Pseudo-Projective Dependency Parsing

Joakim Nivre and Jens Nilsson
School of Mathematics and Systems Engineering
Vaxjo University
SE-35195 \axjo, Sweden

{nivre,jni

Abstract

In order to realize the full potential of

dependency-based syntactic parsing, it is
desirable to allow non-projective depen-
dency structures. We show how a data-
driven deterministic dependency parser,
in itself restricted to projective structures,

can be combined with graph transforma-
tion techniques to produce non-projective

}@msi.vxu.se

structures makes the parsing problem more com-
plex and therefore compromises efficiency and in
practice also accuracy and robustness. Thus, most
broad-coverage parsers based on dependency gram-
mar have been restricted to projective structures.
This is true of the widely used link grammar parser
for English (Sleator and Temperley, 1993), which
uses a dependency grammar of sorts, the probabilis-
tic dependency parser of Eisner (1996), and more
recently proposed deterministic dependency parsers

(Yamada and Matsumoto, 2003; Nivre et al., 2004).
It is also true of the adaptation of the Collins parser
for Czech (Collins et al., 1999) and the finite-state
dependency parser for Turkish by Oflazer (2003).

structures. Experiments using data from
the Prague Dependency Treebank show
that the combined system can handle non-
projective constructions with a precision
sufficient to yield a significant improve-
ment in overall parsing accuracy. This
leads to the best reported performance for
robust non-projective parsing of Czech.

This is in contrast to dependency treebanks, e.g.
Prague Dependency Treebank (idagt al., 2001b),
Danish Dependency Treebank (Kromann, 2003),
and the METU Treebank of Turkish (Oflazer et al.,
2003), which generally allow annotations with non-
projective dependency structures. The fact that pro-
jective dependency parsers can never exactly repro-
It is sometimes claimed that one of the advantagehice the analyses found in non-projective treebanks
of dependency grammar over approaches based igroften neglected because of the relative scarcity of
constituency is that it allows a more adequate treaproblematic constructions. While the proportion of
ment of languages with variable word order, whersentences containing non-projective dependencies is
discontinuous syntactic constructions are more conoften 15-25%, the total proportion of non-projective
mon than in languages like English (M&lk, arcs is normally only 1-2%. As long as the main
1988; Covington, 1990). However, this argumenevaluation metric is dependency accuracy per word,
is only plausible if the formal framework allows with state-of-the-art accuracy mostly below 90%,
non-projective dependency structures, i.e. structurése penalty for not handling non-projective construc-
where a head and its dependents may correspotions is almost negligible. Still, from a theoretical
to a discontinuous constituent. From the point opoint of view, projective parsing of non-projective
view of computational implementation this can bestructures has the drawback that it rules out perfect
problematic, since the inclusion of non-projectiveaccuracy even as an asymptotic goal.

1 Introduction

99

Proceedings of the 43rd Annual Meeting of the AGages 99-106,
Ann Arbor, June 200502005 Association for Computational Linguistics

AuxZ

AuxP
AuxP W
Sh
Atr (AuxZ 1 Adv

l l Y
R P VB T C R N4 Z:

Z nich je jen jedna na kvalitu
(Out-of them is only oOnefEM-SG to quality)

(“Only one of them concerns quality.”)

Figure 1: Dependency graph for Czech sentence from the Prague Dependency Freebank

There exist a few robust broad-coverage parsets non-projective structures. We call this pseudo-
that produce non-projective dependency structuregtojective dependency parsing, since itis based on a
notably Tapanainen andinen (1997) and Wang notion of pseudo-projectivity (Kahane et al., 1998).
and Harper (2004) for English, Foth et al. (2004) The rest of the paper is structured as follows.
for German, and Holan (2004) for Czech. In addiin section 2 we introduce the graph transformation
tion, there are several approaches to non-projectivechniques used to projectivize and deprojectivize
dependency parsing that are still to be evaluated thependency graphs, and in section 3 we describe the
the large (Covington, 1990; Kahane et al., 1998&jata-driven dependency parser that is the core of our
Duchier and Debusmann, 2001; Holan et al., 200kystem. We then evaluate the approach in two steps.
Hellwig, 2003). Finally, since non-projective con-First, in section 4, we evaluate the graph transfor-
structions often involve long-distance dependenciemation technigues in themselves, with data from the
the problem is closely related to the recovery oPrague Dependency Treebank and the Danish De-
empty categories and non-local dependencies pendency Treebank. In section 5, we then evaluate
constituency-based parsing (Johnson, 2002; Diend#® entire parsing system by training and evaluating
and Dubey, 2003; Jijkoun and de Rijke, 2004; Cahilbn data from the Prague Dependency Treebank.

et al., 2004; Levy and Manning, 2004; Campbell,)
2004). 2 Dependency Graph Transformations

In this paper, we show how non-projective depenwe assume that the goal in dependency parsing is to
dency parsing can be achieved by combining a dataenstruct a labeled dependency graph of the kind de-
driven projective parser with special graph transforpicted in Figure 1. Formally, we define dependency
mation techniques. First, the training data for thgraphs as follows:
parser is projectivized by applying a minimal num- LetR = {r
ber of lifting operations (Kahane et al., 1998) and ’
encoding information about these lifts in arc labels.
When the parser is trained on the transformed data,2. A dependency graph for a string of words
it will ideally learn not only to construct projective W = w;---w, is a labeled directed graph
dependency structures but also to assign arc labels D = (W, A), where
that encode information about lifts. By applying an
inverse transformation to the output of the parser,
arcs with non-standard labels can be lowered to their
proper place in the dependency graph, giving rise

..., m} be the set of permissible
dependency types (arc labels).

(a) W is the set of nodes, i.e. word tokens in
the input string, ordered by a linear prece-
dence relatiorg,

(b) Aisasetoflabeled ardsv;, r, w;), where

—Y -) wi,wj € W,r € R,

The dependency graph has been modified to make the final .
period a dependent of the main verb instead of being a depen- (c) for everyw; € W, there is at most one arc
dent of a special root node for the sentence. (ws, r,wj) € A,

100

AuxZ

AuxP
AuxP Shb
Atr ‘ ‘ AuxZ Adv
R P VB T C R N4 Z.
Z nich je jen jedna na kvalitu
(Out-of them is only onefEM-SG to quality)

(“Only one of them concerns quality.”)

Figure 2: Projectivized dependency graph for Czech sentence

3. AgraphD = (W, A) is well-formed iff it is unique in a well-formed dependency graph), unless
acyclic and connected. wj is aroot in which case the operation is undefined
(but thenw; — wy, is necessarily projective if the
dependency graph is well-formed).
_ . Projectivizing a dependency graph by lifting non-
the notationw; — w; to mean thatw;, 7, w;) € A; projective arcs is a nondeterministic operation in the
we also usev; — w; to denote an arc with Unspeci- general case. However, since we want to preserve
fied label andv; —* w; for the reflexive and transi- 55 mych of the original structure as possible, we
tive closure of the (unlabeled) arc relation. are interested in finding a transformation that in-
The dependency graph in Figure 1 satisfies all thgjyes a minimal number of lifts. Even this may
defining conditions above, but it fails to satisfy the,g nondeterministic, in case the graph contains sev-
condition of projectivity (Kahane et al., 1998): eral non-projective arcs whose lifts interact, but we
—wy, is projective iff, for every word use thg following algo.rithm to construct a minimal
g projective transformatio’ = (W, A’) of a (non-
projective) dependency gragh = (W, A):

If (ws,r,w;) € A, we say thatw; is the head ofv,
andw; a dependent of;. In the following, we use

1. Anarcw;
w; occurring betweem; andwy, in the strin
(wi <w; <wg Or w; > wj >wk), w; —* Wy .

2. A dependency grapP = (W, A) is projective PROJECTIVIZEW, A)

iff every arc inA is projective. 1A - A) o
2 while (W, A") is non-projective
The arc connecting the hegetna(one) to the de- 3 a < SMALLEST-NONP-ARC(A")
pendentZ (out-of) spans the tokeje (is), which is 4 A — (A —A{a}) U{LIFT(a)}
not dominated byedna 5 return (W, A")

As observed by Kahane et al. (1998), any (non-

projective) dependency graph can be transformel’® function $ALLEST-NONP-ARC returns the
into a projective one by a lifting operation, whichnon-projective arc with the shortest distance from

replaces each non-projective arg — wj, by a pro- head _to dependen_t (breaking ties from left to right).
jective arcw; — wy, such thatw; —* w; holds in Applying the function ROJECTIVIZE to the graph

the original graph. Here we use a slightly different Figure 1 yields the graph in Figure 2, where the

notion of lift, applying to individual arcs and moving proble_m_atlc arc pointing (@ has been_ lifted f_rom
their head upwards one step at a time: the orlgl_nal headednato the ancestoje. Using
the terminology of Kahane et al. (1998), we say that
wi — wy if w; — w; jednais thesyntactic heaf Z, while jeis itslinear
LIFT(w; — wg) undefined otherwise headin the projectivized representation.
Unlike Kahane et al. (1998), we do not regard a
Intuitively, lifting an arc makes the word; depen- projectivized representation as the final target of the

dent on the head; of its original headuv; (whichiis parsing process. Instead, we want to apply an in-

101

Lifted arc label Path labels Number of labels

Baseline d P n
Head dth P n(n+1)
Head+Path dTh pl 2n(n+1)
Path dl pl 4dn

Table 1: Encoding schemes £ dependent; = syntactic heady = path;n = number of dependency types)

verse transformation to recover the underlying (normation on path labels but drop the information about
projective) dependency graph. In order to facilitatéhe syntactic head of the lifted arc, using the labjel
this task, we extend the set of arc labels to encodestead ofdTh (AuxP7 instead of AuxPSb).
information about lifting operations. In principle, it As can be seen from the last column in Table 1,
would be possible to encode the exact position of theoth Head and Head+Path may theoretically lead
syntactic head in the label of the arc from the lineato a quadratic increase in the number of distinct arc
head, but this would give a potentially infinite set oflabels Head+Pathbeing worse thaiead only by
arc labels and would make the training of the parsex constant factor), while the increase is only linear in
very hard. In practice, we can therefore expect the case oPath. On the other hand, we can expect
trade-off such that increasing the amount of inforHead+Pathto be the most useful representation for
mation encoded in arc labels will cause an increageconstructing the underlying non-projective depen-
in the accuracy of the inverse transformation but dency graph. In approaching this problem, a vari-
decrease in the accuracy with which the parser casty of different methods are conceivable, including
construct the labeled representations. To explore thrésmore or less sophisticated use of machine learn-
tradeoff, we have performed experiments with threing. In the present study, we limit ourselves to an
different encoding schemes (plus a baseline), whidigorithmic approach, using a deterministic breadth-
are described schematically in Table 1. first search. The details of the transformation proce-
The baseline simply retains the original labels fodure are slightly different depending on the encod-
all arcs, regardless of whether they have been lifteédg schemes:
or not, and the number of distinct labels is therefore dth
simply the numben of distinct dependency typ&s. ~ ® Head: For every arc of the formw; — wy,
In the first encoding scheme, callétbad, we use
a new labeldTh for each lifted arc, wherd is the

we search the graph top-down, left-to-right,
breadth-first starting at the head nadg If we

dependency relation between the syntactic head and
the dependent in the non-projective representation,
and h is the dependency relation that the syntactic
head has to its own head in the underlying structure.
Using this encoding scheme, the arc frgento Z

in Figure 2 would be assigned the label AG:SH .
(signifying an AuxP that has been lifted from a Sb).

In the second schemelead+Path we in addition
modify the label of every arc along the lifting path
from the syntactic to the linear head so that if the
original label isp the new label i®|. Thus, thearc e
from je to jednawill be labeledSb| (to indicate that
there is a syntactic head below it). In the third and
final scheme, denotdeath, we keep the extra infor-

2Note that this is a baseline for the parsing experiment onl

(Experiment 2). For Experiment 1 it is meaningless as a bas
line, since it would result in 0% accuracy.

102

find an arcu; LR wm,, called atarget arg we
dth

d) .
— wy, by w,, — w,; otherwise

dih
—

replacew;
we replacew; wy, by w; <, w, (i.e. we
let the linear head be the syntactic head).

Head+Path: Same asHead, but the search
only follows arcs of the formu; LZN wi and a

target arc must have the form 2R Wy, IfNO
target arc is foundilead is used as backoff.

Path: Same adHead+Path but a target arc

must have the formy, 2% w,, and no out-

p'l .
— Wo,

going arcs of the fornw,,, no backoff.

In section 4 we evaluate these transformations with
g_espect to projectivized dependency treebanks, and
in section 5 they are applied to parser output. Before

Feature type Top—1 Top Next Next+1 Next+2 Next+3

Word form + + + +
Part-of-speech + + + + + +
Dep type of head +

leftmost dep + +

rightmost dep +

Table 2: Features used in predicting the next parser action

we turn to the evaluation, however, we need to intromost dependent of the next input token, dependency
duce the data-driven dependency parser used in ttype features are limited to tokens on the stack.

latter experiments. The prediction based on these features is-a
. nearest neighbor classification, using tb& algo-
3 Memory-Based Dependency Parsing rithm andk = 5, the modified value difference met-

In the experiments below, we employ a data-driveAC (MVDM) and class voting with inverse distance
deterministic dependency parser producing labeléeighting, as implemented in the TIMBL software
projective dependency graphgreviously tested on Package (Daelemans et al., 2003). More details on
Swedish (Nivre et al., 2004) and English (Nivre andn€ memory-based prediction can be found in Nivre
Scholz, 2004). The parser builds dependency grapRsal- (2004) and Nivre and Scholz (2004).

by traversing the input from left to right, using a _)
stack to store tokens that are not yet complete with EXperiment 1: Treebank Transformation

respect to their dependents. At each point during t.h1ehe first experiment uses data from two dependency

derivation, the parser has a choice between pushin
the next input token onto the stack — with or With_tr%ebanks. The Prague Dependency Treebank (PDT)

out adding an arc from the token on top of the stac&onSIStS of more than 1M words of newspaper text,

0 the token pushed — and popping a token from tfnnotated on three levels, the morphological, ana-

stack — with or without adding an arc from the nex ytical and tectogrammatical levels (H&ji 1998).

input token to the token popped. More details on the ur experiments all concern the analytical annota-

parsing algorithm can be found in Nivre (2003). tlon,.and the first experl'ment is based only on the
; . . S training part. The Danish Dependency Treebank
The choice between different actions is in gener .
o . DT) comprises about 100K words of text selected
nondeterministic, and the parser relies on a memor

o . rom the Danish PAROLE corpus, with annotation
based classifier, trained on treebank data, to prgf rimary and secondary dependencies (Kromann
dict the next action based on features of the cur: P y y dep ’

. . 2003). The entire treebank is used in the experiment,
rent parser configuration. Table 2 shows the features ; . .
(Eut only primary dependencies are considéredd.

used in the current version of the parser. At eac
) : - Co Il experiments, punctuation tokens are included in
point during the derivation, the prediction is base ! . .
he data but omitted in evaluation scores.

on six word tokens, the two topmost tokens on the) i
stack, and the next four input tokens. For each to- In the first part of the expenmen_t, d-ependen_cy
ken, three types of features may be taken into ag_raphs from the treebanks were projectivized using

count: the word form; the part-of-speech assigne@e algorithm described in section 2. As shown in
by an automatic tagger: and labels on previously a;l"_able 3, the proportion of sentences containing some

signed dependency arcs involving the token —the a_ﬂ?n-projective dependency ranges from about 15%

04 | -
from its head and the arcs to its leftmost and right‘-n DDT to almost 25% in PDT. However, the over

[. 0
most dependent, respectively. Except for the Ieft@” percentage of non prOJecyve arcs is less than 2%
in PDT and less than 1% in DDT. The last four

3The graphs satisfy all the well-formedness conditions give
in section 2 except (possibly) connectedness. For robustness *If secondary dependencies had been included, the depen-
reasons, the parser may output a set of dependency trees instdadcy graphs would not have satisfied the well-formedness con-
of a single tree. ditions formulated in section 2.

103

Lifts in projectivization
Data set \ # Sentences % NonH # Tokens % NonP 1 2 3 >3

PDT training 73,088 23.15 1,255,333 1.81 93.79 5.60 0.51 0.11
DDT total 5,512 15.48, 100,238 0.94 79.49 13.28 4.36 2.87

Table 3: Non-projective sentences and arcs in PDT and DDT (NonP = non-projective)

Data set | Head | H+P | Path
PDT training (28 labels) 92.3 (230)| 99.3 (314)| 97.3 (84)
DDT total (54 labels) | 92.3 (123)| 99.8 (147)| 98.3 (99)

Table 4: Percentage of non-projective arcs recovered correctly (number of labels in parentheses)

columns in Table 3 show the distribution of non-sentences and 125,713 tokénJhe inverse trans-
projective arcs with respect to the number of liftformation was applied to the output of the parsers
required. It is worth noting that, although non-and the result compared to the gold standard test set.
projective constructions are less frequent in DDT Table 5 shows the overall parsing accuracy at-
than in PDT, they seem to be more deeply nestethined with the three different encoding schemes,
since only about 80% can be projectivized with a&ompared to the baseline (no special arc labels) and
single lift, while almost 95% of the non-projectiveto training directly on non-projective dependency
arcs in PDT only require a single lift. graphs. Evaluation metrics used are Attachment
In the second part of the experiment, we applie§core (AS), i.e. the proportion of tokens that are at-
the inverse transformation based on breadth-firtached to the correct head, and Exact Match (EM),
search under the three different encoding schemés. the proportion of sentences for which the depen-
The results are given in Table 4. As expected, théency graph exactly matches the gold standard. In
most informative encoding;iead+Path gives the the labeled version of these metrics (L) both heads
highest accuracy with over 99% of all non-projectiveand arc labels must be correct, while the unlabeled
arcs being recovered correctly in both data setgersion (U) only considers heads.
However, it can be noted that the results for the least The first thing to note is that projectivizing helps
informative encodingPath, are almost comparable, in itself, even if no encoding is used, as seen from
while the third encodingHead, gives substantially the fact that the projective baseline outperforms the
worse results for both data sets. We also see thaon-projective training condition by more than half
the increase in the size of the label setsftwad a percentage point on attachment score, although the
and Head+Path is far below the theoretical upper gain is much smaller with respect to exact match.
bounds given in Table 1. The increase is genefrhe second main result is that the pseudo-projective
ally higher for PDT than for DDT, which indicates aapproach to parsing (using special arc labels to guide
greater diversity in non-projective constructions. an inverse transformation) gives a further improve-
ment of about one percentage point on attachment
5 Experiment 2: Memory-Based Parsing score. With respect to exact match, the improvement

. o is even more noticeable, which shows quite clearly
The second experiment is limited to data from PDT.yat even if non-projective dependencies are rare on

The training part of the treebank was projectivizeéghg oken level, they are nevertheless important for
under different encoding schemes and used 10 traifyting the global syntactic structure correct.
memory-based dependency parsers, which were runa) improvements over the baseline are statisti-

on the test part of the treebank, consisting of 7,50@a”y significant beyond the 0.01 level (McNemar's

SPreliminary experiments using data from DDT indicated °The part-of-speech tagging used in both training and testing
that the limited size of the treebank creates a severe sparse datss the uncorrected output of an HMM tagger distributed with
problem with respect to non-projective constructions. the treebank; cf. Hajiet al. (2001a).

104

Encoding UAS LAS UEM LEM
Non-projective| 785 71.3 289 20.6

Baseline 79.1 720 29.2 20.7
Head 80.1 728 316 222
Head+Path 80.0 728 318 224
Path 80.0 727 316 220

Table 5: Parsing accuracy (AS = attachment score, EM = exact match; U = unlabeled, L = labeled)

Unlabeled Labeled
Encoding P R F P R F
Head 61.3 54.1 575 55.2 498 524
Head+Path 63.9 54.9 59.0 57.9 50.6 54.0
Path 58.2 495 534 51.0 45.7 48.2

Table 6: Precision, recall and F-measure for non-projective arcs

test). By contrast, when we turn to a comparisod999), this parser reaches 82% when trained on the
of the three encoding schemes it is hard to find angntire training data set, and an adapted version of
significant differences, and the overall impression i€harniak’s parser (Charniak, 2000) performs at 84%
that it makes little or no difference which encoding(Jan Haj€, pers. comm.). However, the accuracy is
scheme is used, as long as there is some indicationnsiderably higher than previously reported results
of which words are assigned their linear head insteddr robust non-projective parsing of Czech, with a
of their syntactic head by the projective parser. Thibest performance of 73% UAS (Holan, 2004).

may seem surprising, given the experiments reported Compared to related work on the recovery of
in section 4, but the explanation is probably that théong-distance dependencies in constituency-based
non-projective dependencies that can be recoveredgarsing, our approach is similar to that of Dienes
all are of the simple kind that only requires a singleand Dubey (2003) in that the processing of non-local
lift, where the encoding of path information is oftendependencies is partly integrated in the parsing pro-
redundant. It is likely that the more complex casesess, via an extension of the set of syntactic cate-
where path information could make a difference, argories, whereas most other approaches rely on post-
beyond the reach of the parser in most cases. processing only. However, while Dienes and Dubey

However, if we consider precision, recall and Ff€cognize empty categories in a pre-processing step
measure on non-projective dependencies only, &a&d only let the parser find their antecedents, we use
shown in Table 6, some differences begin to emergg]e parser both to detect dislocated dependents and
The most informative scheméjead+Path, gives © predict either the type or the location of their syn-
the highest scores, although with respectHiead tactic head (or both) and use post-processing only to
the difference is not statistically significant, whiletransform the graph in accordance with the parser's
the least informative schem@ath — with almostthe analysis.
same performance on treebank transformation — is
significantly lower < 0.01). On the other hand,
given that all schemes have similar parsing accuragye have presented a new method for non-projective
overall, this means that theath scheme is the least dependency parsing, based on a combination of
likely to introduce errors on projective arcs.

Conclusion

data-driven projective dependency parsing and

The overall parsing accuracy obtained with thgraph transformation techniques. The main result is
pseudo-projective approach is still lower than for théhat the combined system can recover hon-projective
best projective parsers. Although the best publishatkpendencies with a precision sufficient to give a
results for the Collins parser is 80% UAS (Collins significant improvement in overall parsing accuracy,

105

especially with respect to the exact match criterioriajic, J., Vidova Hladka, B., PanevayJ., Hajtova, E., Sgall,
leading to the best reported performance for robust P @nd Pajas, P. 2001. Prague Dependency Treebank 1.0.

S . LDC, 2001T10.
non-projective parsing of Czech.
Hajic, J. 1998. Building a syntactically annotated corpus:
Acknowledgements The Prague Dependency Treebanklssues of Valency and
Meaning pages 106-132. Karolinum.

This work was supported in part by the Swedisheliwig, P. 2003. Dependency unification grammarDiepen-
Research Council (621-2002-4207). Memory-based dency and Valencyages 593-635. Walter de Gruyter.

classifiers for the experiments were created usinNgplan, T., Kubdi, V. and Patek, M. 2001. Word-order re-

TiIMBL (Daelemans et al., 2003). Special thanks to laxations and restrictions within a dependency grammar. In
ic i ; Proceedings of IWPT

Jan Haj€¢ and Matthias Trautner Kromann for assis-

tance with the Czech and Danish data, respectiveljolan, T. 2004. Tvorba zavislostniho syntaktickeho analyza-

and to Jan Haq'j, Tomés Holan, Dan Zeman and toru. InProceedings of MIS'2004

three anonymous reviewers for valuable commenggkoun, V. and de Rijke, M. 2004. Enriching the output of

. . a parser using memory-based learning. Proceedings of
on a preliminary version of the paper. Acpl_ 9 y 9 9

Johnson, M. 2002. A simple pattern-matching algorithm for re-
References covering empty nodes and their antecedent®roteedings

. . of ACL
Cahill, A., Burke, M., O'Donovan, R., Van Genabith, J. and

Way, A. 2004. Long-distance dependency resolution irkKahane, S., Nasr, A. and Rambow, O. 1998. Pseudo-
automatically acquired wide-coverage PCFG-based LFG ap- projectivity: A polynomially parsable non-projective depen-
proximations. InProceedings of ACL dency grammar. IProceedings of ACL-COLING

Campbell, R. 2004. Using linguistic principles to recoverkromann, M. T. 2003. The Danish Dependency Treebank and
empty categories. IRroceedings of ACL the DTAG treebank tool. IiProceedings of TLT 2003

Charniak, E. 2000. A maximum-entropy-inspired parser. Ift€Y: R. and Manning, C. 2004. Deep dependencies from
Proceedings of NAACL context-free statistical parsers: Correcting the surface depen-

dency approximation. IRroceedings of ACL

Collins, M., Haji&, J., Brill, E., Ramshaw, L. and Tillmann, C. Mel

1999. A statistical parser for Czech. Pnoceedings of ACL Cuk, 1. 1988. Dependency Syntax: Theory and Practice

State University of New York Press.

CO”inS, M. 1999.Head-Driven Statistical Models for Natural Nivre, J. and Scholz’ M. 2004. Deterministic dependency pars-
Language ParsingPh.D. thesis, University of Pennsylvania. ing of English text. InProceedings of COLING

Covington, M. A. 1990. Parsing discontinuous constituents ifNivre, J., Hall, J. and Nilsson, J. 2004. Memory-based depen-
dependency grammakComputational Linguistics16:234— dency parsing. IiProceedings of CoNLL

236.
Nivre, J. 2003. An efficient algorithm for projective depen-

Daelemans, W., Zavrel, J., van der Sloot, K. and van den Bosch, dency parsing. liProceedings of IWPT

A. 2003. TiMBL: Tilburg Memory Based Learner, version L
- - . Oflazer, K., Say, B., Hakkanidr, D. Z. and Tr, G. 2003.
5.0, Reference Guide. Technical Report ILK 03-10, Tilburg Building a Turkish treebank. Iidreebanks: Building and

University, ILK. Using Parsed Corporapages 261-277. Kluwer Academic

Dienes, P. and Dubey, A. 2003. Deep syntactic processing by Publishers.

combining shallow methods. Rroceedings of ACL Oflazer, K. 2003. Dependency parsing with an extended finite-

Duchier, D. and Debusmann, R. 2001. Topological dependency state approacfComputational Linguistics29:515-544.

trees: A constraint-based account of linear precedence. Bleator, D. and Temperley, D. 1993. Parsing English with a
Proceedings of ACL link grammar. InProceedings of IWPT

Eisner, J. M. 1996. Three new probabilistic models for depenfapanainen, P. an@dvinen, T. 1997. A non-projective depen-
dency parsing: An exploration. Proceedings of COLING dency parser. lProceedings of ANLP

Foth, K., Daum, M. and Menzel, W. 2004. A broad-coveragéVang, W. and Harper, M. P. 2004. A statistical constraint
parser for German based on defeasible constraint®rdn dependency grammar (CDG) parser. Aroceedings of the
ceedings of KONVENS Workshop in Incremental Parsing (ACL)

. . . Yamada, H. and Matsumoto, Y. 2003. Statistical dependency
Hajic, J., Krbec, P., Oliva, K., Kveton, P. and Petkevic, V. 2001. analysis with support vector machines. moceedings of

Serial combination of rules and statistics: A case study in WPT
Czech tagging. IfProceedings of ACL)

106

