
Compiling Boostexter Rules into a Finite-state Transducer

Srinivas Bangalore
AT&T Labs–Research

180 Park Avenue
Florham Park, NJ 07932

Abstract
A number of NLP tasks have been effectively mod-
eled as classification tasks using a variety of classi-
fication techniques. Most of these tasks have been
pursued in isolation with the classifier assuming un-
ambiguous input. In order for these techniques to be
more broadly applicable, they need to be extended
to apply on weighted packed representations of am-
biguous input. One approach for achieving this is
to represent the classification model as a weighted
finite-state transducer (WFST). In this paper, we
present a compilation procedure to convert the rules
resulting from an AdaBoost classifier into an WFST.
We validate the compilation technique by applying
the resulting WFST on a call-routing application.

1 Introduction
Many problems in Natural Language Processing
(NLP) can be modeled as classification tasks either
at the word or at the sentence level. For example,
part-of-speech tagging, named-entity identification
supertagging1 , word sense disambiguation are tasks
that have been modeled as classification problems at
the word level. In addition, there are problems that
classify the entire sentence or document into one of
a set of categories. These problems are loosely char-
acterized as semantic classification and have been
used in many practical applications including call
routing and text classification.

Most of these problems have been addressed in
isolation assuming unambiguous (one-best) input.
Typically, however, in NLP applications these mod-
ules are chained together with each module intro-
ducing some amount of error. In order to alleviate
the errors introduced by a module, it is typical for a
module to provide multiple weighted solutions (ide-
ally as a packed representation) that serve as input
to the next module. For example, a speech recog-
nizer provides a lattice of possible recognition out-
puts that is to be annotated with part-of-speech and

1associating each word with a label that represents the syn-
tactic information of the word given the context of the sentence.

named-entities. Thus classification approaches need
to be extended to be applicable on weighted packed
representations of ambiguous input represented as a
weighted lattice. The research direction we adopt
here is to compile the model of a classifier into a
weighted finite-state transducer (WFST) so that it
can compose with the input lattice.

Finite state models have been extensively ap-
plied to many aspects of language processing in-
cluding, speech recognition (Pereira and Riley,
1997), phonology (Kaplan and Kay, 1994), mor-
phology (Koskenniemi, 1984), chunking (Abney,
1991; Bangalore and Joshi, 1999), parsing (Roche,
1999; Oflazer, 1999) and machine translation (Vilar
et al., 1999; Bangalore and Riccardi, 2000). Finite-
state models are attractive mechanisms for language
processing since they (a) provide an efficient data
structure for representing weighted ambiguous hy-
potheses (b) generally effective for decoding (c)
associated with a calculus for composing models
which allows for straightforward integration of con-
straints from various levels of speech and language
processing.2

In this paper, we describe the compilation pro-
cess for a particular classifier model into an WFST
and validate the accuracy of the compilation pro-
cess on a one-best input in a call-routing task. We
view this as a first step toward using a classification
model on a lattice input. The outline of the paper is
as follows. In Section 2, we review the classifica-
tion approach to resolving ambiguity in NLP tasks
and in Section 3 we discuss the boosting approach
to classification. In Section 4 we describe the com-
pilation of the boosting model into an WFST and
validate the result of this compilation using a call-
routing task.

2 Resolving Ambiguity by Classification
In general, we can characterize all these tagging
problems as search problems formulated as shown

2Furthermore, software implementing the finite-state calcu-
lus is available for research purposes.

in Equation (1). We notate
�

to be the input vocab-
ulary, � to be the vocabulary of � tags, an � word
input sequence as � (� ���) and tag sequence as �
(�	� �). We are interested in ��
 , the most likely tag
sequence out of the possible tag sequences (�) that
can be associated to � .�

�������������� ��� ����� � (1)

Following the techniques of Hidden Markov
Models (HMM) applied to speech recognition, these
tagging problems have been previously modeled in-
directly through the transformation of the Bayes
rule as in Equation 2. The problem is then approx-
imated for sequence classification by a k !#" -order
Markov model as shown in Equation (3).

�
 �������������� ��� �$� ��� �%� �&� (2)

'� ��������������
()
*#+-, �%�/. * �10 * � �%� 0 * �20 */34,456565 0 *7398134, �

(3)
Although the HMM approach to tagging can eas-

ily be represented as a WFST, it has a drawback in
that the use of large contexts and richer features re-
sults in sparseness leading to unreliable estimation
of the parameters of the model.

An alternate approach to arriving at �:
 is to
model Equation 1 directly. There are many exam-
ples in recent literature (Breiman et al., 1984; Fre-
und and Schapire, 1996; Roth, 1998; Lafferty et al.,
2001; McCallum et al., 2000) which take this ap-
proach and are well equipped to handle large num-
ber of features. The general framework for these
approaches is to learn a model from pairs of asso-
ciations of the form (� *<;>=?*) where � * is a feature
representation of � and =�* (�@�) is one of the
members of the tag set. Although these approaches
have been more effective than HMMs, there have
not been many attempts to represent these models
as a WFST, with the exception of the work on com-
piling decision trees (Sproat and Riley, 1996). In
this paper, we consider the boosting (Freund and
Schapire, 1996) approach (which outperforms de-
cision trees) to Equation 1 and present a technique
for compiling the classifier model into a WFST.

3 Boostexter
Boostexter is a machine learning tool which is based
on the boosting family of algorithms first proposed
in (Freund and Schapire, 1996). The basic idea of
boosting is to build a highly accurate classifier by
combining many “weak” or “simple” base learner,
each one of which may only be moderately accurate.
A weak learner or a rule A is a triple

�CB ;EDF ; DG � , which

tests a predicate (
B

) of the input (�) and assigns a
weight F * (H � I ;65J5J5J; �) for each member (=) of � ifB

is true in � and assigns a weight (
G *) otherwise. It

is assumed that a pool of such weak learners K �L ANM can be constructed easily.
From the pool of weak learners, the selection

the weak learner to be combined is performed it-
eratively. At each iteration 0 , a weak learner A !
is selected that minimizes a prediction error loss
function on the training corpus which takes into ac-
count the weight

. ! assigned to each training exam-
ple. Intuitively, the weights encode how important
it is that A ! correctly classifies each training exam-
ple. Generally, the examples that were most often
misclassified by the preceding base classifiers will
be given the most weight so as to force the base
learner to focus on the “hardest” examples. As de-
scribed in (Schapire and Singer, 1999), Boostexter
uses confidence rated classifiers A ! that output a
real number A ! � � ;>= � whose sign (-1 or +1) is inter-
preted as a prediction, and whose magnitude � A ! � � �6�
is a measure of “confidence”. The iterative algo-
rithm for combining weak learners stops after a pre-
specified number of iterations or when the training
set accuracy saturates.

3.1 Weak Learners
In the case of text classification applications, the set
of possible weak learners is instantiated from sim-
ple � -grams of the input text (�). Thus, if OQP is a
function to produce all � -grams up to � of its argu-
ment, then the set of predicates for the weak learn-
ers is

� � O-P � �R� . For word-level classification
problems, which take into account the left and right
context, we extend the set of weak learners created
from the word features with those created from the
left and right context features. Thus features of the
left context (S * T), features of the right context (S * U)
and the features of the word itself (S *V9W) constitute
the features at position H . The predicates for the pool
of weak learners are created from these set of fea-
tures and are typically � -grams on the feature repre-
sentations. Thus the set of predicates resulting from
the word level features is KYX �[Z * O-P � S *V9W � , from
left context features is K T �\Z * O]P � S * T � and from
right context features is K U �^Z * O P � S * U � . The set
of predicates for the weak learners for word level
classification problems is: K � K X Z K T Z K U .

3.2 Decoding
The result of training is a set of selected rulesL A ,_; A9` ;656565a; A (M (b K). The output of the final
classifier is c � � ;>= � �[d (! +-, A ! � � ;>= � , i.e. the sum
of confidence of all classifiers A ! . The real-valued
predictions of the final classifier c can be converted

into probabilities by a logistic function transform;
that is �%� = � � � � e_fhgji2k lnmd lpo7q1r e fhgCi2k l o m

(4)

Thus the most likely tag sequence �s
 is deter-
mined as in Equation 5, where

�%� 0 * � S * T ; S * U ; S *V9W � is
computed using Equation 4.

�

��������������
()
*J+-, ��� 0 * � S

* T ; S * U ; S *VtW � (5)

To date, decoding using the boosted rule sets is
restricted to cases where the test input is unambigu-
ous such as strings or words (not word graphs). By
compiling these rule sets into WFSTs, we intend to
extend their applicability to packed representations
of ambiguous input such as word graphs.

4 Compilation
We note that the weak learners selected at the end
of the training process can be partitioned into one
of three types based on the features that the learners
test.

u AtX : test features of the wordu A T : test features of the left contextu A U : test features of the right context

We use the representation of context-dependent
rewrite rules (Johnson, 1972; Kaplan and Kay,
1994) and their weighted version (Mohri and
Sproat, 1996) to represent these weak learners. The
(weighted) context-dependent rewrite rules have the
general form

Swv@xy�az { (6)

where S , x , z and { are regular expressions on the
alphabet of the rules. The interpretation of these
rules are as follows: Rewrite S by x when it is
preceded by z and followed by { . Furthermore, x
can be extended to a rational power series which
are weighted regular expressions where the weights
encode preferences over the paths in x (Mohri and
Sproat, 1996).

Each weak learner can then be viewed as a set
of weighted rewrite rules mapping the input word
into each member =|* (�}�) with a weight F * when
the predicate of the weak learner is true and with
weight

G * when the predicate of the weak learner
is false. The translation between the three types of

weak learners and the weighted context-dependency
rules is shown in Table 13.

We note that these rules apply left to right on an
input and do not repeatedly apply at the same point
in an input since the output vocabulary � would typ-
ically be disjoint from the input vocabulary

�
.

We use the technique described in (Mohri and
Sproat, 1996) to compile each weighted context-
dependency rules into an WFST. The compilation
is accomplished by the introduction of context sym-
bols which are used as markers to identify locations
for rewrites of S with x . After the rewrites, the
markers are deleted. The compilation process is rep-
resented as a composition of five transducers.

The WFSTs resulting from the compilation of
each selected weak learner (~ *) are unioned to cre-
ate the WFST to be used for decoding. The weights
of paths with the same input and output labels are
added during the union operation.� ��Z * ~ * (7)

We note that the due to the difference in the nature
of the learning algorithm, compiling decision trees
results in a composition of WFSTs representing the
rules on the path from the root to a leaf node (Sproat
and Riley, 1996), while compiling boosted rules re-
sults in a union of WFSTs, which is expected to re-
sult in smaller transducers.

In order to apply the WFST for decoding, we sim-
ply compose the model with the input represented as
an WFST (~ i) and search for the best path (if we are
interested in the single best classification result).=
 ��� ea� 0 � � 0>A � ~ i��

� � (8)

We have compiled the rules resulting from boos-
texter trained on transcriptions of speech utterances
from a call routing task with a vocabulary (� � �) of
2912 and 40 classes (� �@�|�). There were a to-
tal of 1800 rules comprising of 900 positive rules
and their negative counterparts. The WFST result-
ing from compiling these rules has a 14372 states
and 5.7 million arcs. The accuracy of the WFST on
a random set of 7013 sentences was the same (85%
accuracy) as the accuracy with the decoder that ac-
companies the boostexter program. This validates
the compilation procedure.

5 Conclusions
Classification techniques have been used to effec-
tively resolve ambiguity in many natural language

3For ease of exposition, we show the positive and negative
sides of a rule each resulting in a context dependency rule.
However, we can represent them in the form of a single con-
text dependency rule which is ommitted here due to space con-
straints.

Type of Weak Learner Weak Learner Weighted Context Dependency RuleA9X : if WORD==
.

then
. v F ,�=�,]� F ` = ` 56565�� F P = Pw�=?*h� F * else =?*h� G * ������. ��v G ,>=�,h� G ` = ` 56565�� G P = P��

A T : if LeftContext==
.

then
� v F , = , � F ` = ` 56565�� F P = P � .= * � F * else = * � G * � v G , = , � G ` = ` 56565�� G P = P � ������. �

A U : if RightContext==
.

then
� v F ,�=�,-� F ` = ` 56565�� F P = P�� .=?*h� F * else =?*h� G * � v G ,�=�,-� G ` = ` 56565�� G P = P�� ������. �

Table 1: Translation of the three types of weak learners into weighted context-dependency rules.

processing tasks. However, most of these tasks have
been solved in isolation and hence assume an un-
ambiguous input. In this paper, we extend the util-
ity of the classification based techniques so as to be
applicable on packed representations such as word
graphs. We do this by compiling the rules resulting
from an AdaBoost classifier into a finite-state trans-
ducer. The resulting finite-state transducer can then
be used as one part of a finite-state decoding chain.

References
S. Abney. 1991. Parsing by chunks. In Robert

Berwick, Steven Abney, and Carol Tenny, editors,
Principle-based parsing. Kluwer Academic Pub-
lishers.

S. Bangalore and A. K. Joshi. 1999. Supertagging:
An approach to almost parsing. Computational
Linguistics, 25(2).

S. Bangalore and G. Riccardi. 2000. Stochastic
finite-state models for spoken language machine
translation. In Proceedings of the Workshop on
Embedded Machine Translation Systems.

L. Breiman, J.H. Friedman, R.A. Olshen, and
C.J. Stone. 1984. Classification and Regression
Trees. Wadsworth & Brooks, Pacific Grove, CA.

Y. Freund and R. E. Schapire. 1996. Experi-
ments with a new boosting alogrithm. In Ma-
chine Learning: Proceedings of the Thirteenth
International Conference, pages 148–156.

C.D. Johnson. 1972. Formal Aspects of Phonologi-
cal Description. Mouton, The Hague.

R. M. Kaplan and M. Kay. 1994. Regular models of
phonological rule systems. Computational Lin-
guistics, 20(3):331–378.

K. K. Koskenniemi. 1984. Two-level morphol-
ogy: a general computation model for word-form
recognition and production. Ph.D. thesis, Uni-
versity of Helsinki.

J. Lafferty, A. McCallum, and F. Pereira. 2001.
Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In In
Proceedings of ICML, San Francisco, CA.

A. McCallum, D. Freitag, and F. Pereira. 2000.
Maximum entropy markov models for informa-
tion extraction and segmentation. In In Proceed-
ings of ICML, Stanford, CA.

M. Mohri and R. Sproat. 1996. An efficient com-
piler for weighted rewrite rules. In Proceedings
of ACL, pages 231–238.

K. Oflazer. 1999. Dependency parsing with an
extended finite state approach. In Proceedings
of the 37th Annual Meeting of the Association
for Computational Linguistics, Maryland, USA,
June.

F.C.N. Pereira and M.D. Riley. 1997. Speech
recognition by composition of weighted finite au-
tomata. In E. Roche and Schabes Y., editors,
Finite State Devices for Natural Language Pro-
cessing, pages 431–456. MIT Press, Cambridge,
Massachusetts.

E. Roche. 1999. Finite state transducers: parsing
free and frozen sentences. In András Kornai, ed-
itor, Extended Finite State Models of Language.
Cambridge University Press.

D. Roth. 1998. Learning to resolve natural lan-
guage ambiguities: A unified approach. In Pro-
ceedings of AAAI.

R.E. Schapire and Y. Singer. 1999. Improved
boosting algorithms using confidence-rated pre-
dictions. Machine Learning, 37(3):297–336, De-
cember.

R. Sproat and M. Riley. 1996. Compilation of
weighted finite-state transducers from decision
trees. In Proceedings of ACL, pages 215–222.

J. Vilar, V.M. Jiménez, J. Amengual, A. Castellanos,
D. Llorens, and E. Vidal. 1999. Text and speech
translation by means of subsequential transduc-
ers. In András Kornai, editor, Extened Finite
State Models of Language. Cambridge University
Press.

