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Abstract

In machine learning, whether one can
build a more accurate classifier by using
unlabeled data (semi-supervised learning)
is an important issue. Although a num-
ber of semi-supervised methods have been
proposed, their effectiveness on NLP tasks
is not always clear. This paper presents
a novel semi-supervised method that em-
ploys a learning paradigm which we call
structural learning. The idea is to find
“what good classifiers are like” by learn-
ing from thousands of automatically gen-
erated auxiliary classification problems on
unlabeled data. By doing so, the common
predictive structure shared by the multiple
classification problems can be discovered,
which can then be used to improve perfor-
mance on the target problem. The method
produces performance higher than the pre-
vious best results on CoNLL’00 syntac-
tic chunking and CoNLL’03 named entity
chunking (English and German).

1 Introduction

In supervised learning applications, one can often
find a large amount of unlabeled data without diffi-
culty, while labeled data are costly to obtain. There-
fore, a natural question is whether we can use unla-
beled data to build a more accurate classifier, given
the same amount of labeled data. This problem is
often referred to assemi-supervised learning.

Although a number of semi-supervised methods
have been proposed, their effectiveness on NLP
tasks is not always clear. For example,co-training

(Blum and Mitchell, 1998) automatically bootstraps
labels, and such labels are not necessarily reliable
(Pierce and Cardie, 2001). A related idea is to
useExpectation Maximization(EM) to impute la-
bels. Although useful under some circumstances,
when a relatively large amount of labeled data is
available, the procedure often degrades performance
(e.g. Merialdo (1994)). A number of bootstrap-
ping methods have been proposed for NLP tasks
(e.g. Yarowsky (1995), Collins and Singer (1999),
Riloff and Jones (1999)). But these typically assume
a very small amount of labeled data and have not
been shown to improve state-of-the-art performance
when a large amount of labeled data is available.

Our goal has been to develop a general learning
framework for reliably using unlabeled data to im-
prove performance irrespective of the amount of la-
beled data available. It is exactly this important and
difficult problem that we tackle here.

This paper presents a novel semi-supervised
method that employs a learning framework called
structural learning(Ando and Zhang, 2004), which
seeks to discover sharedpredictive structures(i.e.
what good classifiers for the task are like) through
jointly learning multiple classification problems on
unlabeled data. That is, we systematically create
thousands of problems (calledauxiliary problems)
relevant to the target task using unlabeled data, and
train classifiers from the automatically generated
‘training data’. We learn the commonality (or struc-
ture) of such many classifiers relevant to the task,
and use it to improve performance on the target task.
One example of such auxiliary problems forchunk-
ing tasks is to ‘mask’ a word and predict whether
it is “people” or not from the context, like language
modeling. Another example is to predict the pre-
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diction of some classifier trained for the target task.
These auxiliary classifiers can be adequately learned
since we have very large amounts of ‘training data’
for them, which we automatically generate from a
very large amount of unlabeled data.

The contributions of this paper are two-fold. First,
we present a novel robust semi-supervised method
based on a new learning model and its application
to chunking tasks. Second, we report higher per-
formance than the previous best results on syntactic
chunking (the CoNLL’00 corpus) and named entity
chunking (the CoNLL’03 English and German cor-
pora). In particular, our results are obtained by us-
ing unlabeled data as theonly additional resource
while many of the top systems rely on hand-crafted
resources such as large name gazetteers or even rule-
based post-processing.

2 A Model for Learning Structures

This work uses a linear formulation of structural
learning. We first briefly review a standard linear
prediction model and then extend it for structural
learning. We sketch an optimization algorithm us-
ing SVD and compare it to related methods.

2.1 Standard linear prediction model

In the standard formulation of supervised learning,
we seek apredictorthat maps an input vectorx 2 X
to the corresponding outputy 2 Y. Linear predic-
tion modelsare based on real-valued predictors of
the formf(x) = wTx, wherew is called aweight
vector. For binary problems, the sign of the linear
prediction gives the class label. Fork-way classi-
fication (with k > 2), a typical method iswinner
takes all, where we train one predictor per class and
choose the class with the highest output value.

A frequently used method for finding an accurate
predictor f̂ is regularizedempirical risk minimiza-
tion (ERM), which minimizes an empirical loss of
the predictor (with regularization) on then training
examplesf(Xi; Yi)g:f̂ = argminf  nXi=1 L(f(Xi); Yi) + r(f)! :L(�) is a loss functionto quantify the difference
between the predictionf(Xi) and the true outputYi, andr(�) is a regularization term to control the

model complexity. ERM-based methods for dis-
criminative learning are known to be effective for
NLP tasks such as chunking (e.g. Kudoh and Mat-
sumoto (2001), Zhang and Johnson (2003)).

2.2 Linear model for structural learning

We present a linear prediction model for structural
learning, which extends the traditional model to
multiple problems. Specifically, we assume that
there exists alow-dimensional predictive structure
shared by multiple prediction problems. We seek to
discover this structure throughjoint empirical risk
minimizationover the multiple problems.

Considerm problems indexed bỳ2 f1; : : : ;mg,
each withn` samples(Xì ; Y `i ) indexed by i 2f1; : : : ; n`g. In our joint linear model, a predictor
for problem` takes the following formf`(�;x) = wT̀x+ vT̀�x ; ��T = I ; (1)

where we useI to denote the identity matrix. Ma-
trix � (whose rows are orthonormal) is the common
structure parametershared by all the problems;w`
andv` are weight vectors specific to each predic-
tion problem`. The idea of this model is to dis-
cover a common low-dimensional predictive struc-
ture (shared by them problems) parameterized by
the projection matrix�. In this setting, the goal of
structural learning may also be regarded aslearning
a good feature map�x — a low-dimensional fea-
ture vector parameterized by�.

In joint ERM, we seek� (and weight vectors) that
minimizes the empirical risk summed over all the
problems:[�̂; ff̂`g℄ = argmin�;ff`g mX̀=1 nX̀i=1 L(f`(�;Xì); Yì )n` + r(f`)! :

(2)

It can be shown that using joint ERM, we can reli-
ably estimate the optimal joint parameter� as long
asm is large (even when eachn` is small). This is
the key reason why structural learning is effective.
A formal PAC-style analysis can be found in (Ando
and Zhang, 2004).

2.3 Alternating structure optimization (ASO)

The optimization problem (2) has a simple solution
using SVD when we choose square regularization:
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r(f`) = �kw`k22 , where the regularization parame-
ter � is given. For clarity, letu` be a weight vector
for problem` such that:u` = w` + �Tv` : Then,
(2) becomes the minimization of the joint empirical
risk written as:mX̀=1 nX̀i=1 L(uT̀Xì ; Yì )n` + �ku` ��Tv`k22! : (3)

This minimization can be approximately solved by
the following alternating optimization procedure:� Fix (�; fv`g), and findm predictorsfu`g that

minimizes the joint empirical risk (3).� Fix m predictorsfu`g, and find(�; fv`g) that
minimizes the joint empirical risk (3).� Iterate until a convergence criterion is met.

In the first step, we trainm predictors independently.
It is the second step that couples all the problems. Its
solution is given by the SVD (singular value decom-
position) of the predictor matrixU = [u1; : : : ;um℄:
the rows of the optimum� are given by the most sig-
nificant left singular vectors1 of U. Intuitively, the
optimum� captures the maximal commonality of
them predictors (each derived fromu`). Thesem
predictors are updated using the new structure ma-
trix � in the next iteration, and the process repeats.

Figure 1 summarizes the algorithm sketched
above, which we call thealternating structure op-
timization (ASO)algorithm. The formal derivation
can be found in (Ando and Zhang, 2004).

2.4 Comparison with existing techniques

It is important to note that this SVD-based ASO
(SVD-ASO) procedure is fundamentally different
from the usual principle component analysis (PCA),
which can be regarded as dimension reduction in the
data spaceX . By contrast, the dimension reduction
performed in the SVD-ASO algorithm is on thepre-
dictor space(a set of predictors). This is possible
because we observe multiple predictors from multi-
ple learning tasks. If we regard the observed predic-
tors as sample points of the predictor distribution in

1In other words,� is computed so that the best low-rank
approximation ofU in the least square sense is obtained by
projectingU onto the row space of�; see e.g. Golub and Loan
(1996) for SVD.

Input : training dataf(Xì ; Yì )g (` = 1; : : : ; m)
Parameters: dimensionh and regularization param�
Output : matrix� with h rows
Initialize : u` = 0 (` = 1 : : :m), and arbitrary�
iterate

for ` = 1 tom do
With fixed� andv` = �u`, solve forŵ`:ŵ` = argminw` hPn`i=1 L(wT̀Xì+(vT̀�)Xì ;Yì )n`+�kw`k22�
Letu` = ŵ` +�Tv`

endfor
Compute the SVD ofU = [u1; : : : ;um℄.
Let the rows of� be theh left singular vectors ofU

corresponding to theh largest singular values.
until converge

Figure 1: SVD-based Alternating Structure Optimization
(SVD-ASO) Algorithm

the predictor space (corrupted with estimation error,
or noise), then SVD-ASO can be interpreted as find-
ing the “principle components” (or commonality)
of these predictors (i.e., “what good predictors are
like”). Consequently the methoddirectly looks for
low-dimensional structures with the highest predic-
tive power. By contrast, the principle components of
input data in the data space (which PCA seeks) may
not necessarily have the highest predictive power.

The above argument also applies to the fea-
ture generation from unlabeled data using LSI (e.g.
Ando (2004)). Similarly, Miller et al. (2004) used
word-cluster memberships induced from an unanno-
tated corpus as features for named entity chunking.
Our work is related but more general, because we
can explore additional information from unlabeled
data using many different auxiliary problems. Since
Miller et al. (2004)’s experiments used a proprietary
corpus, direct performance comparison is not pos-
sible. However, our preliminary implementation of
the word clustering approach did not provide any
improvement on our tasks. As we will see, our start-
ing performance is already high. Therefore the addi-
tional information discovered by SVD-ASO appears
crucial to achieve appreciable improvements.

3 Semi-supervised Learning Method

For semi-supervised learning, the idea is tocreate
many auxiliary prediction problems (relevant to the
task) from unlabeled data so that we can learn the
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shared structure� (useful for the task) using the
ASO algorithm. In particular, we want to create aux-
iliary problems with the following properties:� Automatic labeling: we need to automatically

generate various “labeled” data for the auxil-
iary problems from unlabeled data.� Relevancy: auxiliary problems should be re-
lated to the target problem. That is, they should
share a certain predictive structure.

The final classifier for the target task is in the form
of (1), a linear predictor for structural learning. We
fix � (learned from unlabeled data through auxil-
iary problems) and optimize weight vectorsw andv
on the given labeled data. We summarize this semi-
supervised learning procedure below.

1. Create training dataeZ` = f(eXj ; eYj̀ )g for each

auxiliary problem̀ from unlabeled datafeXjg.

2. Compute� from f eZ`g through SVD-ASO.

3. Minimize the empirical risk on the labeled data:f̂ = argminfPni=1 L(f(�;Xi);Yi)n + �kwk22,
wheref(�;x) = wTx+ vT�x as in (1).

3.1 Auxiliary problem creation

The idea is to discover useful features (which do
not necessarily appear in the labeled data) from the
unlabeled data through learning auxiliary problems.
Clearly, auxiliary problems more closely related to
the target problem will be more beneficial. However,
even if some problems are less relevant, they will not
degrade performance severely since they merely re-
sult in some irrelevant features (originated from ir-
relevant�-components), which ERM learners can
cope with. On the other hand, potential gains from
relevant auxiliary problems can be significant. In
this sense, our method is robust.

We present two general strategies for generat-
ing useful auxiliary problems: one in a completely
unsupervised fashion, and the other in a partially-
supervised fashion.

3.1.1 Unsupervised strategy

In the first strategy, we regard some observable
substructures of the input dataX as auxiliary class
labels, and try to predict these labels using other
parts of the input data.

Ex 3.1 Predict words. Create auxiliary problems
by regarding the word at each position as an auxil-
iary label, which we want to predict from the context.
For instance, predict whether a word is “Smith” or
not from its context. This problem is relevant to,
for instance, named entity chunking since knowing
a word is “Smith” helps to predict whether it is part
of a name. One binary classification problem can be
created for each possible word value (e.g., “IBM”,
“he”, “get”, � � � ). Hence, many auxiliary problems
can be obtained using this idea.

More generally, given a feature representation
of the input data, we may mask some features as
unobserved, and learn classifiers to predict these
‘masked’ features based on other features that are
not masked. The automatic-labeling requirement is
satisfied since the auxiliary labels are observable to
us. To create relevant problems, we should choose
to (mask and) predict features that have good cor-
relation to the target classes, such as words on text
tagging/chunking tasks.

3.1.2 Partially-supervised strategy

The second strategy is motivated by co-training.
We use two (or more) distinct feature maps:�1
and�2. First, we train a classifierF1 for the tar-
get task, using the feature map�1 and the labeled
data. The auxiliary tasks are to predict the behavior
of this classifierF1 (such as predicted labels) on the
unlabeled data, by using the other feature map�2.
Note that unlike co-training, we only use the classi-
fier as a means of creating auxiliary problems that
meet the relevancy requirement, instead of using it
to bootstrap labels.

Ex 3.2 Predict the top-k choices of the classifier.
Predict the combination ofk (a few) classes to whichF1 assigns the highest output (confidence) values.
For instance, predict whetherF1 assigns the highest
confidence values toCLASS1 andCLASS2 in this or-
der. By settingk = 1, the auxiliary task is simply to
predict the label prediction of classifierF1. By set-
ting k > 1, fine-grained distinctions (related to in-
trinsic sub-classes of target classes) can be learned.
From a
-way classification problem,
!=(
� k)! bi-
nary prediction problems can be created.
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4 Algorithms Used in Experiments

Using auxiliary problems introduced above, we
study the performance of our semi-supervised learn-
ing method on named entity chunking and syntac-
tic chunking. This section describes the algorithmic
aspects of the experimental framework. The task-
specific setup is described in Sections 5 and 6.

4.1 Extension of the basic SVD-ASO algorithm

In our experiments, we use an extension of SVD-
ASO. In NLP applications, features have natural
grouping according to their types/origins such as
‘current words’, ‘parts-of-speech on the right’, and
so forth. It is desirable to perform a localized op-
timization for each of such natural feature groups.
Hence, we associate each feature group with a sub-
matrix of structure matrix�. The optimization al-
gorithm for this extension is essentially the same as
SVD-ASO in Figure 1, but with the SVD step per-
formed separately for each group. See (Ando and
Zhang, 2004) for the precise formulation. In ad-
dition, we regularize only those components ofw`
which correspond to the non-negative part ofu`.
The motivation is that positive weights are usually
directly related to the target concept, while negative
ones often yield much less specific information rep-
resenting ‘the others’. The resulting extension, in
effect, only uses the positive components ofU in
the SVD computation.

4.2 Chunking algorithm, loss function, training
algorithm, and parameter settings

As is commonly done, we encode chunk informa-
tion into word tags to cast the chunking problem to
that of sequential word tagging. We perform Viterbi-
style decoding to choose the word tag sequence that
maximizes the sum of tagging confidence values.

In all settings (including baseline methods), the
loss function is a modification of the Huber’s ro-
bust loss for regression:L(p; y) = max(0; 1 �py)2 if py � �1; and�4py otherwise; with square
regularization (� = 10�4). One may select other
loss functions such as SVM or logistic regression.
The specific choice is not important for the purpose
of this paper. The training algorithm isstochastic
gradient descent, which is argued to perform well
for regularized convex ERM learning formulations

(Zhang, 2004).
As we will show in Section 7.3, our formulation

is relatively insensitive to the change inh (row-
dimension of the structure matrix). We fixh (for
each feature group) to 50, and use it in all settings.

The most time-consuming process is the train-
ing of m auxiliary predictors on the unlabeled data
(computingU in Figure 1). Fixing the number of
iterations to a constant, it runs in linear tom and
the number of unlabeled instances and takes hours
in our settings that use more than 20 million unla-
beled instances.

4.3 Baseline algorithms

Supervised classifier For comparison, we train a
classifier using the same features and algorithm, but
without unlabeled data (� = 0 in effect).

Co-training We test co-training since our idea of
partially-supervised auxiliary problems is motivated
by co-training. Our implementation follows the
original work (Blum and Mitchell, 1998). The two
(or more) classifiers (with distinct feature maps) are
trained with labeled data. We maintain a pool ofq
unlabeled instances by random selection. The clas-
sifier proposes labels for the instances in this pool.
We chooses instances for each classifier with high
confidence while preserving the class distribution
observed in the initial labeled data, and add them
to the labeled data. The process is then repeated.
We exploreq=50K, 100K, s=50,100,500,1K, and
commonly-used feature splits: ‘current vs. context’
and ‘current+left-context vs. current+right-context’.

Self-training Single-view bootstrapping is some-
times calledself-training. We test the basic self-
training2, which replaces multiple classifiers in the
co-training procedure with a single classifier that
employs all the features.

co/self-training oracle performance To avoid the
issue of parameter selection for the co- and self-
training, we report their best possibleoracle perfor-
mance, which is the best F-measure number among
all the co- and self-training parameter settings in-
cluding the choice of the number of iterations.

2We also tested “self-training with bagging”, which Ng and
Cardie (2003) used for co-reference resolution. We omit results
since it did not produce better performance than the supervised
baseline.
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� words, parts-of-speech (POS), character types,
4 characters at the beginning/ending in a 5-word window.� words in a 3-syntactic chunk window.� labels assigned to two words on the left.� bi-grams of the current word and the label on the left.� labels assigned to previous occurrences of the current
word.

Figure 2:Feature types for named entity chunking. POS and
syntactic chunk information is provided by the organizer.

5 Named Entity Chunking Experiments

We report named entity chunking performance on
the CoNLL’03 shared-task3 corpora (English and
German). We choose this task because the original
intention of this shared task was to test the effec-
tiveness of semi-supervised learning methods. How-
ever, it turned out that none of the top performing
systems used unlabeled data. The likely reason is
that the number of labeled data is relatively large
(>200K), making it hard to benefit from unlabeled
data. We show that our ASO-based semi-supervised
learning method (hereafter,ASO-semi) can produce
results appreciably better than all of the top systems,
by using unlabeled data as theonly additional re-
source. In particular, we do not use any gazetteer
information, which was used in all other systems.

The CoNLL corpora are annotated with four types
of named entities: persons, organizations, locations,
and miscellaneous names (e.g., “World Cup”). We
use the official training/development/test splits. Our
unlabeled data sets consist of 27 million words (En-
glish) and 35 million words (German), respectively.
They were chosen from the same sources – Reuters
and ECI Multilingual Text Corpus – as the provided
corpora but disjoint from them.

5.1 Features

Our feature representation is a slight modification of
a simpler configuration (without any gazetteer) in
(Zhang and Johnson, 2003), as shown in Figure 2.
We use POS and syntactic chunk information pro-
vided by the organizer.

5.2 Auxiliary problems

As shown in Figure 3, we experiment with auxiliary
problems from Ex 3.1 and 3.2: “Predict current (or
previous or next) words”; and “Predicttop-2choices

3http://cnts.uia.ac.be/conll2003/ner

# of aux. Auxiliary Features used for
problems labels learning aux problems

1000 previous words all but previous words
1000 current words all but current words
1000 next words all but next words

72 F1’s top-2 choices �2 (all but left context)
72 F2’s top-2 choices �1 (left context)
72 F3’s top-2 choices �4 (all but right context)
72 F4’s top-2 choices �3 (right context)

Figure 3: Auxiliary problems used for named entity chunk-
ing. 3000 problems ‘mask’ words and predict them from the
other features on unlabeled data. 288 problems predict classi-
fierFi ’s predictions on unlabeled data, whereFi is trained with
labeled data using feature map�i. There are 72 possible top-2
choices from 9 classes (beginning/inside of four types of name
chunks and ‘outside’).

of the classifier” using feature splits ‘left context vs.
the others’ and ‘right context vs. the others’. For
word-prediction problems, we only consider the in-
stances whose current words are either nouns or ad-
jectives since named entities mostly consist of these
types. Also, we leave out all but at most 1000 bi-
nary prediction problems of each type that have the
largest numbers of positive examples to ensure that
auxiliary predictors can be adequately learned with
a sufficiently large number of examples. The results
we report are obtained by using all the problems in
Figure 3 unless otherwise specified.

5.3 Named entity chunking results

methods test diff. from supervised
data F prec. recall F

English, small (10K examples) training set
ASO-semi dev. 81.25 +10.02 +7.00 +8.51

co/self oracle 73.10 +0.32 +0.39 +0.36
ASO-semi test 78.42 +9.39 +10.73 +10.10

co/self oracle 69.63 +0.60 +1.95 +1.31
English, all (204K) training examples

ASO-semi dev. 93.15 +2.25 +3.00 +2.62
co/self oracle 90.64 +0.04 +0.20 +0.11

ASO-semi test 89.31 +3.20 +4.51 +3.86
co/self oracle 85.40 �0.04 �0.05 �0.05

German, all (207K) training examples
ASO-semi dev. 74.06 +7.04 +10.19 +9.22

co/self oracle 66.47 �2.59 +4.39 +1.63
ASO-semi test 75.27 +4.64 +6.59 +5.88

co/self oracle 70.45 �1.26 +2.59 +1.06

Figure 4: Named entity chunking results. No gazetteer. F-
measure and performance improvements over the supervised
baseline in precision, recall, and F. For co- and self-training
(baseline), theoracleperformance is shown.

Figure 4 shows results in comparison with the su-
pervised baseline in six configurations, each trained
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with one of three sets of labeled training examples: a
small English set (10K examples randomly chosen),
the entire English training set (204K), and the entire
German set (207K), tested on either the development
set or test set. ASO-semi significantly improves both
precision and recall in all the six configurations, re-
sulting in improved F-measures over the supervised
baseline by +2.62% to +10.10%.

Co- and self-training, at theiroracle performance,
improve recall but often degrade precision; con-
sequently, their F-measure improvements are rela-
tively low: �0.05% to +1.63%.

Comparison with top systems As shown in Fig-
ure 5, ASO-semi achieves higher performance than
the top systems on both English and German
data. Most of the top systems boost performance
by external hand-crafted resources such as: large
gazetteers4; a large amount (2 million words) of
labeleddata manually annotated with finer-grained
named entities (FIJZ03); and rule-based post pro-
cessing (KSNM03). Hence, we feel that our results,
obtained by using unlabeled data as the only addi-
tional resource, are encouraging.

System Eng. Ger. Additional resources
ASO-semi 89.31 75.27 unlabeled data
FIJZ03 88.76 72.41 gazetteers; 2M-word labeled

data (English)
CN03 88.31 65.67 gazetteers (English); (also

very elaborated features)
KSNM03 86.31 71.90 rule-based post processing

Figure 5: Named entity chunking. F-measure on the test
sets. Previous best results: FIJZ03 (Florian et al., 2003),CN03
(Chieu and Ng, 2003), KSNM03 (Klein et al., 2003).

6 Syntactic Chunking Experiments

Next, we report syntactic chunking performance on
the CoNLL’00 shared-task5 corpus. The training
and test data sets consist of the Wall Street Journal
corpus (WSJ) sections 15–18 (212K words) and sec-
tion 20, respectively. They are annotated with eleven
types of syntactic chunks such as noun phrases. We

4Whether or not gazetteers are useful depends on their cov-
erage. A number of top-performing systems used their own
gazetteers in addition to the organizer’s gazetteers and reported
significant performance improvements (e.g., FIJZ03, CN03,
and ZJ03).

5http://cnts.uia.ac.be/conll2000/chunking

� uni- and bi-grams of words and POS in a 5-token window.� word-POS bi-grams in a 3-token window.� POS tri-grams on the left and right.� labels of the two words on the left and their bi-grams.� bi-grams of the current word and two labels on the left.

Figure 6:Feature types for syntactic chunking. POS informa-
tion is provided by the organizer.

prec. recall F�=1
supervised 93.83 93.37 93.60
ASO-semi 94.57 94.20 94.39 (+0.79)

co/self oracle 93.76 93.56 93.66 (+0.06)

Figure 7:Syntactic chunking results.

use the WSJ articles in 1991 (15 million words) from
the TREC corpus as the unlabeled data.

6.1 Features and auxiliary problems

Our feature representation is a slight modification of
a simpler configuration (without linguistic features)
in (Zhang et al., 2002), as shown in Figure 6. We
use the POS information provided by the organizer.
The types of auxiliary problems are the same as in
the named entity experiments. For word predictions,
we exclude instances of punctuation symbols.

6.2 Syntactic chunking results

As shown in Figure 7, ASO-semi improves both pre-
cision and recall over the supervised baseline. It
achieves94:39% in F-measure, which outperforms
the supervised baseline by0:79%. Co- and self-
training again slightly improve recall but slightly de-
grade precision at their oracle performance, which
demonstrates that it is not easy to benefit from unla-
beled data on this task.

Comparison with the previous best systems As
shown in Figure 8, ASO-semi achieves performance
higher than the previous best systems. Though the
space constraint precludes providing the detail, we
note that ASO-semi outperforms all of the previ-
ous top systems in both precision and recall. Unlike
named entity chunking, the use of external resources
on this task is rare. An exception is the use of out-
put from a grammar-based full parser as features in
ZDJ02+, which our system does not use. KM01
and CM03 boost performance by classifier combina-
tions. SP03 trains conditional random fields for NP
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all NP description
ASO-semi 94.39 94.70 +unlabeled data
KM01 93.91 94.39 SVM combination
CM03 93.74 94.41 perceptron in two layers
SP03 – 94.38 conditional random fields
ZDJ02 93.57 93.89 generalized Winnow
ZDJ02+ 94.17 94.38 +full parser output

Figure 8: Syntactic chunking F-measure. Comparison with
previous best results: KM01 (Kudoh and Matsumoto, 2001),
CM03 (Carreras and Marquez, 2003), SP03 (Sha and Pereira,
2003), ZDJ02 (Zhang et al., 2002).

(noun phrases) only. ASO-semi produces higher NP
chunking performance than the others.

7 Empirical Analysis

7.1 Effectiveness of auxiliary problems

English named entity         German named entity
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supervised
w/ "Predict (previous, current, or next) words"
w/ "Predict top-2 choices"
w/ "Predict words" + "Predict top-2 choices"

Figure 9:Named entity F-measure produced by using individ-
ual types of auxiliary problems. Trained with the entire training
sets and tested on the test sets.

Figure 9 shows F-measure obtained by comput-
ing � from individual types of auxiliary problems
on named entity chunking. Both types – “Predict
words” and “Predict top-2 choices of the classifier”
– are useful, producing significant performance im-
provements over the supervised baseline. The best
performance is achieved when� is produced from
all of the auxiliary problems.

7.2 Interpretation of �
To gain insights into the information obtained from
unlabeled data, we examine the� entries associated
with the feature ‘current words’, computed for the
English named entity task. Figure 10 shows the fea-
tures associated with the entries of� with the largest
values, computed from the 2000 unsupervised aux-
iliary problems: “Predict previous words” and “Pre-
dict next words”. For clarity, the figure only shows

row# Features corresponding to Interpretation
significant� entries

4 Ltd, Inc, Plc, International, organizations
Ltd., Association, Group, Inc.

7 Co, Corp, Co., Company, organizations
Authority, Corp., Services

9 PCT, N/A, Nil, Dec, BLN, no names
Avg, Year-on-year, UNCH

11 New, France, European, San, locations
North, Japan, Asian, India

15 Peter, Sir, Charles, Jose, Paul,persons
Lee, Alan, Dan, John, James

26 June, May, July, Jan, March, months
August, September, April

Figure 10: Interpretation of� computed from word-
prediction (unsupervised) problems for named entity chunking.

words beginning with upper-case letters (i.e., likely
to be names in English). Our method captures the
spirit of predictive word-clustering but is more gen-
eral and effective on our tasks.

It is possible to develop a general theory to show
that the auxiliary problems we use are helpful under
reasonable conditions. The intuition is as follows.
Suppose we split the features into two parts�1 and�2 and predict�1 based on�2. Suppose features
in �1 are correlated to the class labels (but not nec-
essarily correlated among themselves). Then, the
auxiliary prediction problems are related to the tar-
get task, and thus can reveal useful structures of�2.
Under some conditions, it can be shown that features
in �2 with similar predictive performance tend to
map to similar low-dimensional vectors through�.
This effect can be empirically observed in Figure 10
and will be formally shown elsewhere.

7.3 Effect of the� dimension
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Figure 11:F-measure in relation to the row-dimension of�.
English named entity chunking, test set.

Recall that throughout the experiments, we fix the
row-dimension of� (for each feature group) to 50.
Figure 11 plots F-measure in relation to the row-
dimension of�, which shows that the method is rel-
atively insensitive to the change of this parameter, at
least in the range which we consider.

8



8 Conclusion

We presented a novel semi-supervised learn-
ing method that learns the most predictive low-
dimensional feature projection from unlabeled data
using the structural learning algorithm SVD-ASO.
On CoNLL’00 syntactic chunking and CoNLL’03
named entity chunking (English and German), the
method exceeds the previous best systems (includ-
ing those which rely on hand-crafted resources) by
using unlabeled data as the only additional resource.

The key idea is to create auxiliary problems au-
tomatically from unlabeled data so that predictive
structures can be learned from that data. In practice,
it is desirable to create as many auxiliary problems
as possible, as long as there is some reason to be-
lieve in their relevancy to the task. This is because
the risk is relatively minor while the potential gain
from relevant problems is large. Moreover, the aux-
iliary problems used in our experiments are merely
possible examples. One advantage of our approach
is that one may design a variety of auxiliary prob-
lems to learn various aspects of the target problem
from unlabeled data. Structural learning provides a
framework for carrying out possible new ideas.
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