they have internal inconsistencies that can 
make automating the acquisition process difficult.   

In this work, we introduce a general frame-
work for inducing co-occurrence feature vectors 
for nodes in a WordNet-like ontology. We be-
lieve that this framework will be useful for a va-
riety of applications, including adding additional 
semantic information to existing semantic term 
banks by disambiguating lexical-semantic re-
sources. 

Ontologizing semantic resources 

Recently, researchers have applied text- and 
web-mining algorithms for automatically creating 
lexical semantic resources like similarity lists 
(Lin 1998), semantic lexicons (Riloff and Shep-
herd 1997), hyponymy lists (Shinzato and Tori-
sawa 2004; Pantel and Ravichandran 2004), part-
whole lists (Girgu et al. 2003), and verb relation 
graphs (Chklovski and Pantel 2004). However, 
none of these resources have been directly linked 
into an ontological framework. For example, in 
VERBOCEAN (Chklovski and Pantel 2004), we 
find the verb relation “to surpass is-stronger-than 
to hit”, but it is not specified that it is the achiev-
ing sense of hit where this relation applies. 

We term ontologizing a lexical-semantic re-
source as the task of sense disambiguating the re-
source. This problem is different but not 
orthogonal to word-sense disambiguation. If we 
could disambiguate large collections of text with 
high accuracy, then current methods for building 
lexical-semantic resources could easily be applied 
to ontologize them by treating each word’s senses 
as separate words. Our method does not require 
the disambiguation of text. Instead, it relies on the 
principle of distributional similarity and that 
polysemous words that are similar in one sense 
are dissimilar in their other senses. 
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Given the enriched ontologies produced by 
our method, we believe that ontologizing lexical-
semantic resources will be feasible. For example, 
consider the example verb relation “to surpass is-
stronger-than to hit” from above. To disambigu-
ate the verb hit, we can look at all other verbs that 
to surpass is stronger than (for example, in 
VERBOCEAN, “to surpass is-stronger-than to 
overtake” and “to surpass is-stronger-than to 
equal”). Now, we can simply compare the lexical 
co-occurrence vectors of overtake and equal with 
the ontological feature vectors of the senses of hit 
(which are induced by our framework). The sense 
whose feature vector is most similar is selected. 

It remains to be seen in future work how well 
this approach performs on ontologizing various 
semantic resources. In this paper, we focus on the 
general framework for inducing the ontological 
co-occurrence vectors and we apply it to the task 
of linking new terms into the ontology. 

2 Relevant work 

Our framework aims at enriching WordNet-like 
ontologies with syntactic features derived from a 
non-annotated corpus. Others have also made 
significant additions to WordNet. For example, in 
eXtended WordNet (Harabagiu et al. 1999), the 
rich glosses in WordNet are enriched by disam-
biguating the nouns, verbs, adverbs, and adjec-
tives with synsets. Another work has enriched 
WordNet synsets with topically related words ex-
tracted from the Web (Agirre et al. 2001). While 
this method takes advantage of the redundancy of 
the web, our source of information is a local 
document collection, which opens the possibility 
for domain specific applications. 

Distributional approaches to building semantic 
repositories have shown remarkable power. The 
underlying assumption, called the Distributional 
Hypothesis (Harris 1985), links the semantics of 
words to their lexical and syntactic behavior. The 
hypothesis states that words that occur in the 
same contexts tend to have similar meaning. Re-
searchers have mostly looked at representing 
words by their surrounding words (Lund and Bur-
gess 1996) and by their syntactical contexts 
(Hindle 1990; Lin 1998). However, these repre-
sentations do not distinguish between the differ-
ent senses of words. Our framework utilizes these 
principles and representations to induce disam-

biguated feature vectors. We describe these rep-
resentations further in Section 3. 

In supervised word sense disambiguation, 
senses are commonly represented by their sur-
rounding words in a sense-tagged corpus (Gale et 
al. 1991). If we had a large collection of sense-
tagged text, then we could extract disambiguated 
feature vectors by collecting co-occurrence fea-
tures for each word sense. However, since there is 
little sense-tagged text available, the feature vec-
tors for a random WordNet concept would be 
very sparse. In our framework, feature vectors are 
induced from much larger untagged corpora (cur-
rently 3GB of newspaper text). 

Another approach to building semantic reposi-
tories is to collect and merge existing ontologies.  
Attempts to automate the merging process have 
not been particularly successful (Knight and Luk 
1994; Hovy 1998; Noy and Musen 1999).  The 
principal problems of partial and unbalanced cov-
erage and of inconsistencies between ontologies 
continue to hamper these approaches. 

3 Resources 

The framework we present in Section 4 propa-
gates any type of lexical feature up an ontology. 
In previous work, lexicals have often been repre-
sented by proximity and syntactic features. Con-
sider the following sentence: 

The tsunami left a trail of horror. 

In a proximity approach, a word is represented 
by a window of words surrounding it. For the 
above sentence, a window of size 1 would yield 
two features (-1:the and +1:left) for the word tsu-
nami. In a syntactic approach, more linguistically 
rich features are extracted by using each gram-
matical relation in which a word is involved (e.g. 
the features for tsunami are determiner:the and 
subject-of:leave). 

For the purposes of this work, we consider the 
propagation of syntactic features. We used Mini-
par (Lin 1994), a broad coverage parser, to ana-
lyze text. We collected the statistics on the 
grammatical relations (contexts) output by Mini-
par and used these as the feature vectors. Follow-
ing Lin (1998), we measure each feature f for a 
word e not by its frequency but by its pointwise 
mutual information, mief: 
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4 Inducing ontological features 

The resource described in the previous section 
yields lexical feature vectors for each word in a 
corpus. We term these vectors lexical because 
they are collected by looking only at the lexicals 
in the text (i.e. no sense information is used). We 
use the term ontological feature vector to refer to 
a feature vector whose features are for a particu-
lar sense of the word. 

In this section, we describe our framework for 
inducing ontological feature vectors for each 
node of an ontology. Our approach employs two 
phases. A divide-and-conquer algorithm first 
propagates syntactic features to each node in the 
ontology. A final sweep over the ontology, which 
we call the Coup phase, disambiguates the feature 
vectors of lexicals (leaf nodes) in the ontology. 

4.1 Divide-and-conquer phase 

In the first phase of the algorithm, we propagate 
features up the ontology in a bottom-up approach. 
Figure 1 gives an overview of this phase. 

The termination condition of the recursion is 
met when the algorithm processes a leaf node. 
The feature vector that is assigned to this node is 
an exact copy of the lexical feature vector for that 
leaf (obtained from a large corpus as described in 
Section 3). For example, for the two leaf nodes 
labeled chair in Figure 2, we assign to both the 
same ambiguous lexical feature vector, an excerpt 
of which is shown in Figure 3. 

When the recursion meets a non-leaf node, 
like chairwoman in Figure 2, the algorithm first 

recursively applies itself to each of the node’s 
children. Then, the algorithm selects those fea-
tures common to its children to propagate up to 
its own ontological feature vector. The assump-
tion here is that features of other senses of 
polysemous words will not be propagated since 
they will not be common across the children. Be-
low, we describe the two methods we used to 
propagate features: Shared and Committee. 

Shared propagation algorithm 

The first technique for propagating features to a 
concept node n from its children C is the simplest 
and scored best in our evaluation (see Section 
5.2). The goal is that the feature vector for n 

Input: A node n and a corpus C. 

Step 1: Termination Condition: 
  If n is a leaf node then assign to n its lexical 

feature vector as described in Section 3. 
Step 2: Recursion Step: 
  For each child c of n, reecurse on c and C. 
  Assign a feature vector to n by propagating 

features from its children. 
Output: A feature vector assigned to each node of the 

tree rooted by n. 

Figure 1. Divide-and-conquer phase. 
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Figure 2. Subtrees of WordNet illustrating two senses 
of chair. 

"chair" 
 conjunction: 
   sofa 77 11.8 
   professor 11 6.0 
   dining room 2 5.6 
   cushion 1 4.5 
   council member 1 4.4 
   President 9 2.9 
   foreign minister 1 2.8 
 nominal subject 
   Ottoman 8 12.1 
   director 22 9.1 
   speaker 8 8.6 
   Joyner 2 8.22 
   recliner 2 7.7 
   candidate 1 3.5  

Figure 3. Excerpt of a lexical feature vector for the 
word chair. Grammatical relations are in italics (con-
junction and nominal-subject). The first column of 
numbers are frequency counts and the other are mutual 
information scores. In bold are the features that inter-
sect with the induced ontological feature vector for the 
parent concept of chair’s chairwoman sense. 
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represents the general grammatical behavior that 
its children will have. For example, for the con-
cept node furniture in Figure 2, we would like to 
assign features like object-of:clean since 
mosttypes of furniture can be cleaned. However, 
even though you can eat on a table, we do not 
want the feature on:eat for the furniture concept 
since we do not eat on mirrors or beds. 

In the Shared propagation algorithm, we 
propagate only those features that are shared by at 
least t children. In our experiments, we experi-
mentally set t = min(3, |C|). 

The frequency of a propagated feature is ob-
tained by taking a weighted sum of the frequency 
of the feature across its children. Let fi be the fre-
quency of the feature for child i, let ci be the total 
frequency of child i, and let N be the total fre-
quency of all children. Then, the frequency f of 
the propagated feature is given by: 

 ∑ ×=
i

i
i N

c
ff  (1) 

Committee propagation algorithm 

The second propagation algorithm finds a set of 
representative children from which to propagate 
features. Pantel and Lin (2002) describe an algo-
rithm, called Clustering By Committee (CBC), 
which discovers clusters of words according to 
their meanings in test. The key to CBC is finding 
for each class a set of representative elements, 
called a committee, which most unambiguously 
describe the members of the class. For example, 
for the color concept, CBC discovers the follow-
ing committee members: 

purple, pink, yellow, mauve, turquoise, 
beige, fuchsia 

Words like orange and violet are avoided be-
cause they are polysemous. For a given concept c, 
we build a committee by clustering its children 
according to their similarity and then keep the 
largest and most interconnected cluster (see 
Pantel and Lin (2002) for details). 

The propagated features are then those that are 
shared by at least two committee members. The 
frequency of a propagated feature is obtained us-
ing Eq. 1 where the children i are chosen only 
among the committee members. 

Generating committees using CBC works best 
for classes with many members. In its original 

application (Pantel and Lin 2002), CBC discov-
ered a flat list of coarse concepts. In the finer 
grained concept hierarchy of WordNet, there are 
many fewer children for each concept so we ex-
pect to have more difficulty finding committees. 

4.2 Coup phase 

At the end of the Divide-and-conquer phase, the 
non-leaf nodes of the ontology contain disam-
biguated features1. By design of the propagation 
algorithm, each concept node feature is shared by 
at least two of its children. We assume that two 
polysemous words, w1 and w2, that are similar in 
one sense will be dissimilar in its other senses. 
Under the distributional hypothesis, similar words 
occur in the same grammatical contexts and dis-
similar words occur in different grammatical con-
texts. We expect then that most features that are 
shared between w1 and w2 will be the grammati-
cal contexts of their similar sense. Hence, mostly 
disambiguated features are propagated up the on-
tology in the Divide-and-conquer phase. 

However, the feature vectors for the leaf 
nodes remain ambiguous (e.g. the feature vectors 
for both leaf nodes labeled chair in Figure 2 are 
identical). In this phase of the algorithm, leaf 
node feature vectors are disambiguated by look-
ing at the parents of their other senses. 

Leaf nodes that are unambiguous in the ontol-
ogy will have unambiguous feature vectors. For 
ambiguous leaf nodes (i.e. leaf nodes that have 
more than one concept parent), we apply the al-
gorithm described in Figure 4. Given a polyse-
mous leaf node n, we remove from its ambiguous 

                                                      
1 By disambiguated features, we mean that the features 

are co-occurrences with a particular sense of a word; the 
features themselves are not sense-tagged. 

Input: A node n and the enriched ontology O output 
from the algorithm in Figure 1. 

Step 1: If n is not a leaf node then return. 

Step 2: Remove from n’s feature vector all features 
that intersect with the feature vector of any of 
n’s other senses’ parent concepts, but are not 
in n’s parent concept feature vector. 

Output: A disambiguated feature vector for each leaf 
node  n. 

Figure 4. Coup phase. 

128



feature vector those features that intersect with 
the ontological feature vector of any of its other 
senses’ parent concept but that are not in its own 
parent’s ontological feature vector. For example, 
consider the furniture sense of the leaf node chair 
in Figure 2. After the Divide-and-conquer phase, 
the node chair is assigned the ambiguous lexical 
feature vector shown in Figure 3. Suppose that 
chair only has one other sense in WordNet, 
which is the chairwoman sense illustrated in Fig-
ure 2. The features in bold in Figure 3 represent 
those features of chair that intersect with the on-
tological feature vector of chairwoman. In the 
Coup phase of our system, we remove these bold 
features from the furniture sense leaf node chair. 
What remains are features like “chair and sofa”, 
“chair and cushion”, “Ottoman is a chair”, and 
“recliner is a chair”. Similarly, for the chair-
woman sense of chair, we remove those features 
that intersect with the ontological feature vector 
of the chair concept (the parent of the other chair 
leaf node). 

As shown in the beginning of this section, 
concept node feature vectors are mostly unambi-
guous after the Divide-and-conquer phase. How-
ever, the Divide-and-conquer phase may be 
repeated after the Coup phase using a different 
termination condition. Instead of assigning to leaf 
nodes ambiguous lexical feature vectors, we use 
the leaf node feature vectors from the Coup 
phase. In our experiments, we did not see any 
significant performance difference by skipping 
this extra Divide-and-conquer step. 

5 Experimental results 

In this section, we provide a quantitative and 
qualitative evaluation of our framework. 

5.1 Experimental Setup 

We used Minipar (Lin 1994), a broad coverage 
parser, to parse two 3GB corpora (TREC-9 and 
TREC-2002). We collected the frequency counts 
of the grammatical relations (contexts) output by 
Minipar and used these to construct the lexical 
feature vectors as described in Section 3. 

WordNet 2.0 served as our testing ontology. 
Using the algorithm presented in Section 4, we 
induced ontological feature vectors for the noun 
nodes in WordNet using the lexical co-occurrence 
features from the TREC-2002 corpus. Due to 

memory limitations, we were only able to propa-
gate features to one quarter of the ontology. We 
experimented with both the Shared and Commit-
tee propagation models described in Section 4.1. 

5.2 Quantitative evaluation 

To evaluate the resulting ontological feature vec-
tors, we considered the task of attaching new 
nodes into the ontology. To automatically evalu-
ate this, we randomly extracted a set of 1000 
noun leaf nodes from the ontology and accumu-
lated lexical feature vectors for them using the 
TREC-9 corpus (a separate corpus than the one 
used to propagate features, but of the same 
genre). We experimented with two test sets: 

• Full: The 424 of the 1000 random nodes that 
existed in the TREC-9 corpus 

• Subset: Subset of Full where only nodes that do 
not have concept siblings are kept (380 nodes). 

For each random node, we computed the simi-
larity of the node with each concept node in the 
ontology by computing the cosine of the angle 
(Salton and McGill 1983) between the lexical 
feature vector of the random node ei and the onto-
logical feature vector of the concept nodes ej: 
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We only kept those similar nodes that had a 
similarity above a threshold σ. We experimentally 
set σ = 0.1. 

Top-K accuracy 

We collected the top-K most similar concept 
nodes (attachment points) for each node in the 
test sets and computed the accuracy of finding a 
correct attachment point in the top-K list. Table 1 
shows the result. 

We expected the algorithm to perform better 
on the Subset data set since only concepts that 
have exclusively lexical children must be consid-
ered for attachment. In the Full data set, the algo-
rithm must consider each concept in the ontology 
as a potential attachment point. However, consid-
ering the top-5 best attachments, the algorithm 
performed equally well on both data sets.  

The Shared propagation algorithm performed 
consistently slightly better than the Committee 
method. As described in Section 4.1, building a 
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committee performs best for concepts with many 
children. Since many nodes in WordNet have few 
direct children, the Shared propagation method is 
more appropriate. One possible extension of the 
Committee propagation algorithm is to find com-
mittee members from the full list of descendants 
of a node rather than only its immediate children. 

Precision and Recall 

We computed the precision and recall of our sys-
tem on varying numbers of returned attachments. 
Figure 5 and Figure 6 show the attachment preci-
sion and recall of our system when the maximum 
number of returned attachments ranges between 1 
and 5. In Figure 5, we see that the Shared propa-
gation method has better precision than the 
Committee method. Both methods perform simi-
larly on recall. The recall of the system increases 
most dramatically when returning two attach-
ments without too much of a hit on precision. The 
low recall when returning only one attachment is 
due to both system errors and also to the fact that 
many nodes in the hierarchy are polysemous. In 
the next section, we discuss further experiments 

on polysemous nodes. Figure 6 illustrates the 
large difference on both precision and recall 
when using the simpler Subset data set. All 95% 
confidence bounds in Figure 5 and Figure 6 range 
between ±2.8% and ±5.3%. 

Polysemous nodes 

84 of the nodes in the Full data set are polyse-
mous (they are attached to more than one concept 
node in the ontology). On average, these nodes 
have 2.6 senses for a total of 219 senses. Figure 7 
compares the precision and recall of the system 
on all nodes in the Full data set vs. the 84 
polysemous nodes. The 95% confidence intervals 
range between ±3.8% and ±5.0% for the Full data 
set and between ±1.2% and ±9.4% for the 
polysemous nodes. The precision on the polyse-
mous nodes is consistently better since these have 
more possible correct attachments. 

Clearly, when the system returns at most one 
or two attachments, the recall on the polysemous 
nodes is lower than on the Full set. However, it is 
interesting to note that recall on the polysemous 
nodes equals the recall on the Full set after K=3. 

Table 1. Correct attachment point in the top-K attachments (with 95% conf.) 

K Shared (Full) Committee (Full) Shared (Subset) Committee (Subset) 
1 73.9% ± 4.5% 72.0% ± 4.9% 77.4% ± 3.6% 76.1% ± 5.1% 
2 78.7% ± 4.1% 76.6% ± 4.2% 80.7% ± 4.0% 79.1% ± 4.5% 
3 79.9% ± 4.0% 78.2% ± 4.2% 81.2% ± 3.9% 80.5% ± 4.8% 
4 80.6% ± 4.1% 79.0% ± 4.0% 81.5% ± 4.1% 80.8% ± 5.0% 
5 81.3% ± 3.8% 79.5% ± 3.9% 81.7% ± 4.1% 81.3% ± 4.9% 

 

Figure 5. Attachment precision and recall for the 
Shared and Committee propagation methods when 
returning at most K attachments (on the Full set). 

Precision and Recall (Shared and Committee) vs. 
Number of Returned Attachments
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Figure 6. Attachment precision and recall for the 
Full and Subset data sets when returning at most K 
attachments (using the Shared propagation method). 

130



5.3 Qualitative evaluation 

Inspection of errors revealed that the system often 
makes plausible attachments. Table 2 shows 
some example errors generated by our system. 
For the word arsenic, the system attached it to the 
concept trioxide, which is the parent of the cor-
rect attachment. 

The system results may be useful to help vali-
date the ontology. For example, for the word law, 
the system attached it to the regulation (as an or-
ganic process) and ordinance (legislative act) 
concepts. According to WordNet, law has seven 
possible attachment points, none of which are a 
legislative act. Hence, the system has found that 
in the TREC-9 corpus, the word law has a sense 
of legislative act. Similarly, the system discov-
ered the symptom sense of vomiting. 

The system discovered a potential anomaly in 
WordNet with the word slob. The system classi-
fied slob as follows: 

fool  simpleton  someone 

whereas WordNet classifies it as: 
vulgarian  unpleasant person  unwel-
come person  someone 

The ontology could use this output to verify if 
fool should link in the unpleasant person subtree. 

Capitalization is not very trustworthy in large 
collections of text. One of our design decisions 
was to ignore the case of words in our corpus, 
which in turn caused some errors since WordNet 
is case sensitive. For example, the lexical node 
Munch (Norwegian artist) was attached to the 
munch concept (food) by error because our sys-
tem accumulated all features of the word Munch 
in text regardless of its capitalization. 

6 Discussion 

One question that remains unanswered is how 
clean an ontology must be in order for our meth-
odology to work. Since the structure of the ontol-
ogy guides the propagation of features, a very 
noisy ontology will result in noisy feature vec-
tors. However, the framework is tolerant to some 
amount of noise and can in fact be used to correct 
some errors (as shown in Section 5.3). 

We showed in Section 1 how our framework 
can be used to disambiguate lexical-semantic re-
sources like hyponym lists, verb relations, and 

unknown words or terms. Other avenues of future 
work include: 

Adapting/extending existing ontologies 
It takes a large amount of time to build resources 
like WordNet. However, adapting existing re-
sources to a new corpus might be possible using 
our framework. Once we have enriched the on-
tology with features from a corpus, we can rear-
range the ontological structure according to the 
inter-conceptual similarity of nodes. For example, 
consider the word computer in WordNet, which 
has two senses: a) a machine; and b) a person 
who calculates. In a computer science corpus, 
sense b) occurs very infrequently and possibly a 
new sense of computer (e.g. a processing chip) 
occurs. A system could potentially remove sense 
b) since the similarity of the other children of b) 
and computer is very low. It could also uncover 
the new processing chip sense by finding a high 
similarity between computer and the processing 
chip concept. 

Validating ontologies 
This is a holy grail problem in the knowledge 
representation community. As a small step, our 
framework can be used to flag potential anoma-
lies to the knowledge engineer. 

What makes a chair different from a recliner? 
Given an enriched ontology, we can remove from 
the feature vectors of chair and recliner those 
features that occur in their parent furniture con-
cept. The features that remain describe their dif-
ferent syntactic behaviors in text. 

Figure 7. Attachment precision and recall on the 
Full set vs. the polysemous nodes in the Full set 
when the system returns at most K attachments. 
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7 Conclusions 

We presented a framework for inducing ontologi-
cal feature vectors from lexical co-occurrence 
vectors. Our method does not require the disam-
biguation of text. Instead, it relies on the principle 
of distributional similarity and the fact that 
polysemous words that are similar in one sense 
tend to be dissimilar in their other senses. On the 
task of attaching new words to WordNet using 
our framework, our experiments showed that the 
first attachment has 73.9% accuracy and that a 
correct attachment is in the top-5 attachments 
with 81.3% accuracy. 

We believe this work to be useful for a variety 
of applications. Not only can sense selection tasks 
such as word sense disambiguation, parsing, and 
semantic analysis benefit from our framework, 
but more inference-oriented tasks such as ques-
tion answering and text summarization as well.  
We hope that this work will assist with the devel-
opment of other large-scale and internally consis-
tent collections of semantic information. 
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Table 2. Example attachment errors by our system. 

Node System 
Attachment 

Correct  
Attachment 

arsenic* trioxide arsenic OR element 
law regulation law OR police OR … 
Munch† munch Munch 
slob fool slob 
vomiting fever emesis 

* the system’s attachment was a parent of the correct attachment. 
† error due to case mix-up (our algorithm does not differentiate 
between case). 
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