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Abstract

We describean automatic Word Sense
Disambiguation(WSD) systemthat dis-
ambiguatesverb sensesusing syntactic
and semanticfeaturesthat encodeinfor-
mationaboutpredicateargumentsandse-
mantic classes. Our systemperformsat
thebestpublishedaccurag ontheEnglish
verbsof Senseal-2. We alsoexperiment
with using the gold-standardpredicate-
agumentlabels from PropBankfor dis-
ambiguatingine-grainedNordNetsenses
and course-grained’ropBankframesets,
and shav that disambiguationof verb
sensexan be further improved with bet-
terextractionof semantiaoles.

1 Introduction

A word can have different meaningsdepending
on the contet in which it is used. Word Sense
Disambiguation(WSD) is the task of determining
the correct meaning(“sense”) of a word in con-
text, andseveral efforts have beenmadeto develop
automaticWSD systems. Early work on WSD
(Yarawvsky, 1995)was successfufor easily distin-
guishablehomoryms like bank, which have multi-
ple unrelatedneaningsWhile homorymsarefairly
tractable highly polysemousrerbs,which have re-
lated but subtly distinct sensesposethe greatest
challengefor WSD systemgPalmeretal., 2001).
Verbsaresyntacticallycomple, andtheir syntax
is thoughtto be determinedby their underlyingse-
mantics(Grimshav, 1990;Levin, 1993).Levin verb
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classesfor example,are basedon the ability of a
verb to occurin pairs of syntacticframes(diathe-
sisalternations)differentsense®f averbbelongto
differentverb classeswhich have different setsof
syntacticframesthat are supposedo reflectunder
lying semanticcomponentshatconstrainallowable
amguments.If thisis true, thenthe correctsenseof
a verb shouldbe revealed(at leastpatrtially) in its
arguments.

In this paperwe shav that the performanceof
automaticWSD systemscan be improved by us-
ing richer linguistic featuresthat captureinforma-
tion about predicateargumentsand their semantic
classes. We describeour approachto automatic
WSD of verbsusing maximumentropy modelsto
combineinformationfrom lexical collocations syn-
tax, and semanticclass constraintson verb argu-
ments. The systemperformsat the bestpublished
accurag on the English verbs of the Senseal-2
(Palmer et al., 2001) exercise on evaluating au-
tomatic WSD systems. The Senseal-2 verb in-
stancedave beenmanuallytaggedwith their Word-
Net senseand comeprimarily from the PennTree-
bankWSJ.The WSJcorpushasalsobeenmanually
annotatedor predicateargumentsas part of Prop-
Bank (Kingskury and Palmer 2002),andthe inter
sectionof PropBankandSenseal-2 formsa corpus
containing gold-standardannotationsof WordNet
sensesindPropBanksemantiaole labels.This pro-
videsa unigueopportunityto investigatetherole of
predicateargumentsin verb sensedisambiguation.
We shaw that our systems accurag improves sig-
nificantly by addingfeaturedrom PropBankwhich
explicitly encodeghe predicate-ajumentinforma-
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tion that our original setof syntacticand semantic
classfeaturesattemptedo capture.

2 Basic automatic system

Our WSD systemwashbuilt to combineinformation
from mary differentsourcesusingasmuchlinguis-
tic knowledge as could be gatheredautomatically
by NLP tools. In particular our goal wasto see
the extentto which sense-taggingf verbscould be
improved by addingfeaturesthat captureinforma-
tion aboutpredicate-gyjumens and selectionalre-
strictions.

We usedthe Mallet toolkit (McCallum,2002)for
learning maximumentroy modelswith Gaussian
priors for all our experiments. In orderto extract
the linguistic featuresnecessaryor the models,all
sentencesontainingthe targetword wereautomat-
ically part-of-speech-tagdeusing a maximumen-
tropy tagger(Ratnaparkhi,1998) and parsedusing
the Collins parser(Collins, 1997). In addition, an
automaticnamedentity tagger(Bikel et al., 1997)
wasrun on the sentence$o map propernounsto a
smallsetof semanticclasses.

2.1 Topical features

We catayorizedthe possiblenodelfeaturesnto top-
ical featuresand several types of local contectual
features. Topical featuresfor a verb in a sentence
look for the presenceof keywords occurring any-
wherein thesentencandary surroundingsentences
provided ascontet (usuallyoneor two sentences).
Thesefeaturesare supposedo shav the domainin
whichtheverbis beingused sincesomeverbsenses
areusedin only certaindomains. The setof key-
wordsis specificto eachverb lemmato be disam-
biguatedandis determinedgutomaticallyfrom train-
ing datasoasto minimizethe entrogy of the proba-
bility of the sensegsonditionedon the keyword. All
alphabeticcharactersare corverted to lower case.
Wordsoccuringlessthantwice in the training data
or thatarein a stoplist of pronouns prepositions,
andconjunctionsareignored.

Theinclusionor omissionof a particularcompary or prod-
uct implies neitherendorsemennor criticism by NIST. Any
opinions,findings, and conclusionsexpressedare the authors’
own anddo not necessarilyeflectthoseof NIST.

2http://www.d.umn.edu/tpederse/Group01/
WordNet/words.txt
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2.2 Local features

The local featuresfor a verb w in a particularsen-
tencetendto look only within the smallestclause
containingw. They include collocational features
requiring no linguistic preprocessindeyond part-

of-speechagging,syntactic featureshatcapturere-

lations betweenthe verb andits complementsand
semantic featureghatincorporaténformationabout
nounclassedor subjectsandobjects:

Collocational features: Collocationalfeaturege-
fer to orderedsequencesf part-of-speechagsor
word tokensimmediatelysurroundingw. They in-
clude:

e unigramswordsw_s, w_1, Wp, W41, W42 and

partSOf SpeeCI’p—Ql P—-1, Pos P+1, P+2, Where
w; andp; areat positions relatve to w

e bigrams:
P—2P—-1,P—-1P+1, P+1P+2

W_oW—1, W-_1W41, W41W42,

e trigrams: W_ 3w _oW_ 1, W oW _1W41,
W_1WH1 W42, WH1W42W43,  P_3P—2D—1,
P—2P-1P+1, P—1P+1P+2s P+1P+2P+3

Syntactic features: The systemusesheuristicsto
extractsyntacticelementgrom theparseor thesen-
tencecontainingw. Let commandelP bethelow-

estVP thatdominatesy andthatis notimmediately
dominatedby anotherVP, andlet headVP be the
lowest VP dominatingw (SeeFigurel). Thenwe
definethe subject of w to be the leftmost NP sib-
ling of commandeNP, and a complement of w to
be a nodethatis a child of the headVP, excluding
NPswhoseheadis a numberor a nounfrom a list
of commontemporalnouns(“week”, “tomorron”,

“Monday”, etc.). The systemextractsthe following
binary syntacticfeatures:

e |sthesentencgassie?

e |s there a subject,direct object (leftmost NP
complemenbf w), indirectobject(secondeft-
mostNP complementf w), or clausalcomple-
ment(S complemenbf w)?

e Whatis the word (if ary) that is the particle
or headof the subjectdirectobject,or indirect
object?



NP (commander)P

—_
John

VB (head)vVP

|
had
VB NP PP S
pulled theblanlet acrosshecarpet 1o createstatic

Figurel: Exampleparsdreefor w="pulled”, from whichis extractedthe syntacticfeatures morph=normal
subj dobj sent-comp subj=john dobj=blanket prep=across across-obj=car pet.

o If thereis aPPcomplementwhatis the prepo-
sition,andwhatis theobjectof the preposition?

Semantic features:

e Whatis the NamedEntity tag (PERSON,OR-
GANIZATION, LOCATION, UNKNOWN)
for eachpropernounin the syntacticpositions
abore?

e WhatarethepossibleWordNetsynsetandhy-
perryms for eachnoun in the syntacticposi-
tions abore? (Nounsarenot explicitly disam-
biguated;all possiblesynsetsand hyperryms
for thenounareincluded.)

This setof local featuresrelieson accesgo syn-
tactic structureas well as semanticclassinforma-
tion, and attemptsto modelricher linguistic infor-
mation about predicatearguments. However, the
heuristicsfor extracting the syntacticfeaturesare
ableto identify subjectsand objectsof only simple
clauses.The heuristicsalsodo not differentiatebe-
tweenargumentsandadjunctsfor example thefea-
ture sent-comp is intendedto identify clausalcom-
plementssuchasin (S (NP Mary) (VP (VB called)
(S him a bastard))) but Figure 1 shavs how a pur
poseclausecan be mistalenly labeledasa clausal
complement.
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2.3 Evaluation

We testedthe systemon the 1806 testinstancesof
the29verbsfrom the Englishlexical sampleaskfor
Senseal-2 (Palmeretal., 2001). Accuragy wasde-
finedto bethefractionof theinstancegor whichthe
systemgotthecorrectsenseAll significanceesting
betweenrdifferentaccuraciesvasdoneusinga one-
tailed z-test,assuminga binomialdistribution of the
successeglifferencesn accurag wereconsidered
to besignificantif p <= 0.050.

In Senseal-2, sensesnvolving multi-word con-
structionscouldbeidentifieddirectly from thesense
tagsthemseles,andthe headword andsatellitesof
multi-word constructionsvere explicitly markedin
the training and test data. We trained one model
for eachof the verbsand useda filter to consider
only phrasalsensesvheneer therewere satellites
of multi-word constructionsnarkedin thetestdata.

Feature Accuray
co 0.571
co+syn 0.598
cotsyn+sem| 0.625

Table 1: Accuray of systemon Senseal-2 verbs
usingtopical featuresand differentsubsetsf local
features.

Table 1 shaws the accurag of the systemusing
topical featuresand different subsetsof local fea-



tures.Adding featuredrom richerlinguistic sources
alwaysimproves accurag. Adding lexical syntac-
tic (“syn”) featuresmprovesaccurayg significantly
over using just collocational(“co”) features(p =

0.050). Whensemanticclass(“sem”) featuresare
addedtheimprovementis alsosignificant.

Adding topical informationto all the local fea-
turesimprovesaccuray, but not significantly;when
thetopicalfeaturesareremovedthe accurag of our
systemfalls only slightly, to 62.0%. Sensedased
on domainor topic occurrarely in the Senseal-2
corpus. Most of the information provided by topi-
calfeaturesalreadyseento be capturedy thelocal
featuredor thefrequentsenses.

Features Accuray
co+syn 0.598
co+syn+ne 0.597
co+syn+wn 0.623
co+syn+ne+wn 0.625

Table 2: Accuragy of systemon Senseal-2 verbs,
using topical featuresand different subsetsof se-
manticclassfeatures.

Semanticclass information plays a significant
role in sensedistinctions. Table 2 shavs the
relatve contritution of adding only named en-
tity tagsto the collocationaland syntacticfeatures
(“cotsyn+ne”), versus adding only the WordNet
classeq“co+syn+wn”), versusaddingboth named
entity and WordNet classes(“co+syn+ne+wn”).
Addingall possiblewWordNetnounclassfeaturedor
amgumentscontritutesa large numberof parameters
to themodel,but this useof WordNetwith no sepa-
ratedisambiguatiorof nounargumentgprovesto be
very useful. In fact, the useof WordNetfor com-
mon nounsprovesto be even more beneficialthan
the useof a namedentity taggerfor propernouns.
Given enoughdata,the maximumentrofy modelis
ableto assigrhighweightsto thecorrecthyperryms
of the correctnounsensef they representdefining
selectionatestrictions.

Incorporatingtopical keywords aswell ascollo-
cational,syntactic,and semantidocal featuresour
systemachieres 62.5% accurag. This is in com-
parisonto the61.1%accurag achieredby (Leeand
Ng, 2002),which hasbeenthe bestpublishedresult
onthis corpus.
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3 PropBank semantic annotations

OurWSD systenusesheuristicdo attemptto detect
predicateargumentsfrom parsedsentences.How-
ever, recognitionof predicateargumentstructuress
not straightforvard, because naturallanguagewill
have several different syntacticrealizationsof the
samepredicateargumentrelations.

PropBankis a corpusin which verbsare anno-
tatedwith semantictags, including coarse-grained
sense distinctions and predicate-ggjument struc-
tures. PropBankaddsa layer of semanticannota-
tion to the PennWall StreetJournal Treebankil.
An importantgoalis to provide consistenpredicate-
agumentstructuresacrossdifferent syntacticreal-
izationsof thesameverh Polysemouserbsarealso
annotatedwith different framesets. Framesetags
arebasedndifferencesn subcatgorizationframes
andcorrespondo a coarsenotionof word senses.

A verb’s semanticagumentsin PropBankare
numberedigginningwith 0. Arg0is roughly equv-
alentto thethematicrole of Agent,andArgl usually
correspondso Themeor Patient;however, agument
labelsarenot necessarilyconsistenacrosdifferent
sense®f thesameverb,or acrosdifferentverbs,as
thematicrolesare usuallytaken to be. In addition
to thecore,numberedargumentsyerbscantake ary
of asetof generaladjunct-like agumentfARGM),
whoselabels are derved from the Treebankfunc-
tionaltags(DIRection,LOCation,etc.).

PropBank provides manual annotation of
predicate-agumentinformationfor a large number
of verb instancesn the Senseal-2 dataset. The
intersection of PropBank and Senseal-2 forms
a corpus containing gold-standard annotations
of fine-grained WordNet senses, coarse-grained
PropBank framesets,and PropBankrole labels.
The combinationof such gold-standardsemantic
annotationsprovides a unique opportunity to in-
vestigatethe role of predicate-ajumentfeaturesin
word sensalisambiguationfor both coarse-grained
frameset@andfine-grainedNordNetsenses.

3.1 PropBank features

We conductedexperimentson the effect of using
featuresfrom PropBankfor sense-taggingrerbs.
Both PropBankrole labels and PropBankframe-
setswere used. In the caseof role labels,only the



gold-standardabelsfoundin PropBankwereused,
becausehe best automaticsemanticrole labelers
only performatabout84% precisionand75%recall
(Pradharetal., 2004).

Fromthe PropBankannotatiorfor eachsentence,
we extractedthefollowing features:

1. Labels of the semanticroles: rel, ARGO,
ARG1, ARG2-WITH, ARG2, ..., ARGM-
LOC, ARGM-TMP, ARGM-NEG, ...

2. Syntacticlabels of the constituentinstantiat-
ing eachsemanticrole: ARGO=NR ARGM-
TMP=PRARG2-WITH=PR...

3. Head word of each constituent in (2):
rel=called,sats=up ARGO=compay, ARGM-
TMP=day ...

4. Semantic classes (named entity tag,
WordNet hypertryms) of the nouns in
(3): ARGOsyn=ORGANIZAION, AR-
GOsyn=16185ARGM-TMPsyn=13018,..

When a numberedrole appearsin a preposi-
tionalphrasde.g.,ARG2-WITH), wetakethe“head
word” to be the objectof the preposition.If a con-
stituentinstantiatingsomesemanticrole is a trace,
we take the headof its referentinstead.

e [Arqo Mr. Bush]has[,q called][ara1_tor TOr
anagreemenby next Septembeatthelatest].

For example, the PropBank featuresthat we
extractfor the sentencabove are:
a0 arg0=hushamg0syn=persomrg0syn=174Q..
rel rel=called
amgl-foramgl agl=agreemerdrglsyn=12865..

3.2 Rolelabelsfor frameset tagging

We collectedall instancesof the Senseal-2 verbs
from the PropBankcorpus. Only 20 of theseverbs
hadmorethanoneframesein thePropBankcorpus,
resulting in 4887 instancesof polysemousverbs.
The instancedor eachword were partitionedran-
domlyinto 10 equalparts,andthesystemwastested
on each part after being trained on the remain-
ing nine. For these20 verbswith more than one
PropBankframesetag, choosingthe mostfrequent
framesegivesabaselineaccurag of 76.0%.
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The sentenceswere automatically pos-tagged
with the Ratnaparkitagger and parsedwith the
Collins parser We extractedlocal contetual fea-
turesasfor WordNetsense-taggingndusedthe lo-
cal featuredo train our WSD systemon the coarse-
grainedsense-taggingask of automaticallyassign-
ing PropBankframesetags. We testecdthe effect of
usingonly collocationalfeatureq“co”) for frameset
tagging, as well asusing only PropBankrole fea-
tures(“pb”) or only our original syntactic/semantic
features(“synsem”) for this task, and found that
thecombinationof collocationalfeatureswith Prop-
Bank featuresworked best. The systemhas the
worst performanceon the word strike, which hasa
high numberof frameset&ndalow numberof train-
ing instancesTable3 shavs the performancef the
systemon differentsubset®f local features.

Feature Accuray
baseline 0.760
co 0.853
synsem 0.859
co+synsem 0.883
pb 0.901
co+pb 0.908
co+synsem+ph 0.907

Table 3: Accuray of systemon frameset-tagging
task for verbswith more than one frameset,using
differenttypesof local featuregnotopicalfeatures);
all featuresexceptpb wereextractedfrom automati-
cally pos-taggedndparsedsentences.

We obtainedan overall accurag of 88.3%using
our original local contextual features.However, the
systems performancemproved significantlywhen
we usedonly PropBankrole features achieving an
accurag of 90.1%. Furthermore,addingcolloca-
tional featuresand heuristically extracted syntac-
tic/semantideaturedo thePropBankeaturesionot
provide additionalinformationandaffectstheaccu-
ragy of frameset-taggingnly negligibly. It is not
surprisingthat for the coarse-grainedense-tagging
task of assigningthe correct PropBank frameset
tag to a verb, using the PropBankrole labels is
betterthan syntactic/semantiéeaturesheuristically
extractedfrom parsesbecauseheseheuristicsare
meantto capturethe predicate-ggjumentinforma-



tion thatis encodedmoredirectly in the PropBank
role labels.

Even when the original local features were
extracted from the gold-standardpos-taggedand
parsedsentencesf the PennTreebankthe system
performedsignificantlyworsethanwhenPropBank
role featureswvereused. This suggestshatmoreef-
fort shouldbeappliedto improving theheuristicor
extractingsyntacticfeatures.

We also experimentedwith adding topical fea-
turesand ARGM featuresfrom PropBank. In all
casestheseadditionalfeaturesreducedoverall ac-
curag, but the difference was never significant
(p >= 0.100). Topicalfeaturesdo not helpbecause
framesettags are basedon differencesin subcate-
gorizationframesand not on the domainor topic.
ARGM featuresdo not help becausdhey are sup-
posedlyuseduniformly acrossverbsandframesets.

3.3 Rolelabelsfor WordNet sense-tagging

We experimentedwith using PropBankrole labels
for fine-grained WordNet sense-tagging. While
ARGM featuresare not useful for coarse-grained
frameset-taggingsomesensedistinctionsin Word-
Net are basedon adwerbial modifiers,suchas"li ve
well” or “servessomeonavell.” Therefore,we in-
cludedPropBankARGM featuresn our modelsfor
WordNetsense-taggingp capturea wider rangeof
linguistic behaior. We looked atthe2571instances
of 29 Senseal-2 verbsthatwerein both Senseal-2
andthe PropBankcorpus.

Features Accuray
co 0.628
synsem 0.638
co+synsem 0.666
pb 0.656
co+pb 0.681
co+synsem+ph 0.694

Table 4: Accuray of systemon WordNet sense-
taggingfor instancedn both Senseal-2 and Prop-

Bank, usingdifferenttypesof local featuregno top-

ical features).

Table 4 shavs the accurag of the systemon
WordNet sense-taggingising different subsetsof
featuresall featuresexceptpb wereextractedfrom
automaticallypos-taggednd parsedsentencesBy
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addingPropBankrole featuresto our original local
featureset, accurag rosefrom 0.666to to 0.694
on this subsef the Senseal-2 verbs(p = 0.020);
the extraction of syntacticfeaturesfrom the parsed
sentencess againnot successfullycapturingall the
predicate-agument information that is explicit in
PropBank.

The verb “match” illustrateswhy accurag im-
proves using additional PropBank features. As
shavn in Figure 2, the matchedobjectsmay oc-
cur in differentgrammaticalrelationswith respect
to theverb (subjectdirectobject,objectof a prepo-
sition), but they eachhave an ARG1 semanticrole
labelin PropBank® Furthermoreonly one of the
matchedobjectsneedsto be specified,asin Exam-
ple 3 wherethe secondmatchedobject(presumably
thecompan’s prices)is unstated Our heuristicsdo
not handlethesealternationsandcannotdetectthat
thesyntacticsubjectin Examplel hasadifferentse-
manticrole thanthe subjectof Example3.

Rolesetmatch.01 “match”:

ArgO0: personperformingmatch

Argl: matchingobjects

Ex1: [arg1 thewallpaper][,..; matched] 4gc1 the
paint]

EX2: [arco Thearchitect][,.; matched] 4rg1 the
paint] [ 4rg1—wrra With thewallpaper]

Ex3: [4rco Thecompawy] [, matched] 4ra1 Ko-
dak’s higherprices]

Figure2: PropBankrolesetfor “match”

Our basicWSD system(usinglocal featuresex-
tractedfrom automaticparses)confusedWordNet
Sensel with Sensed:

1. match,fit, correspondgcheck,jibe, gibe, tally,
agree — (be compatible, similar or consis-
tent; coincide in their characteristics;“The
two storiesdon't agreein mary details”; “The
handwriting checkswith the signatureon the
check”;“The suspecsfingerprintsdont match
thoseonthegun”)

4. equal, touch, rival, match— (be equalto in

3PropBankannotationfor “match” allows multiple ARG1
labels,onefor eachof the matchingobjects. Otherverbsthat
have morethana single ARG1 in PropBankinclude: “attach,
bolt, coincide ,connectdiffer, fit, link, lock, pin, tack,tie”



quality or ability; “Nothing canrival cottonfor
durability”; “Your performancedoesnt even
touch that of your colleagues”;“Her persis-
tenceand ambition only matchesthat of her
parents”)

Thesensesredifferentiatedn thatthe matching
objects(ARGL1) in Sense4 have somequantifiable
characteristidhat can be measuredn somescale,
whereaghosein Sensel are more general. Gold-
standardPropBankannotationof ARG1 allows the
systento generalizeoverthesemanticlasse®f the
amgumentsanddistinguishthesetwo sensesnoreac-
curately

3.4 Frameset tagsfor WordNet sense-tagging

PropBankframesetags(eithergold-standarar au-
tomatically tagged)were incorporatedas features
in our WSD systemto seeif knowing the coarse-
grainedsensdagswould beusefulin assignindine-
grained WordNet sensetags. A framesettag for
the instancewas appendedo eachfeature;this ef-
fectively partitionsthe featuresetaccordingto the
coarse-grainegenseprovided by the frameset. To
automaticallytag an instanceof a verb with its
framesetthesetof all instance®f theverbin Prop-
Bank was partitionedinto 10 subsets,and an in-
stancein one subsetwastaggedby training a max-
imum entrofy modelon the instancedn the other
nine subsets. Variouslocal featureswere consid-
ered,andthe samefeaturetypeswere usedto train
the framesettaggerand the WordNet sensetagger
thatusedthe automatically-assigrd frameset.

For the 20 Senseal-2 verbsthat had more than
oneframesetn PropBankwe extractedall instances
thatwerein both Senseal-2 and PropBank,yield-
ing 1468 instances. We examined the effect of
incorporatingthe gold-standardPropBankframeset
tagsinto our maximumentrogy modelsfor these20
verbsby partitioningtheinstancesccordingo their
framesetag. Table5 shavs a breakdavn of theac-
curay by featuretype. Adding the gold-standard
framesettag (“*fset”) to our original local features
(“orig”) did notincreasehe accurag significantly
However, the increasein accurag (from 59.7%to
62.8%) was significant when theseframesettags
wereincorporatednto the modelthatusedbothour
original featuresandall the PropBankfeatures.
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Feature Accuray
orig 0.564
orig*fset 0.587
orig+pb 0.597
(orig+pb)*fset| 0.628

Table 5: Accuray of systemon WordNet sense-
taggingof 20 Senseal-2 verbswith morethanone
frameset,with and without gold-standardrameset
tag.

However, partitioningthe instanceausingthe au-
tomatically generatedramesettags hasno signif-
icant effect on the system$ performance;the in-
formation provided by the automaticallyassigned
coarse-grainegensetag is alreadyencodedn the
featuresusedfor fine-grainedsense-tagging.

4 Related Work

Our approacthof usingrich linguistic featurescom-
binedin asinglemaximumentroyy framevork con-
trastswith thatof (Florianet al., 2002). Their fea-
ture spacewas muchlike ours, but did notinclude
semanticlassfeaturesor nouncomplementsWith
this more impoverished feature set, they experi-
mentedwith combiningdiverseclassifierdo achiere
an improvementof 2.1% over all partsof speech
(noun,verb,adjectve)in theSenseal-2lexical sam-
pletask;however, thisimprovementwasoveranini-
tial accurag of 56.6%on verbs,indicatingthattheir
performancaes still belowv oursfor verbs.

(Lee andNg, 2002) exploredthe relative contri-
bution of differentknowledge sourcesandlearning
algorithmsto WSD; they usedSupportVector Ma-
chines(SVM) andincludedlocal collocationsand
syntacticrelations,andalsofound that addingsyn-
tactic featuresmproved accurag. Our featuresare
similar to theirs, but we addedsemanticclassfea-
turesfor the verb amguments We foundthatthe dif-
ferencein machineearningalgorithmsdid not play
alargerole in performancewhenwe usedour fea-
turesin SVM we obtainedalmostno differencein
performanceover using maximumentroy models
with Gaussiarpriors.

(Gomez, 2001) describedan algorithm using
WordNetto simultaneouslydetermineverb senses
andattachment®f prepositionaphrasesandiden-



tify thematicrolesandadjuncts;our work is differ-
entin thatit is trainedon manually annotateccor
porato shawv therelevanceof semantigolesfor verb
sensalisambiguation.

5 Conclusion

We have shawvn that disambiguatiorof verb senses
can be improved by leveraginginformation about
predicateargumentsandtheir semanticclassesOur
systemperformsat the bestpublishedaccurag on
the English verbs of Senseal-2 even though our
heuristicsfor extracting syntactic featuresfail to
identify all and only the agumentsof a verb We
shav that associatingWordNet semantic classes
with nounsis beneficialkevenwithoutexplicit disam-
biguationof the nounsensedecausegivenenough
data, maximumentroy modelsare able to assign
high weightsto the correcthyperryms of the cor
rect noun senseif they representdefining selec-
tional restrictions. Knowledge of gold-standard
predicate-agumentinformationfrom PropBankm-
proves WSD on both coarse-grainedenseqProp-
Bank framesetskand fine-grainedWordNet senses.
Furthermore, partitioning instancesaccording to
their gold-standardramesettags, which are based
ondifferencesn subcatgorizationframes,alsoim-
provesthe systems accurag on fine-grained/\ord-
Net sense-tagging.Our experimentssuggestthat
sensedisambiguationfor verbs can be improved
through more accurateextraction of featuresrep-
resentinginformation suchasthat containedin the
framesetsand predicateargumentstructuresanno-
tatedin PropBank.
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