
Using linguistic principles to recover empty categories

Richard CAMPBELL
Microsoft Research
One Microsoft Way

Redmond, WA 98052
USA

richcamp@microsoft.com

Abstract

This paper describes an algorithm for
detecting empty nodes in the Penn Treebank
(Marcus et al., 1993), finding their
antecedents, and assigning them function tags,
without access to lexical information such as
valency. Unlike previous approaches to this
task, the current method is not corpus-based,
but rather makes use of the principles of early
Government-Binding theory (Chomsky,
1981), the syntactic theory that underlies the
annotation. Using the evaluation metric
proposed by Johnson (2002), this approach
outperforms previously published approaches
on both detection of empty categories and
antecedent identification, given either
annotated input stripped of empty categories
or the output of a parser. Some problems with
this evaluation metric are noted and an
alternative is proposed along with the results.
The paper considers the reasons a principle-
based approach to this problem should
outperform corpus-based approaches, and
speculates on the possibility of a hybrid
approach.

1 Introduction

Many recent approaches to parsing (e.g. Charniak,
2000) have focused on labeled bracketing of the
input string, ignoring aspects of structure that are
not reflected in the string, such as phonetically null
elements and long-distance dependencies, many of
which provide important semantic information
such as predicate-argument structure. In the Penn
Treebank (Marcus et al., 1993), null elements, or
empty categories, are used to indicate non-local
dependencies, discontinuous constituents, and
certain missing elements. Empty categories are
coindexed with their antecedents in the same
sentence. In addition, if a node has a particular
grammatical function (such as subject) or semantic
role (such as location), it has a function tag
indicating that role; empty categories may also
have function tags. Thus in the sentence below,
who is coindexed with the empty category *T* in

the embedded S; the function tag SBJ indicates that
this empty category is the subject of that S:

[WHNP-1 who] NP want [S [NP-SBJ-1*T*] to VP]

Empty categories, with coindexation and function
tags, allow a transparent reconstruction of
predicate-argument structure not available from a
simple bracketed string.

In addition to bracketing the input string, a fully
adequate syntactic analyzer should also locate
empty categories in the parse tree, identify their
antecedents, if any, and assign them appropriate
function tags. State-of-the-art statistical parsers
(e.g. Charniak, 2000) typically provide a labeled
bracketing only; i.e., a parse tree without empty
categories. This paper describes an algorithm for
inserting empty categories in such impoverished
trees, coindexing them with their antecedents, and
assigning them function tags. This is the first
approach to include function tag assignment as part
of the more general task of empty category
recovery.

Previous approaches to the problem (Collins,
1997; Johnson, 2002; Dienes and Dubey, 2003a,b;
Higgins, 2003) have all been learning-based; the
primary difference between the present algorithm
and earlier ones is that it is not learned, but
explicitly incorporates principles of Government-
Binding theory (Chomsky, 1981), since that theory
underlies the annotation. The absence of rule-
based approaches up until now is not motivated by
the failure of such approaches in this domain; on
the contrary, no one seems to have tried a rule-
based approach to this problem. Instead it appears
that there is an understandable predisposition
against rule-based approaches, given the fact that
data-driven, especially machine-learning,
approaches have worked so much better in many
other domains.1

Empty categories however seem different, in
that, for the most part, their location and existence
is determined, not by observable data, but by
explicitly constructed linguistic principles, which

1Both Collins (1997: 19) and Higgins (2003: 100) are

explicit about this predisposition.

were consciously used in the annotation; i.e.,
unlike overt words and phrases, which correspond
to actual strings in the data, empty categories are in
the data only because linguists doing the
annotation put them there. This paper therefore
explores a rule-based approach to empty category
recovery, with two purposes in mind: first, to
explore the limits of such an approach; and second,
to establish a more realistic baseline for future
(possibly data-driven or hybrid) approaches.

Although it does not seem likely that any
application trying to glean semantic information
from a parse tree would care about the exact string
position of an empty category, the algorithm
described here does try to insert empty categories
in the correct position in the string. The main
reason for this is to facilitate comparison with
previous approaches to the problem, which
evaluate accuracy by including such information.
In Section 5, however, a revised evaluation metric
is proposed that does not depend on string position
per se.

Before proceeding, a note on terminology is in
order. I use the term detection (of empty
categories) for the insertion of a labeled empty
category into the tree (and/or string), and the term
resolution for the coindexation of the empty
category with its antecedent(s), if any. The term
recovery refers to the complete package:
detection, resolution, and assignment of function
tags to empty categories.

2 Empty nodes in the Penn Treebank

The major types of empty category in the Penn
Treebank (PTB) are shown in Table 1, along with
their distribution in section 24 of the Wall Street
Journal portion of the PTB.

Empty
category type

Count Description

NP * 1044 NP trace or PRO
NP *T* 265 Trace of WHNP
U 227 Empty unit
0 178 Empty complementizer
ADVP *T* 97 Trace of WHADVP
S *T* 76 Trace of topicalized

quoted S
WHNP 0 43 Null WHNP
SBAR 41 Trace of topicalized

non-quoted S
WHADVP 0 25 Null WHADVP
others 95

Total: 2091
Table 1: Common empty categories and their
distribution in section 24 of the PTB

A detailed description of the categories and their
uses in the treebank is provided in Chapter 4 of the
annotation guidelines (Bies et al., 1995).
Following Johnson (2002) and Dienes and Dubey
(2003a), the compound empty SBAR consisting of
an empty complementizer followed by *T* of
category S is treated as a single item for purposes
of evaluation. This compound category is labeled
SBAR in Table 1.

The PTB annotation in general, but especially
the annotation of empty categories, follows a
modified version of Government-Binding (GB)
theory (Chomsky, 1981). In GB, the existence and
location of empty categories is determined by the
interaction of linguistic principles. In addition, the
type of a given empty category is determined by its
syntactic context, with the result that the various
types of empty category are in complementary
distribution. For example, the GB categories NP-
trace and PRO (which are conflated to a single
category in the PTB) occur only in argument
positions in which an overt NP could not occur,
namely as the object of a passive verb or as the
subject of certain kinds of infinitive.

3 Previous work

Previous approaches to this task have all been
learning-based. Collins’ (1997) Model 3 integrates
the detection and resolution of WH-traces in
relative clauses into a lexicalized PCFG. Collins’
results are not directly comparable to the works
cited below, since he does not provide a separate
evaluation of the empty category detection and
resolution task.

Johnson (2002) proposes a pattern-matching
algorithm, in which the minimal connected tree
fragments containing an empty node and its
antecedent(s) are extracted from the training
corpus, and matched at runtime to an input tree.
As in the present approach, Johnson inserts empty
nodes as a post-process on an existing tree. He
proposes an evaluation metric (discussed further
below), and presents results for both detection and
detection plus resolution, given two different kinds
of input: perfect trees (with empty nodes removed)
and parser output.

Dienes and Dubey (2003a,b), on the other hand,
integrate their empty node resolution algorithm
into their own PCFG parser. They first locate
empty nodes in the string, taking a POS-tagged
string as input, and outputting a POS-tagged string
with labeled empty nodes inserted. The PCFG
parser is then trained, using the enhanced strings as
input, without inserting any additional empty
nodes. Antecedent resolution is handled by a
separate post-process. Using Johnson’s (2002)
evaluation metric, Dienes and Dubey present

results on the detection task alone (i.e., inserting
empty categories into the POS-tagged string), as
well as on the combined detection and resolution
tasks in combination with their parser.2

Higgins (2003) considers only the detection and
resolution of WH-traces, and only evaluates the
results given perfect input. Higgins’ method, like
Johnson’s (2002) and the present one, involves
post-processing of trees. Higgins’ results are not
directly comparable to the other works cited, since
he assumes all WH-phrases as given, even those
that are themselves empty.

4 The recovery algorithm

4.1 The algorithm

The proposed algorithm for recovering empty
categories is shown in Figure 1; the algorithm
walks the tree from top to bottom, at each node X
deterministically inserting an empty category of a
given type (usually as a daughter of X) if the
syntactic context for that type is met by X. It
makes four separate passes over the tree, on each
pass applying a different set of rules.

1 for each tree, iterate over nodes from top down
2 for each node X
3 try to insert NP* in X
4 try to insert 0 in X
5 try to insert WHNP 0 or WHADVP 0 in X
6 try to insert *U* in X
7 try to insert a VP ellipsis site in X
8 try to insert S*T* or SBAR in X
9 try to insert trace of topicalized XP in X
10 try to insert trace of extraposition in X
11 for each node X
12 try to insert WH-trace in X
13 for each node X
14 try to insert NP-SBJ * in finite clause X
15 for each node X
16 if X = NP*, try to find antecedent for X
Figure 1: Empty category recovery algorithm

The rules called by this algorithm that try to
insert empty categories of a particular type specify
the syntactic context in which that type of empty
category can occur, and if the context exists,
specify where to insert the empty category. For
example, the category NP*, which conflates the
GB categories NP-trace and PRO, occurs typically3

2 It is unclear whether Dienes and Dubey’s evaluation

of empty category detection is based on actual tags
provided by the annotation (perfect input), or on the
output of a POS-tagger.

3 NP* is used in roles that go beyond the GB notions
of NP-trace and PRO, including e.g. the subject of

as the object of a passive verb or as the subject of
an infinitive. The rule which tries to insert this
category and assign it a function tag is called in
line 3 of Figure 1 and given in pseudo-code in
Figure 2. Some additional rules are given in the
Appendix.

if X is a passive VP & X has no complement S

if there is a postmodifying dangling PP Y
 then insert NP* before all postmodifiers of Y
 else insert NP* before all postmodifiers of X

else if X is a non-finite S and X has no subject
 then insert NP-SBJ* after all premodifiers of X

Figure 2: Rule to insert NP*

This rule, which accounts for about half the

empty category tokens in the PTB, makes no use of
lexical information such as valency of the verb,
etc. This is potentially a problem, since in GB the
infinitives that can have NP-trace or PRO as
subjects (raising and control infinitives) are
distinguished from those that can have overt NPs
or WH-trace as subjects (exceptional-Case-
marked, or ECM, infinitives), and the distinction
relies on the class of the governing verb.

Nevertheless, the rules that insert empty nodes
do not have access to a lexicon, and very little
lexical information is encoded in the rules:
reference is made in the rules to individual
function words such as complementizers,
auxiliaries, and the infinitival marker to, but never
to lexical properties of content words such as
valency or the raising/ECM distinction. In fact, the
only reference to content words at all is in the rule
which tries to insert null WH-phrases, called in
line 5 of Figure 1: when this rule has found a
relative clause in which it needs to insert a null
WH-phrase, it checks if the head of the NP the
relative clause modifies is reason(s), way(s),
time(s), day(s), or place(s); if it is, then it inserts
WHADVP with the appropriate function tag, rather
than WHNP.

The rule shown in Figure 2 depends for its
successful application on the system’s being able
to identify passives, non-finite sentences, heads of
phrases (to identify pre- and post-modifiers), and
functional information such as subject; similar
information is accessed by the other rules used in
the algorithm. Simple functions to identify
passives, etc. are therefore called by the
implemented versions of these rules. Functional
information, such as subject, can be gleaned from
the function tags in the treebank annotation; the
rules make frequent use of a variety of function
tags as they occur on various nodes. The output of

imperatives; see below.

Charniak’s parser (Charniak, 2000), however, does
not include function tags, so in order for the
algorithm to work properly on parser output (see
Section 5), additional functions were written to
approximate the required tags. Presumably, the
accuracy of the algorithm on parser output would
be enhanced by accurate prior assignment of the
tags to all relevant nodes, as in Blaheta and
Charniak (2000) (see also Section 5).

Each empty category insertion rule, in addition
to inserting an empty node in the tree, also may
assign a function tag to the empty node. This is
illustrated in Figure 2, where the final line inserts
NP* with the function tag SBJ in the case where it
is the subject of an infinitive clause.

The rule that inserts WH-trace (called in line 12
in Figure 1) takes a WHXP needing a trace as
input, and walks the tree until an appropriate
insertion site is found (see Appendix for a fuller
description). Since this rule requires a WHXP as
input, and that WHXP may itself be an empty
category (inserted by an earlier rule), it is handled
in a separate pass through the tree.

A separate rule inserts NP* as the subject in
sentences which have no overt subject, and which
have not had a subject inserted by any of the other
rules. Most commonly, these are imperative
sentences, but calling this rule in a separate pass
through the tree, as in Figure 1, ensures that any
subject position missed by the other rules is filled.

Finally, a separate rule tries to find an
antecedent for NP* under certain conditions. The
antecedent of NP* may be an empty node inserted
by rules in any of the first three passes through the
tree, even the subject of an imperative; therefore
this rule is applied in a separate pass through the
tree. This rule is also fairly simple, assigning the
local subject as antecedent for a non-subject NP*,
while for an NP* in the subject position of a non-
finite S it searches up the tree, given certain
locality conditions, for another NP subject.

All the rules that insert empty categories are
fairly simple, and derive straighforwardly from
standard GB theory and from the annotation
guidelines. The most complex rule is the rule that
inserts WH-trace when it finds a WHXP daughter
of SBAR; most are about as simple as the rule
shown in Figure 2, some more so. Representative
examples are given in the Appendix.

4.2 Development method

After implementing the algorithm, it was run over
sections 1, 3, and 11 of the WSJ portion of the
PTB, followed by manual inspection of the trees to
perform error analysis, with revisions made as
necessary to correct errors. Initially sections 22
and 24 were used for development testing.

However, it was found that these two sections
differ from each other substantially with respect to
the annotation of antecedents of NP* (which is
described somewhat vaguely in the annotation
guidelines), so all of sections 2-21 were used as a
development test corpus. Section 23 was used
only for the final evaluation, reported in Section 5
below.

5 Evaluation

Following Johnson (2002), the system was
evaluated on two different kinds of input: first, on
perfect input, i.e., PTB annotations stripped of all
empty categories and information related to them;
and second, on imperfect input, in this case the
output of Charniak’s (2000) parser. Each is
discussed in turn below.

5.1 Perfect input

The system was run on PTB trees stripped of all
empty categories. To facilitate comparison to
previous approaches, we used Johnson’s label and
string position evaluation metric, according to
which an empty node is identified by its label plus
its string position, and evaluated the detection task
alone. We then evaluated detection and resolution
combined, identifying each empty category as
before, plus the label and string position of its
antecedent, if any, again following Johnson’s
work.

The results are shown in Table 2. Precision here
and throughout is the percentage of empty nodes
proposed by the system that are in the gold
standard (section 23 of the PTB), recall is the
percentage of empty nodes in the gold standard
that are proposed by the system, and F1 is balanced
f-measure; i.e., 2PR/(P+R).

Task Prec. Rec. F1
Detection only 94.9 91.1 93.0
Detection + resolution 90.1 86.6 88.4
Table 2: Detection and resolution of empty cate-
gories given perfect input (label + string position
method), expressed as percentage

These results compare favorably to previously
reported results, exceeding them mainly by
achieving higher recall. Johnson (2002) reports
93% precision and 83% recall (F1 = 88%) for the
detection task alone, and 80% precision and 70%
recall (F1 = 75%) for detection plus resolution. In
contrast to Johnson (2002) and the present work,
Dienes and Dubey (2003a) take a POS-tagged
string, rather than a tree, as input; they report
86.5% precision and 72.9% recall (F1 = 79.1%) on
the detection task. For Dienes and Dubey, the
further task of finding antecedents for empty

categories is integrated with their own PCFG
parser, so they report no numbers directly relevant
to the task of detection and resolution given perfect
input.

5.2 Parser output

The system was also run using as input the output
of Charniak’s parser (Charniak, 2000). The
results, again using the label and string position
method, are given in Table 3.

Task Prec. Rec. F1
Detection only 85.2 81.7 83.4
Detection + resolution 78.3 75.1 76.7
Table 3: Detection and resolution of empty
categories on parser output (label + string position
method), expressed as percentage

Again the results exceed those previously reported.
Johnson (2002) reports 85% precision and 74%
recall (F1 = 79%) for detection and 73% precision
and 63% recall (F1 = 68%) for detection plus
resolution on the output of Charniak’s parser.
Dienes and Dubey (2003b) integrate the results of
their detection task into their own PCFG parser,
and report 81.5% precision and 68.7% recall (F1 =
74.6%) on the combined task of detection and
resolution.

5.3 Perfect input with no function tags

The lower results on parser output obviously
reflect errors introduced by the parser, but may
also be due to the parser not outputting function
tags on any nodes. As mentioned in Section 4, it is
believed that the results of the current method on
parser output would improve if that output were
reliably assigned function tags, perhaps along the
lines of Blaheta and Charniak (2000).

Testing this hypothesis directly is beyond the
scope of the present work, but a simple experiment
can give some idea of the extent to which the
current algorithm relies on function tags in the
input. The system was run on PTB trees with all
nodes stripped of function tags; the results are
given in Table 4.

Task Prec. Rec. F1
Detection only 94.1 89.5 91.7
Detection + resolution 89.5 85.2 87.3
Table 4: Detection and resolution of empty
categories on PTB input without function tags
(label + string position method), expressed as
percentage

While not as good as the results on perfect input

with function tags, these results are much better
than the results on parser output. This suggests

that function tag assignment should improve the
results shown on parser output, but that the greater
part of the difference between the results on perfect
input and on parser output is due to errors
introduced by the parser.

5.4 Refining the evaluation

The results reported in the previous subsections are
quite good, and demonstrate that the current
approach outperforms previously reported
approaches on the detection and resolution of
empty categories. In this subsection some
refinements to the evaluation method are
considered.

The label and string position method is useful if
one sees the task as inserting empty nodes into a
string, and thus is quite useful for evaluating
systems that detect empty categories without parse
trees, as in Dienes and Dubey (2003a). However,
if the task is to insert empty nodes into a tree, then
the method leads both to false positives and to
false negatives. Suppose for example that the
sentence When do you expect to finish? has the
bracketing shown below, where ‘1’ and ‘2’
indicate two possible locations in the tree for the
trace of the WHADVP:

When do you [VP expect to [VP finish 1] 2]

Suppose position 1 is correct; i.e. it represents the
position of the trace in the gold standard. Since 1
and 2 correspond to the same string position, if a
system inserts the trace in position 2, the string
position evaluation method will count it as correct.

This is a serious problem with the string-based
method of evaluation, if one assumes, as seems
reasonable, that the purpose of inserting empty
categories into trees is to be able to recover
semantic information such as predicate-argument
structure and modification relations. In the above
example, it is clearly semantically relevant whether
the system proposes that when modifies expect
instead of finish.

Conversely, suppose the sentence Who (besides
me) cares? has the bracketing shown:

Who [S 1 (besides me) 2 [VP cares]]

Again suppose that position 1 represents the
placement of the WHNP trace in the gold standard.
If a system places the trace in position 2 instead,
the string position method will count it as an error,
since 1 and 2 have different string positions.
However it is not at all clear what it means to say
that one of those two positions is correct and the
other not, since there is no semantic, grammatical,
or textual indicator of its exact position. If the task

is to be able to recover semantic information using
traces, then it does not matter in this case whether
the system inserts the trace to the left or to the right
of the parenthetical.

Given that both false positives and false
negatives are possible, I propose that future
evaluations of this task should identify empty
categories by their label and by their parent
category, instead of, or perhaps in addition to,
doing so by label and string position. Since the
parent of an empty node is always an overt node4,
the parent could be identified by its label and string
position (left and right edges). Resolution is
evaluated by a natural extension, by identifying the
antecedent (which could itself be an empty
category) according to its label and its parent’s
label and string position. This would serve to
identify an empty category by its position in the
tree, rather than in the string, and would avoid the
false positives and false negatives described above.

In addition to an evaluation based on tree
position rather than string position, I propose to
evaluate the entire recovery task, i.e., including
function tag assignment, not just detection and
resolution.

The revised evaluation is still not perfect: when
inserting an NP* or NP*T* into a double-object
construction, it clearly matters semantically
whether it is the first or second object, though both
positions have the same parent.5 Ideally, we would
evaluate based on a richer set of grammatical
relations than are annotated in the PTB, or perhaps
based on thematic roles. However, it is difficult to
see how to accomplish this without additional
annotation. It is probable that constructions of this
sort are relatively rare in the PTB in any case, so
for now the proposed evaluation method, however
imperfect, will suffice.

The result of this revised evaluation, given
perfect input, is presented in Table 5. The first two
rows are comparable to the string-based results in
Table 2; the last row, showing the results of the
full recovery task (i.e., including antecedents and
function tags), is not much lower, suggesting that
labeling empty categories with function tags does
not pose any serious difficulties.

4 The only exception is the 0 complementizer and

S*T* daughters of the SBAR category in Table 1; but
since the entire SBAR is treated as a single empty node
for evaluation purposes, this does not pose a problem.

5 I am indebted to two ACL reviewers for calling this
to my attention.

Task Prec. Rec. F1
Detection only 95.6 91.9 93.7
Detection + resolution 90.8 87.3 89.0
Recovery
(det.+res.+func. tags)

89.8 86.3 88.0

Table 5: Detection, resolution and recovery of
empty categories given perfect input (label +
parent method), expressed as percentage

Three similar evaluations were also run, using
parser output as input to the algorithm; the results
are given in Table 6.

Task Prec. Rec. F1
Detection only 78.4 75.2 76.7
Detection + resolution 72.3 69.3 70.8
Recovery
(det.+res.+func. tags)

69.7 66.8 68.2

Table 6: Detection, resolution and recovery of
empty categories on parser output (label + parent
method), expressed as percentage

The results here are less impressive, no doubt
reflecting errors introduced by the parser in the
labeling and bracketing of the parent category, a
problem which does not affect a string-based
evaluation. However it does not seem reasonable
to have an effective evaluation of empty node
insertion in parser output that does not depend to
some extent on the correctness of the parse. The
fact that our proposed evaluation metric depends
more heavily on the accuracy of the input structure
may be an unavoidable consequence of using a
tree-based evaluation.

6 Discussion

The empty category recovery algorithm reported
on here outperforms previously published
approaches on the detection and resolution tasks; it
also does well on the task of function tag
assignment to empty categories, which has not
been considered in other work. As suggested in
the introduction, the reason a rule-based approach
works so well in this domain may be that empty
categories are not naturally in the text, but are only
inserted by the annotator, who is consciously
following explicit linguistic principles, in this case,
the principles of early GB theory.

As a result, the recovery of empty categories is,
for the most part, more amenable to a rule-based
approach than to a learning approach. It makes
little sense to learn, for example, that NP* occurs
as the object of a passive verb or as the subject of
certain infinitives in the PTB, if that information is
already explicit in the annotation guidelines.

This is not to say that learning approaches have
nothing to contribute to this task. Information

about individual lexical items, such as valency, the
raising/ECM distinction, or subject vs. object
control, which is presumably most robustly
acquired from large amounts of data, would
probably help in the task of detecting certain empty
categories.

Consider for example an input structure V [S to
VP]. GB principles, which are enforced in the
annotation guidelines, dictate that an empty
category must be inserted as the subject of the
infinitival S; but exactly which empty category,
NP* or NP*T*, depends on properties of the
governing verb, including whether it is a raising or
control verb, such as seem or try, or an ECM verb,
such as believe. In the present algorithm, the rule
that inserts NP* applies first, without access to
lexical information of any kind, so NP* is inserted,
instead of NP*T*, regardless of the value of V.
This leads to some errors which might be corrected
given learned lexical information. Such errors are
fewer than might have been expected, however:
the present system achieved 97.7% precision and
97.3% recall (F1 = 97.5%) on the isolated task of
detecting NP*, even without lexical knowledge
(see Table 7).

A combined learning and rule-based algorithm
might stand to make a bigger gain in the task of
deciding whether NP* in subject position has an
antecedent or not, and if it does, whether the
antecedent is a subject or not. The annotation
guidelines and the theory that underlies it are less
explicit on the principles underlying this task than
they are on the other subtasks. As a result, the
accuracy of the current system drops considerably
when this task is taken into account, from 97.5%
F1 to 86.9% (see Table 7). Dienes and Dubey
(2003a), on the other hand, claim this as one of the
strengths of their learning-based system.

Empty
category
type

Detection
only (F1)

Detection
+ resolution (F1)

NP* 97.5 86.9
NP*T* 96.2 96.0
U 98.6 -
0 98.5 -
ADVP*T* 79.9 79.9
S*T* 92.7 92.7
WHNP 0 92.4 -
SBAR 84.4 84.4
WHADVP 0 73.3 -
Table 7: F1 for detection and resolution of empty
categories by type, using perfect input (label +
parent method), expressed as percentage

7 Conclusion

In this paper I have presented an algorithm for the
recovery of empty categories in PTB-style trees
that otherwise lack them. Unlike previous
approaches, the current algorithm is rule-based
rather than learning-based, which I have argued is
appropriate for this task, given the highly
theoretical nature of empty categories in the PTB.
Moreover, the algorithm has no access to lexical
information such as valency or verb class.

Using the string-based evaluation metric
proposed by Johnson (2002), the current system
outperforms previously published algorithms on
detection alone, as well as on detection combined
with resolution, both on perfect input and in
combination with parsing. In addition, we have
performed additional evaluation using a tree-based
metric, and including an evaluation of function tag
assignment as well.

8 Acknowledgements

I would like to thank Simon Corston-Oliver, Mark
Johnson, and Hisami Suzuki for their helpful input.

References

Bies, A., M. Ferguson, K. Katz and R. MacIntyre.
1995. Bracketing Guidelines for Treebank II
style Penn Treebank Project. Linguistic Data
Consortium.

Blaheta, D. and E. Charniak. 2000. Assigning
Function Tags to Parsed Text. In Proceedings of
the North American Chapter of the Association
for Computational Linguistics, pages 234-240.

Charniak, E. 2000. A maximum-entropy-inspired
parser. In In Proceedings of the North American
Chapter of the Association for Computational
Linguistics, pages 132-139.

Chomsky, N. 1981. Lectures on Government and
Binding. Foris Publications, Dordrecht.

Collins, M. 1997. Three Generative, Lexicalised
Models for Statistical Parsing. In Proceedings of
the 35th Annual Meeting of the Association for
Computational Linguistics, pages 16-23.

Dienes, P. and A. Dubey. 2003a. Deep Syntactic
Processing by Combining Shallow Methods. In
Proceedings of the 41st Annual Meeting of the
Association for Computational Linguistics, pages
431-438.

Dienes, P. and A. Dubey. 2003b. Antecedent
Recovery: Experiments with a Trace Tagger. In
Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pages
33-40.

Higgins, D. 2003. A machine-learning approach
to the identification of WH gaps. In Proceedings
of the 10th Conference of the European Chapter
of the Association for Computational Linguistics,
pages 99-102.

Johnson, M. 2002. A simple pattern-matching
algorithm for recovering empty nodes and their
antecedents. In Proceedings of the 40th Annual
Meeting of the Association for Computational
Linguistics, pages 136-143.

Marcus, M., B. Santorini and M.A.Marcinkiewicz.
1993. Building a large annotated corpus of
English: The Penn Treebank. Computational
Linguistics, 19(2):313-330.

Appendix: Sample rules

To insert 0 Comp:
if X=SBAR & !Comp(X) & !WHXP daughter(X)
& ∃ S daughter Y of X
& !(parent(X)=NP & sister(X)=NP)
 then insert 0 to left of Y

To insert WHNP/WHADVP:
if X=SBAR & parent(X)=NP
& sister(X)=NP & !Comp(X)
& !WHXP daughter(X) & ∃ S daughter Y of X
 if head(parent(X)) in {reason(s) way(s)
 time(s) day(s) place(s)}
 then insert WHADVP to left of Y
 else insert WHNP to left of Y

To insert *U*:
insert *U* / $ CD+ _

To insert WH-trace:
if X=SBAR & ∃ S daughter Y of X
& ∃ WHXP daughter W of X
 then find trace(W) in Y

To find trace(W) in X:

insert trace:
(for W = WHXP, insert XP*T*)
if X has conjuncts
 then find trace(W) in each conjunct of X
else if X has a PP daughter Y with no object
& W=WHNP
 then insert *T* to right of P
else if X=S and !subject(X) & W=WHNP
 then insert *T* as last pre-mod of X
else if X contains a VP Y
 then find trace(W) in Y
else if X contains ADJP or clausal complement Y

& W=WHNP

 then find trace(W) in Y
else if W=WHNP
& ∃ infinival rel. clause R, R=sister(W)
& X=VP & X has an object NP
& subject(R) is an empty node E
 then insert *T* as last pre-mod of R
 then delete E
else if W=WHNP
 then insert *T* as first post-mod of X
else insert *T* as last post-mod of X

assign function tag:
if W = WHNP & *T* a pre-mod of S
 then assign ‘SBJ’ to *T*
if W = WHADVP & W is not empty
 if W = ‘why’
 then assign ‘PRP’ to *T*
 if W = ‘when’
 then assign ‘TMP’ to *T*
 if W = ‘where’
 then assign ‘LOC’ to *T*
 if W = ‘how’
 then assign ‘MNR’ to *T*
else if W = WHADVP & parent(parent(W)) =NP
 if head(sister(parent(W))) = ‘reason(s)’
 then assign ‘PRP’ to *T*
 if head(sister(parent(W)))=‘time(s)’ or ‘day(s)’
 then assign ‘TMP’ to *T*
 if head(sister(parent(W))) = ‘place(s)’
 then assign ‘LOC’ to *T*
 if head(sister(parent(W))) = ‘way(s)’
 then assign ‘MNR’ to *T*

