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Abstract

In machine learning, whether one can
build a more accurate classifier by using
unlabeled datasemi-supervised learnifg

is an important issue. Although a num-
ber of semi-supervised methods have been
proposed, their effectiveness on NLP tasks
is not always clear. This paper presents
a novel semi-supervised method that em-
ploys a learning paradigm which we call
structural learning The idea is to find
“what good classifiers are like” by learn-
ing from thousands of automatically gen-
erated auxiliary classification problems on
unlabeled data. By doing so, the common
predictive structure shared by the multiple
classification problems can be discovered,
which can then be used to improve perfor-
mance on the target problem. The method
produces performance higher than the pre-
vious best results on CoNLL'00 syntac-
tic chunking and CoNLL'03 named entity
chunking (English and German).

itongz@s. i bm com

(Blum and Mitchell, 1998) automatically bootstraps
labels, and such labels are not necessarily reliable
(Pierce and Cardie, 2001). A related idea is to
use Expectation MaximizatiofEM) to impute la-
bels. Although useful under some circumstances,
when a relatively large amount of labeled data is
available, the procedure often degrades performance
(e.g. Merialdo (1994)). A number of bootstrap-
ping methods have been proposed for NLP tasks
(e.g. Yarowsky (1995), Collins and Singer (1999),
Riloff and Jones (1999)). But these typically assume
a very small amount of labeled data and have not
been shown to improve state-of-the-art performance
when a large amount of labeled data is available.

Our goal has been to develop a general learning
framework for reliably using unlabeled data to im-
prove performance irrespective of the amount of la-
beled data available. It is exactly this important and
difficult problem that we tackle here.

This paper presents a novel semi-supervised
method that employs a learning framework called
structural learning(Ando and Zhang, 2004), which
seeks to discover sharguedictive structuregi.e.
what good classifiers for the task are like) through

jointly learning multiple classification problems on
unlabeled data. That is, we systematically create
In supervised learning applications, one can oftethousands of problems (callexlxiliary problem3}
find a large amount of unlabeled data without diffi+elevant to the target task using unlabeled data, and
culty, while labeled data are costly to obtain. Theretrain classifiers from the automatically generated
fore, a natural question is whether we can use unl&raining data’. We learn the commonality (or struc-
beled data to build a more accurate classifier, giveture) of such many classifiers relevant to the task,
the same amount of labeled data. This problem &nd use it to improve performance on the target task.
often referred to asemi-supervised learning One example of such auxiliary problems fdrunk-
Although a number of semi-supervised methodmg tasks is to ‘mask’ a word and predict whether
have been proposed, their effectiveness on NLPis “people” or not from the context, like language
tasks is not always clear. For exampte;training modeling. Another example is to predict the pre-
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diction of some classifier trained for the target tasknodel complexity. ERM-based methods for dis-

These auxiliary classifiers can be adequately learnediminative learning are known to be effective for

since we have very large amounts of ‘training dataNLP tasks such as chunking (e.g. Kudoh and Mat-
for them, which we automatically generate from asumoto (2001), Zhang and Johnson (2003)).

very large amount of unlabeled data. . .

The contributions of this paper are two-fold. First2-2 Linear model for structural leaming
we present a novel robust semi-supervised methdtle present a linear prediction model for structural
based on a new learning model and its applicatiolearning, which extends the traditional model to
to chunking tasks. Second, we report higher pemultiple problems. Specifically, we assume that
formance than the previous best results on syntactibere exists dow-dimensional predictive structure
chunking (the CoNLL'00 corpus) and named entityshared by multiple prediction problems. We seek to
chunking (the CoNLL'03 English and German cor-discover this structure througbint empirical risk
pora). In particular, our results are obtained by ugninimizationover the multiple problems.
ing unlabeled data as thenly additional resource  Considern problems indexed b§ e {1,...,m},
while many of the top systems rely on hand-crafte¢ach withn, samples(X¢, ;) indexed byi €
resources such as large name gazetteers or even rdle-. .. ,n¢}. In our joint linear model, a predictor
based post-processing. for problem/ takes the following form

2 A Model for Learning Structures f(0,x) =w/x+viOx, 00" =1, (1)

This work uses a linear formulation of structuralwhere we usd to denote the identity matrix. Ma-
learning. We first briefly review a standard lineatrix © (whose rows are orthonormal) is the common
prediction model and then extend it for structuraktructure parameteshared by all the problemsy,
learning. We sketch an optimization algorithm usandv, are weight vectors specific to each predic-
ing SVD and compare it to related methods. tion problem¢. The idea of this model is to dis-
cover a common low-dimensional predictive struc-
ture (shared by then problems) parameterized by
In the Standard fOI’mu|ati0n Of SuperVised Iearninq,he projection matri)@l In th|s Setting, the goal Of
we seek gredictorthat maps an inputvectare X' stryctural learning may also be regardedessning

to the corresponding outpyte ). Linear predic- 3 good feature ma@x — a low-dimensional fea-
tion modelsare based on real-valued predictors ofyre vector parameterized I6y.

the form f(x) = w”x, wherew is called aweight  |n joint ERM, we seel® (and weight vectors) that

vector For binary problems, the sign of the linearminimizes the empirical risk summed over all the
prediction gives the class label. Fbiway classi- problems:

fication (with £k > 2), a typical method isvinner

2.1 Standard linear prediction model

takes all where we train one predictor per class and (1(0.X0). V!
choose the class with the highest output value. [0, {f:}] = arg min Z (Z ,— +r(f ))
A frequently used method for finding an accurate ek =1 \im @

predictor f is regularizedempirical risk minimiza-
tion (ERM) which minimizes an empirical loss of It can be shown that using joint ERM, we can reli-
the predictor (with regularization) on thetraining ably estimate the optimal joint parameteras long

examples{ (X;, Y;)}: asm is large (even when eagafy is small). This is
the key reason why structural learning is effective.
B A formal PAC-style analysis can be found in (Ando
—arg mm (Z L(f )+ TU)) ' and Zhang, 2004).

L(-) is aloss functionto quantify the difference 2.3 Alternating structure optimization (ASO)

between the predictiorf (X;) and the true output The optimization problem (2) has a simple solution
Y;, andr(-) is a regularization term to control the using SVD when we choose square regularization:



r(fi) = A|we||3 , where the regularization parame-
ter \ is given. For clarity, letn, be a weight vector
for problem? such thatu, = w, + ©7'v, . Then,
(2) becomes the minimization of the joint empirical
risk written as:

Input: training data{ (X, Y)Y (¢ =1,...,m)
Parameters dimensionh and regularization parach
Output: matrix © with h rows
Initialize: u, = 0 (¢ = 1...m), and arbitrary®
iterate

for £ =1tomdo

With fixed © andv, = ©u,, solve forwy:
LwlIxt+vIextvhH

~ . n
W¢ = arg Milw, [27:51

+A[well3]

e Tx!t yit ) g

> (Z XY 4 A - eTwHé) ®

t=1 \i=1 ! Letu; = wy + @TV[

endfor

Compute the SVD ofJ = [uy,...,un].

Let the rows of® be thenh left singular vectors otJ
corresponding to thé largest singular values.

until converge

This minimization can be approximately solved by
the following alternating optimization procedure:

e Fix (6, {v¢}), and findm predictors{u,} that
minimizes the joint empirical risk (3).

Figure 1: SVD-based Alternating Structure Optimization

e Fix m predictors{u,}, and find(©, {v,}) that (SVD-ASO) Algorithm

minimizes the joint empirical risk (3).

* lterate until a convergence criterion is met. the predictor space (corrupted with estimation error,

In the first step, we traim predictors independently. OF noise), then SVD-ASO can be interpreted as find-
Itis the second step that couples all the problems. 189 the “principle components” (or commonality)
solution is given by the SVD (singular value decom©f these predictors (i.e., “what good predictors are
position) of the predictor matrikl = [uy, ..., u,,]: like”). Consequently the methadirectly looks for
the rows of the optimur® are given by the most sig- low-dimensional structures with the highest predic-
nificant left singular vectors of U. Intuitively, the tive power. By contrast, the principle components of
optimum © captures the maximal commonality ofinput data in the data space (which PCA seeks) may
the m predictors (each derived from,). Thesem  NOt necessarily have the highest predictive power.
predictors are updated using the new structure ma- The above argument also applies to the fea-
trix © in the next iteration, and the process repeatsture generation from unlabeled data using LSI (e.g.
Figure 1 summarizes the algorithm sketched\ndo (2004)). Similarly, Miller et al. (2004) used
above, which we call thalternating structure op- Wword-cluster memberships induced from an unanno-
timization (ASO)algorithm. The formal derivation tated corpus as features for named entity chunking.
can be found in (Ando and Zhang, 2004). Our work is related but more general, because we
can explore additional information from unlabeled
2.4 Comparison with existing techniques data using many different auxiliary problems. Since
It is important to note that this SVD-based ASOMiller et al. (2004)'s experiments used a proprietary
(SVD-ASO) procedure is fundamentally differentcorpus, direct performance comparison is not pos-
from the usual principle component analysis (PCA)sible. However, our preliminary implementation of
which can be regarded as dimension reduction in tHee word clustering approach did not provide any
data spaceY. By contrast, the dimension reductionimprovement on our tasks. As we will see, our start-
performed in the SVD-ASO algorithm is on tpee-  ing performance is already high. Therefore the addi-
dictor space(a set of predictors). This is possibletional information discovered by SVD-ASO appears
because we observe multiple predictors from multierucial to achieve appreciable improvements.
ple learning tasks. If we regard the observed predic-
tors as sample points of the predictor distribution i@ Semi-supervised Learning Method

‘In other words,© is computed so that the best low-rank For semi-supervised learning, the idea iscteate
approximation ofU in the least square sense is obtained by i dicti bl I t to th
projectingU onto the row space @; see e.g. Golub and Loan many auxiliary prediction problems (relevant to the

(1996) for SVD. task) from unlabeled data so that we can learn the



shared structuré® (useful for the task) using the Ex 3.1 Predict words. Create auxiliary problems
ASO algorithm. In particular, we want to create auxby regarding the word at each position as an auxil-
iliary problems with the following properties: iary label, which we want to predict from the context.

: . . For instance, predict whether a word is “Smith” or
e Automatic labeling we need to automatically ) . .
not from its context. This problem is relevant to,

generate various “labeled” data for the auxil-, . . . . .
. for instance, named entity chunking since knowing
iary problems from unlabeled data.

a word is “Smith” helps to predict whether it is part

e Relevancy auxiliary problems should be re- of a name. One binary classification problem can be
lated to the target problem. That is, they shouldreated for each possible word value (e.g., “IBM”,
share a certain predictive structure. “he”, “get”, ---). Hence, many auxiliary problems

The final classifier for the target task is in the formCan be obtained using this idea.

of (1), a linear predictor for structural learning. We More generally

fix O (learned from ur_1|a_be|ed _data through auxil—of the input data, we may mask some features as
lary problems) and optimize weight vectossandv ygpserved, and learn classifiers to predict these
on the given labeled data. We summarize this SeéMiyaq1ed’ features based on other features that are
supervised learning procedure below. not masked. The automatic-labeling requirement is

1. Create training datd, = {(f(j, f/jf)} for each satisfied since the auxiliary labels are observable to
: us. To create relevant problems, we should choose
N to (mask and) predict features that have good cor-
2. Computed from {Z,} through SVD-ASO. relation to the target classes, such as words on text

tagging/chunking tasks.
3. Minimize the empirical risk on the labeled data: agging/ehunking 1asks

¢ : L(f(©,X;),Y;
f = argming yp , HUAOX)D)

given a feature representation

auxiliary problem? from unlabeled dataf(j}.

L) 4w,
wheref(0,x) = w’x + v ©x as in (1).
3.1 Auxiliary problem creation The second strategy is motivated by co-training.

. . . . We use two (or more) distinct feature map@;
The idea is to discover useful features (which d%nd &,. First, we train a classifieF, for the tar-

not necessarily appear in the labeled data) from ttbeet task, using the feature map and the labeled

?:Tlable led d".’}j[a througr learning auIX|I|a|ry prloi)lzrr:sdata. The auxiliary tasks are to predict the behavior
carly, auxiliary probiéms more closely related 10, ;- classifierF; (such as predicted labels) on the

the target problem will be more beneficial. HoweverUnIabeIed data, by using the other feature nap

even if some problems are less re_Ievant, they will nq\tlote that unlike co-training, we only use the classi-
degrade performance severely since they merely fier as a means of creating auxiliary problems that

sult in some irrelevant features (originated from M heet the relevancy requirement, instead of using it
relevant®-components), which ERM learners can,, bootstrap labels
cope with. On the other hand, potential gains from '

relevant auxiliary problems can be significant. | . . -
: Y Probe 9 "Ex 3.2 Predict the top+ choices of the classifier.
this sense, our method is robust.

. redict the combination df (a few) classes to which
We present two general strategies for generat- . ) :
. . . . 1 assigns the highest output (confidence) values.
ing useful auxiliary problems: one in a completely

. . . . “For instance, predict whethdr; assigns the highest
unsupervised fashion, and the other in a partially-~ . oo
supervised fashion confidence values tOLASS1 andCLASS2 in this or-
' der. By setting: = 1, the auxiliary task is simply to
3.1.1 Unsupervised strategy predict the label prediction of classifidr;. By set-
In the first strategy, we regard some observabléng &£ > 1, fine-grained distinctions (related to in-
substructures of the input dafd as auxiliary class trinsic sub-classes of target classes) can be learned.

labels, and try to predict these labels using othdrrom ac-way classification problen!/(c — k)! bi-
parts of the input data. nary prediction problems can be created.

3.1.2 Partially-supervised strategy



4 Algorithms Used in Experiments (Zhang, 2004).

, . , As we will show in Section 7.3, our formulation
Using auxiliary problems introduced above, W&g reiatively insensitive to the change in (row-

study the performance of our semi-supervised Iea”&ﬂmension of the structure matrix). We fix (for

ing method on named entity chunking and syntaGs, ., feature group) to 50, and use it in all settings.
tic chunking. This section describes the algorithmic o most time-consuming process is the train-

aspects of the experimental framework. The taskyy of ., auxiliary predictors on the unlabeled data
specific setup is described in Sections 5 and 6. (computingU in Figure 1). Fixing the number of
4.1 Extension of the basic SVD-ASO algorithm iterations to a constant, |'F runs in linear #@ and

the number of unlabeled instances and takes hours

In our experiments, we use an extension of SVDin our settings that use more than 20 million unla-
ASO. In NLP applications, features have naturaheled instances.

grouping according to their types/origins such as _ '

‘current words’, ‘parts-of-speech on the right’, and?-3 Baseline algorithms

so forth. It is desirable to perform a localized op-Supervised classifier For comparison, we train a
timization for each of such natural feature groupsclassifier using the same features and algorithm, but
Hence, we associate each feature group with a sulgithout unlabeled datag = 0 in effect).

matrix of structure matrix®. The optimization al- . . ) )
gorithm for this extension is essentially the same a(:‘:o—t_ralnmg We test co_—_tralnlng since our |d_ea of
SVD-ASO in Figure 1, but with the SVD step per_partlally-superwsed auxiliary problems is motivated
formed separately for each group. See (Ando ari%ly_ c_:o—tralnlng. Our |mpl_ementat|on follows the
Zhang, 2004) for the precise formulation. In agoriginal work (Blum and Mitchell, 1998). The two
dition, we regularize only those componentsve (or more) classifiers (with distinct feature maps) are
which correspond to the non-negative partinf trained with labeled data. We maintain a poolqof

The motivation is that positive weights are usuaIIyLmIabEIEd instances by random selection. The clas-

directly related to the target concept, while negativé'f'erif’mposfeS labels f]?r the i:]stlanci_s n thrlfhpor? .
ones often yield much less specific information rep\-Ne Chooses |n§tances or each classiier \_N't_ '9
onfidence while preserving the class distribution

resenting ‘the others’. The resulting extension, i - - H
effect, only uses the positive componentstafin observed in the initial labeled data, and add them

the SVD computation to the labeled data. The process is then repeated.
' We explore¢=50K, 100K, s=50,100,500,1K, and

4.2 Chunking algorithm, loss function, training commonly-used feature splits: ‘current vs. context’
algorithm, and parameter settings and ‘current+left-context vs. current+right-context’.

As is commonly done, we encode chunk informaSelf-training Single-view bootstrapping is some-
tion into word tags to cast the chunking problem tdimes calledself-training We test the basic self-
that of sequential word tagging. We perform Viterbiraining?, which replaces multiple classifiers in the
style decoding to choose the word tag sequence tha-training procedure with a single classifier that
maximizes the sum of tagging confidence values. employs all the features.

In all sgttlngs (|nclud'|r.19 pasellne methods,), th%o/self—training oracle performance To avoid the
loss function is a modification of the Huber’s ro-

bust loss f iond, . 0.1 issue of parameter selection for the co- and self-

USQ 'foss >or rle_gredssgn (1?[ ’hy) - ma);(] '~ training, we report their best possilieacle perfor-
Py py = — . an ify OInEWISe, With SqQUAre - ance which is the best F-measure number among
regularization K = 10™*). One may select other

. . ___all the co- and self-training parameter settings in-
loss functions such as SVM or logistic regression gp g

o . . ¢luding the choice of the number of iterations.
The specific choice is not important for the purpose __~
of this paper. The training algorithm sochastic 2\We also tested “self-training with bagging”, which Ng and
. L Cardie (2003) used for co-reference resolution. We omitltes
gradient descentwhich is argued to perform well

; : *~" since it did not produce better performance than the supealvi
for regularized convex ERM learning formulationsbaseline.



words, parts-of-speech (POS), character types, # of aux. Auxiliary Features used for
4 characters at the beginning/ending in a 5-word window. problems labels learning aux problems
words in a 3-syntactic chunk window. 1000 | previous words all but previous words
labels assigned to two words on the left. 1000 | current words all but current words
bi-grams of the current word and the label on the left. 1000 | next words all but next words
labels assigned to previous occurrences of the current 72 | Fi'stop-2 choices| ®- (all but left context)
word. 72 | F»'stop-2 choices| @, (left context)
. 72 | F5'stop-2 choices| @, (all but right context)
Figure 2:Feature types for named entity chunking. POS and 72 | Fy’s top-2 choices| @ (right context)

syntactic chunk information is provided by the organizer. } - ]
Figure 3: Auxiliary problems used for named entity chunk-

ing. 3000 problems ‘mask’ words and predict them from the
other features on unlabeled data. 288 problems predidiclas
fier F;’s predictions on unlabeled data, whefgis trained with

. . labeled data using feature mép. There are 72 possible top-2
We report named entity chunking performance Oghgices from 9 classes (beginning/inside of four types ai@a

the CoNLL'03 shared-taskcorpora (English and chunks and ‘outside’).
German). We choose this task because the original

intention of this shared task was to test the effecf the classifier” using feature splits ‘left context vs.
tiveness of semi-supervised learning methods. Howhe others’ and ‘right context vs. the others’. For
ever, it turned out that none of the top performingyord-prediction problems, we only consider the in-
systems used unlabeled data. The likely reason dgances whose current words are either nouns or ad-
that the number of labeled data is relatively larggectives since named entities mostly consist of these
(>200K), making it hard to benefit from unlabeledtypesl Also, we leave out all but at most 1000 bi-
data. We show that our ASO-based semi-supervis%ry prediction problems of each type that have the
learning method (hereafteASO-sen)ican produce |argest numbers of positive examples to ensure that
results appreciably better than all of the top systemgyxiliary predictors can be adequately learned with
by using unlabeled data as tiealy additional re- 5 syfficiently large number of examples. The results

source. In particular, we do not use any gazettegje report are obtained by using all the problems in
information, which was used in all other systems. Figyre 3 unless otherwise specified.

The CoNLL corpora are annotated with four types _ _
of named entities: persons, organizations, location8;3 Named entity chunking results
and miscellaneous names (e.g., “World Cup”). We

5 Named Entity Chunking Experiments

use the official training/development/test splits. Oyr ™Methods | test diff. from supervised
. - data F prec. recall F
ur_1|abe|ed data sets consist of 27 million words_ (En- English, small (10K examples) fraining set
glish) and 35 million words (German), respectively] ASO-semi | dev. || 81.25] +10.02 | +7.00 | +8.51
They were chosen from the same sources — Reutgre?/self oracle 7310] +0.32] +0.39| +0.36
- : ASO-semi | test || 78.42| +9.39 [ +10.73 | +10.10
and ECI Multl_llrjgual Text Corpus — as the provided cq/self oracle 69.63| +060| +1.95| +1.31
corpora but disjoint from them. English, all (204K) training examples
ASO-semi | dev. || 93.15] +2.25| +3.00 | +2.62
5.1 Features co/self oracle 90.64| +0.04| +0.20| +0.11
o _ o ASO-semi | test || 89.31| +3.20| +451| +3.86
Our feature representation is a slight modification aof co/self oracle 85.40| -0.04| -0.05| -0.05
a simpler configuration (without any gazetteer) i German, all (207K) training examples
(Zhang and Johnson, 2003), as shown in Figure p, ASO-semi | dev. || 74.06 | +7.04 | +10.19 | +9.22
. . . co/self oracle 66.47| —259| +4.39| +1.63
We use POS and syntactic chunk information pra&—asosemi [ test 7527 +4.64 | +6.59 | +5.88
vided by the organizer. co/self oracle 70.45| —1.26| +259| +1.06
5.2 Auxiliary problems Figure 4: Named entity chunking results. No gazetteer. F-

o ) ] __ measure and performance improvements over the supervised
As shown in Figure 3, we experiment with auxiliarybaseline in precision, recall, and F. For co- and self-ingin

problems from Ex 3.1 and 3.2: “Predict current (ofPaseline), theracleperformance is shown.

previous or next) words”; and "Preditdp-2choices Figure 4 shows results in comparison with the su-

®htp://cnts.uia.ac.be/conll2003/ner pervised baseline in six configurations, each trained



with one of three sets of labeled training examples: a Uni- and bi-grams of words and POS in a 5-token window.

. - word-POS bi-grams in a 3-token window.
small English set (10K examples randomly chosen),. pos tri-grams on the left and right.
the entire English training set (204K), and the entire- labels of the two words on the left and their bi-grams.
German set (207K), tested on either the development bi-grams of the current word and two labels on the left.
set O.r FeSt set. ASO seml S|gn|f_|cantly_|mprqves bOﬂI}igure 6:Feature types for syntactic chunking. POS informa-
precision and recall in all the six configurations, resjon is provided by the organizer.

sulting in improved F-measures over the supervised

baseline by +2.62% to +10.10%. prec. | recall Fs_i

_ FE : supervised | 93.83 | 93.37 | 93.60
_ Co- and self-training, at thearacle perfqrmanc,e ASO-semi | 9457|0420 | 94.39 (70.79)
improve recall but often degrade precision; con- colself oracle| 93.76 | 93.56 | 93.66 (+0.06)
sequently, their F-measure improvements are rela-
tively low: —0.05% to +1.63%. Figure 7:Syntactic chunking results.

Comparison with top systems As shown in Fig-

ure 5, ASO-semi achieves higher performance thamse the WSJ articles in 1991 (15 million words) from
the top systems on both English and Germathe TREC corpus as the unlabeled data.

data. Most of the top systems boost performance

by external hand-crafted resources such as: lar§el Features and auxiliary problems

gazetteer§ a large amount (2 million words) of o feature representation is a slight modification of
labeleddata manually annotated with finer-grained, gjmpjer configuration (without linguistic features)
nam_ed entities (FIJZ03); and rule-based post prg; (Zhang et al., 2002), as shown in Figure 6. We
cessing (KSNMO3). Hence, we feel that our results,ge the pOS information provided by the organizer.
obtained by using unlabeled data as the only addine tynes of auxiliary problems are the same as in
tional resource, are encouraging. the named entity experiments. For word predictions,
we exclude instances of punctuation symbols.

System Eng. | Ger. | Additional resources
ASO-semi| 89.31 | 75.27 | unlabeled data

F1JZ03 88.76 | 72.41 | gazetteers; 2M-word labele
data (English) . ..
CNO3 88.31| 65.67 | gazetteers (English); (@lso | AS shown in Figure 7, ASO-semiimproves both pre-

very elaborated features) cision and recall over the supervised baseline. It
KSNMO3 | 86.31 | 71.90 | rule-based post processing|  4chjeves)4.39% in F-measure, which outperforms

) the supervised baseline y79%. Co- and self-
Figure 5: Named entity chunking. F-measure on the tes

sets. Previous best results: FIJZ03 (Florian et al., 200R03 lralnlng age_m_] S“ghtly |mprove recall but S"ghtly de__
(Chieu and Ng, 2003), KSNMO3 (Klein et al., 2003). grade precision at their oracle performance, which

demonstrates that it is not easy to benefit from unla-
beled data on this task.

6.2 Syntactic chunking results

j®N

6 Syntactic Chunking Experiments
Comparison with the previous best systems As

Next, we report syntactic chunking performance 0@pgwn in Figure 8, ASO-semi achieves performance
the CONLL'00 shared-taSkcorpus. The training pigher than the previous best systems. Though the
and test data sets consist of the Wall Street Journ%ace constraint precludes providing the detail, we
corpus (WSJ) sections 15-18 (212K words) and Sefpte that ASO-semi outperforms all of the previ-

tion 20, respectively. They are annotated with eleveg, s top systems in both precision and recall. Unlike
types of syntactic chunks such as noun phrases. \M&med entity chunking, the use of external resources

“Whether or not gazetteers are useful depends on their codh this task is rare. An exception is the use of out-

erage. A number of top-performing systems used their owput from a grammar-based full parser as features in
gazetteers in addition to the organizer’s gazetteers grutte DJ02+, which our system does not use. KMO1
significant performance improvements (e.g., FIJZ03, CNO3% ’ . .

and ZJ03). and CMO03 boost performance by classifier combina-

Shttp://cnts.uia.ac.be/conli2000/chunking tions. SPO3 trains conditional random fields for NP



row# | Features corresponding to | Interpretation
all NP | description significant® entries
ASO-semi| 94.39 | 94.70 | +unlabeled data 4 Ltd, Inc, Plc, International, organizations
KMO01 93.91| 94.39 | SVM combination Ltd., Association, Group, Inc
CMO03 93.74 | 94.41 | perceptron in two layers 7 Co, Corp, Co., Company, organizations
SP0O3 - 94.38 | conditional random fields Authority, Corp., Services
ZDJ02 93.57 | 93.89 | generalized Winnow 9 PCT, N/A, Nil, Dec, BLN, no names
[ZDJ02+ | 94.17 | 94.38 | +ull parser output | Avg, Year-on-year, UNCH _
11 New, France, European, San, locations
North, Japan, Asian, India
Figure 8: Syntactic chunking F-measure. Comparison with ~ 15 Peter, Sir, Charles, Jose, Palilpersons
previous best results: KM01 (Kudoh and Matsumoto, 2001), Lee, Alan, Dan, John, James
CMO3 (Carreras and Marquez, 2003), SP03 (Sha and Pereira, 26 June, May, July, Jan, March,| months
2003), ZDJ02 (Zhang et al., 2002). August, September, April

_ _ Figure 10: Interpretation of ® computed from word-
(noun phrases) only. ASO-semi produces higher Nftediction (unsupervised) problems for named entity cingik

chunking performance than the others.

words beginning with upper-case letters (i.e., likely
to be names in English). Our method captures the
spirit of predictive word-clustering but is more gen-
eral and effective on our tasks.

7 Empirical Analysis

7.1 Effectiveness of auxiliary problems

English named entity German named entity

SN S 76 It is possible to develop a general theory to show
o 89 o 74l that the auxiliary problems we use are helpful under
2 23 I 372 reasonable conditions. The intuition is as follows.
£ g5 | g 70t Suppose we split the features into two pabtsand
o — U 68 &, and predict®; based on®,. Suppose features
Osupervised in &, are correlated to the class labels (but not nec-

Ow/ "Predict (previous, current, or next) words"
@w/ "Predict top-2 choices"
Ww/ "Predict words" + "Predict top-2 choices'

essarily correlated among themselves). Then, the
auxiliary prediction problems are related to the tar-
get task, and thus can reveal useful structure®of
‘Under some conditions, it can be shown that features
in @, with similar predictive performance tend to

map to similar low-dimensional vectors through

~ Figure 9 shows F-measure obtained by compuirhis effect can be empirically observed in Figure 10
ing © from individual types of auxiliary problems 5nq will be formally shown elsewhere.
on named entity chunking. Both types — “Predict

words” and “Predict top-2 choices of the classifier'7 3 Effect of the® dimension
— are useful, producing significant performance im-
provements over the supervised baseline. The best
performance is achieved whéhis produced from

all of the auxiliary problems.

Figure 9:Named entity F-measure produced by using individ
ual types of auxiliary problems. Trained with the entirertiiag
sets and tested on the test sets.

[c000000¢

ASO-semi
supervised

e, g

20 40 60 80 100
dimension

7.2 Figure 11:F-measure in relation to the row-dimensioncf
To gain insights into the information obtained fromEnglish named entity chunking, test set.

unlabeled data, we examine tBeentries associated

with the feature ‘current words’, computed for the Recall that throughout the experiments, we fix the
English named entity task. Figure 10 shows the feaew-dimension of® (for each feature group) to 50.
tures associated with the entriesivith the largest Figure 11 plots F-measure in relation to the row-
values, computed from the 2000 unsupervised augimension of®, which shows that the method is rel-
iliary problems: “Predict previous words” and “Pre-atively insensitive to the change of this parameter, at
dict next words”. For clarity, the figure only showsleast in the range which we consider.

o 0
o N ©
o

F-measure (%)

Interpretation of ©



8 Conclusion Michael Collins and Yoram Singer. 1999. Unsupervised
models for named entity classification. Pmoceedings
We presented a novel semi-supervised learn- of EMNLP/VLC'99

|n.g mthOd that Iearns. th.e most predictive IOW_Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong
dimensional feature projection from unlabeled data zhang. 2003. Named entity recognition through

using the structural learning algorithm SVD-ASO. classifier combination. I®roceedings CoNLL-2003
On CoNLL'00 syntactic chunking and CoNLL'03  pages 168-171.

named entity chunking (English and German), thgene H. Golub and Charles F. Van Loan. 1996. Matrix
method exceeds the previous best systems (includ-computations third edition.
ing those which rely on hand-crafted resources) b

. L lgan Klein, Joseph Smarr, Huy Nguyen, and Christo-
using unlabeled data as the only additional resource. pher D. Manning. 2003. Named entity recognition

The key idea is to create auxiliary problems au- with character-level models. IRroceedings CoNLL-
tomatically from unlabeled data so that predictive 2003 pages 188-191.

structures can be learned from that data. In practic:cl-‘:aku Kudoh and Yuji Matsumoto. 2001. Chunking with

it is desirable to create as many auxiliary problems support vector machines. Rroceedings of NAACL
as possible, as long as there is some reason to be2001

lieve in their relevancy to the task. This is becausEernalrol Merialdo. 1994. Tagging English text with

the risk is relatively minor while the potential gain probabilistic model. Computational Linguistics
from relevant problems is large. Moreover, the aux- 20(2):155-171.

iliary problems used in our experiments are merel , . ,
ossible examples. One advantage of our a roaéﬁon Miller, Jethran Guinness, and Alex Zamanian.
P ples. g PP 2004. Name tagging with word clusters and discrimi-

is that one may design a variety of auxiliary prob- native training. InProceedings of HLT-NAACL-2004

lems to learn various aspects of the target problem N d Claire Cardie. 2003. Weakl sed
. . incent Ng and Claire Cardie. . Weakly supervise
from unlabeled data. Structural learning provides X natural language learning without redundant views. In

framework for carrying out possible new ideas. Proceedings of HLT-NAACL-2003
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