
Using linguistic principles to recover empty categories 

Richard CAMPBELL 
Microsoft Research  
One Microsoft Way 

Redmond, WA 98052 
USA 

richcamp@microsoft.com 
 

Abstract 

This paper describes an algorithm for 
detecting empty nodes in the Penn Treebank 
(Marcus et al., 1993), finding their 
antecedents, and assigning them function tags, 
without access to lexical information such as 
valency.  Unlike previous approaches to this 
task, the current method is not corpus-based, 
but rather makes use of the principles of early 
Government-Binding theory (Chomsky, 
1981), the syntactic theory that underlies the 
annotation.  Using the evaluation metric 
proposed by Johnson (2002), this approach 
outperforms previously published approaches 
on both detection of empty categories and 
antecedent identification, given either 
annotated input stripped of empty categories 
or the output of a parser.  Some problems with 
this evaluation metric are noted and an 
alternative is proposed along with the results.  
The paper considers the reasons a principle-
based approach to this problem should 
outperform corpus-based approaches, and 
speculates on the possibility of a hybrid 
approach. 

1 Introduction 

Many recent approaches to parsing (e.g. Charniak, 
2000) have focused on labeled bracketing of the 
input string, ignoring aspects of structure that are 
not reflected in the string, such as phonetically null 
elements and long-distance dependencies, many of 
which provide important semantic information 
such as predicate-argument structure.  In the Penn 
Treebank (Marcus et al., 1993), null elements, or 
empty categories, are used to indicate non-local 
dependencies, discontinuous constituents, and 
certain missing elements.  Empty categories are 
coindexed with their antecedents in the same 
sentence.  In addition, if a node has a particular 
grammatical function (such as subject) or semantic 
role (such as location), it has a function tag 
indicating that role; empty categories may also 
have function tags.  Thus in the sentence below, 
who is coindexed with the empty category *T* in 

the embedded S; the function tag SBJ indicates that 
this empty category is the subject of that S: 

 
[WHNP-1 who] NP want [S [NP-SBJ-1*T*] to VP] 

 
Empty categories, with coindexation and function 
tags, allow a transparent reconstruction of 
predicate-argument structure not available from a 
simple bracketed string.   

In addition to bracketing the input string, a fully 
adequate syntactic analyzer should also locate 
empty categories in the parse tree, identify their 
antecedents, if any, and assign them appropriate 
function tags.  State-of-the-art statistical parsers 
(e.g. Charniak, 2000) typically provide a labeled 
bracketing only; i.e., a parse tree without empty 
categories.  This paper describes an algorithm for 
inserting empty categories in such impoverished 
trees, coindexing them with their antecedents, and 
assigning them function tags.  This is the first 
approach to include function tag assignment as part 
of the more general task of empty category 
recovery. 

Previous approaches to the problem (Collins, 
1997; Johnson, 2002; Dienes and Dubey, 2003a,b; 
Higgins, 2003) have all been learning-based; the 
primary difference between the present algorithm 
and earlier ones is that it is not learned, but 
explicitly incorporates principles of Government-
Binding theory (Chomsky, 1981), since that theory 
underlies the annotation.  The absence of rule-
based approaches up until now is not motivated by 
the failure of such approaches in this domain; on 
the contrary, no one seems to have tried a rule-
based approach to this problem.  Instead it appears 
that there is an understandable predisposition 
against rule-based approaches, given the fact that 
data-driven, especially machine-learning, 
approaches have worked so much better in many 
other domains.1 

Empty categories however seem different, in 
that, for the most part, their location and existence 
is determined, not by observable data, but by 
explicitly constructed linguistic principles, which 

                                                      
1Both Collins (1997: 19) and Higgins (2003: 100) are 

explicit about this predisposition. 



were consciously used in the annotation; i.e., 
unlike overt words and phrases, which correspond 
to actual strings in the data, empty categories are in 
the data only because linguists doing the 
annotation put them there.  This paper therefore 
explores a rule-based approach to empty category 
recovery, with two purposes in mind:  first, to 
explore the limits of such an approach; and second, 
to establish a more realistic baseline for future 
(possibly data-driven or hybrid) approaches. 

Although it does not seem likely that any 
application trying to glean semantic information 
from a parse tree would care about the exact string 
position of an empty category, the algorithm 
described here does try to insert empty categories 
in the correct position in the string.  The main 
reason for this is to facilitate comparison with 
previous approaches to the problem, which 
evaluate accuracy by including such information.  
In Section 5, however, a revised evaluation metric 
is proposed that does not depend on string position 
per se. 

Before proceeding, a note on terminology is in 
order.  I use the term detection (of empty 
categories) for the insertion of a labeled empty 
category into the tree (and/or string), and the term 
resolution for the coindexation of the empty 
category with its antecedent(s), if any.  The term 
recovery refers to the complete package:  
detection, resolution, and assignment of function 
tags to empty categories. 

2 Empty nodes in the Penn Treebank 

The major types of empty category in the Penn 
Treebank (PTB) are shown in Table 1, along with 
their distribution in section 24 of the Wall Street 
Journal portion of the PTB.   

 
Empty 
category type 

Count Description 

NP * 1044 NP trace or PRO 
NP *T* 265 Trace of WHNP 
*U* 227 Empty unit 
0 178 Empty complementizer 
ADVP *T* 97 Trace of WHADVP 
S *T* 76 Trace of topicalized 

quoted S 
WHNP 0 43 Null WHNP 
SBAR 41 Trace of topicalized 

non-quoted S 
WHADVP 0 25 Null WHADVP 
others 95  

Total: 2091  
Table 1:  Common empty categories and their 
distribution in section 24 of the PTB 

 

A detailed description of the categories and their 
uses in the treebank is provided in Chapter 4 of the 
annotation guidelines (Bies et al., 1995).  
Following Johnson (2002) and Dienes and Dubey 
(2003a), the compound empty SBAR consisting of 
an empty complementizer followed by *T* of 
category S is treated as a single item for purposes 
of evaluation.  This compound category is labeled 
SBAR in Table 1. 

The PTB annotation in general, but especially 
the annotation of empty categories, follows a 
modified version of Government-Binding (GB) 
theory (Chomsky, 1981).  In GB, the existence and 
location of empty categories is determined by the 
interaction of linguistic principles.  In addition, the 
type of a given empty category is determined by its 
syntactic context, with the result that the various 
types of empty category are in complementary 
distribution.  For example, the GB categories NP-
trace and PRO (which are conflated to a single 
category in the PTB) occur only in argument 
positions in which an overt NP could not occur, 
namely as the object of a passive verb or as the 
subject of certain kinds of infinitive. 

3 Previous work 

Previous approaches to this task have all been 
learning-based.  Collins’ (1997) Model 3 integrates 
the detection and resolution of WH-traces in 
relative clauses into a lexicalized PCFG.  Collins’ 
results are not directly comparable to the works 
cited below, since he does not provide a separate 
evaluation of the empty category detection and 
resolution task. 

Johnson (2002) proposes a pattern-matching 
algorithm, in which the minimal connected tree 
fragments containing an empty node and its 
antecedent(s) are extracted from the training 
corpus, and matched at runtime to an input tree.  
As in the present approach, Johnson inserts empty 
nodes as a post-process on an existing tree.  He 
proposes an evaluation metric (discussed further 
below), and presents results for both detection and 
detection plus resolution, given two different kinds 
of input:  perfect trees (with empty nodes removed) 
and parser output. 

Dienes and Dubey (2003a,b), on the other hand, 
integrate their empty node resolution algorithm 
into their own PCFG parser.  They first locate 
empty nodes in the string, taking a POS-tagged 
string as input, and outputting a POS-tagged string 
with labeled empty nodes inserted.  The PCFG 
parser is then trained, using the enhanced strings as 
input, without inserting any additional empty 
nodes.  Antecedent resolution is handled by a 
separate post-process.  Using Johnson’s (2002) 
evaluation metric, Dienes and Dubey present 



results on the detection task alone (i.e., inserting 
empty categories into the POS-tagged string), as 
well as on the combined detection and resolution 
tasks in combination with their parser.2 

Higgins (2003) considers only the detection and 
resolution of WH-traces, and only evaluates the 
results given perfect input.  Higgins’ method, like 
Johnson’s (2002) and the present one, involves 
post-processing of trees.  Higgins’ results are not 
directly comparable to the other works cited, since 
he assumes all WH-phrases as given, even those 
that are themselves empty. 

4 The recovery algorithm 

4.1 The algorithm 

The proposed algorithm for recovering empty 
categories is shown in Figure 1; the algorithm 
walks the tree from top to bottom, at each node X 
deterministically inserting an empty category of a 
given type (usually as a daughter of X) if the 
syntactic context for that type is met by X.  It 
makes four separate passes over the tree, on each 
pass applying a different set of rules. 

 
1   for each tree, iterate over nodes from top down 
2       for each node X 
3 try to insert NP* in X 
4 try to insert 0 in X 
5 try to insert WHNP 0  or WHADVP 0 in X 
6 try to insert *U* in X 
7 try to insert a VP ellipsis site in X 
8 try to insert S*T* or SBAR in X 
9 try to insert trace of topicalized XP in X 
10 try to insert trace of extraposition in X 
11   for each node X 
12 try to insert WH-trace in X 
13   for each node X 
14 try to insert NP-SBJ * in finite clause X 
15   for each node X 
16 if X = NP*, try to find antecedent for X 
Figure 1:  Empty category recovery algorithm 
 

The rules called by this algorithm that try to 
insert empty categories of a particular type specify 
the syntactic context in which that type of empty 
category can occur, and if the context exists, 
specify where to insert the empty category.  For 
example, the category NP*, which conflates the 
GB categories NP-trace and PRO, occurs typically3 

                                                      
2 It is unclear whether Dienes and Dubey’s evaluation 

of empty category detection is based on actual tags 
provided by the annotation (perfect input), or on the 
output of a POS-tagger. 

3 NP* is used in roles that go beyond the GB notions 
of NP-trace and PRO, including e.g. the subject of 

as the object of a passive verb or as the subject of 
an infinitive.  The rule which tries to insert this 
category and assign it a function tag is called in 
line 3 of Figure 1 and given in pseudo-code in 
Figure 2.  Some additional rules are given in the 
Appendix. 

 
if X is a passive VP & X has no complement S 

if there is a postmodifying dangling PP Y 
     then insert NP* before all postmodifiers of Y 
 else insert NP* before all postmodifiers of X 

else if X is a non-finite S and X has no subject 
 then insert NP-SBJ* after all premodifiers of X 

Figure 2:  Rule to insert NP* 
 
This rule, which accounts for about half the 

empty category tokens in the PTB, makes no use of 
lexical information such as valency of the verb, 
etc.  This is potentially a problem, since in GB the 
infinitives that can have NP-trace or PRO as 
subjects (raising and control infinitives) are 
distinguished from those that can have overt NPs 
or WH-trace as subjects (exceptional-Case-
marked, or ECM, infinitives), and the distinction 
relies on the class of the governing verb.   

Nevertheless, the rules that insert empty nodes 
do not have access to a lexicon, and very little 
lexical information is encoded in the rules:  
reference is made in the rules to individual 
function words such as complementizers, 
auxiliaries, and the infinitival marker to, but never 
to lexical properties of content words such as 
valency or the raising/ECM distinction.  In fact, the 
only reference to content words at all is in the rule 
which tries to insert null WH-phrases, called in 
line 5 of Figure 1:  when this rule has found a 
relative clause in which it needs to insert a null 
WH-phrase, it checks if the head of the NP the 
relative clause modifies is reason(s), way(s), 
time(s), day(s), or place(s); if it is, then it inserts 
WHADVP with the appropriate function tag, rather 
than WHNP. 

The rule shown in Figure 2 depends for its 
successful application on the system’s being able 
to identify passives, non-finite sentences, heads of 
phrases (to identify pre- and post-modifiers), and 
functional information such as subject; similar 
information is accessed by the other rules used in 
the algorithm.  Simple functions to identify 
passives, etc. are therefore called by the 
implemented versions of these rules.  Functional 
information, such as subject, can be gleaned from 
the function tags in the treebank annotation; the 
rules make frequent use of a variety of function 
tags as they occur on various nodes.  The output of 

                                                                                    
imperatives; see below. 



Charniak’s parser (Charniak, 2000), however, does 
not include function tags, so in order for the 
algorithm to work properly on parser output (see 
Section 5), additional functions were written to 
approximate the required tags.  Presumably, the 
accuracy of the algorithm on parser output would 
be enhanced by accurate prior assignment of the 
tags to all relevant nodes, as in Blaheta and 
Charniak (2000) (see also Section 5). 

Each empty category insertion rule, in addition 
to inserting an empty node in the tree, also may 
assign a function tag to the empty node.  This is 
illustrated in Figure 2, where the final line inserts 
NP* with the function tag SBJ in the case where it 
is the subject of an infinitive clause. 

The rule that inserts WH-trace (called in line 12 
in Figure 1) takes a WHXP needing a trace as 
input, and walks the tree until an appropriate 
insertion site is found (see Appendix for a fuller 
description).  Since this rule requires a WHXP as 
input, and that WHXP may itself be an empty 
category (inserted by an earlier rule), it is handled 
in a separate pass through the tree. 

A separate rule inserts NP* as the subject in 
sentences which have no overt subject, and which 
have not had a subject inserted by any of the other 
rules.  Most commonly, these are imperative 
sentences, but calling this rule in a separate pass 
through the tree, as in Figure 1, ensures that any 
subject position missed by the other rules is filled. 

Finally, a separate rule tries to find an 
antecedent for NP* under certain conditions.  The 
antecedent of NP* may be an empty node inserted 
by rules in any of the first three passes through the 
tree, even the subject of an imperative; therefore 
this rule is applied in a separate pass through the 
tree.  This rule is also fairly simple, assigning the 
local subject as antecedent for a non-subject NP*, 
while for an NP* in the subject position of a non-
finite S it searches up the tree, given certain 
locality conditions, for another NP subject. 

All the rules that insert empty categories are 
fairly simple, and derive straighforwardly from 
standard GB theory and from the annotation 
guidelines.  The most complex rule is the rule that 
inserts WH-trace when it finds a WHXP daughter 
of SBAR; most are about as simple as the rule 
shown in Figure 2, some more so.  Representative 
examples are given in the Appendix. 

4.2 Development method 

After implementing the algorithm, it was run over 
sections 1, 3, and 11 of the WSJ portion of the 
PTB, followed by manual inspection of the trees to 
perform error analysis, with revisions made as 
necessary to correct errors.  Initially sections 22 
and 24 were used for development testing.  

However, it was found that these two sections 
differ from each other substantially with respect to 
the annotation of antecedents of NP* (which is 
described somewhat vaguely in the annotation 
guidelines), so all of sections 2-21 were used as a 
development test corpus.  Section 23 was used 
only for the final evaluation, reported in Section 5 
below. 

5 Evaluation 

Following Johnson (2002), the system was 
evaluated on two different kinds of input:  first, on 
perfect input, i.e., PTB annotations stripped of all 
empty categories and information related to them; 
and second, on imperfect input, in this case the 
output of Charniak’s (2000) parser.  Each is 
discussed in turn below. 

5.1 Perfect input 

The system was run on PTB trees stripped of all 
empty categories.  To facilitate comparison to 
previous approaches, we used Johnson’s label and 
string position evaluation metric, according to 
which an empty node is identified by its label plus 
its string position, and evaluated the detection task 
alone.  We then evaluated detection and resolution 
combined, identifying each empty category as 
before, plus the label and string position of its 
antecedent, if any, again following Johnson’s 
work.   

The results are shown in Table 2.  Precision here 
and throughout is the percentage of empty nodes 
proposed by the system that are in the gold 
standard (section 23 of the PTB), recall is the 
percentage of empty nodes in the gold standard 
that are proposed by the system, and F1 is balanced 
f-measure; i.e., 2PR/(P+R). 

 
Task Prec. Rec. F1 
Detection only 94.9 91.1 93.0 
Detection + resolution 90.1 86.6 88.4 
Table 2:  Detection and resolution of empty cate-
gories given perfect input (label + string position 
method), expressed as percentage 
 

These results compare favorably to previously 
reported results, exceeding them mainly by 
achieving higher recall.  Johnson (2002) reports 
93% precision and 83% recall (F1 = 88%) for the 
detection task alone, and 80% precision and 70% 
recall (F1 = 75%) for detection plus resolution.  In 
contrast to Johnson (2002) and the present work, 
Dienes and Dubey (2003a) take a POS-tagged 
string, rather than a tree, as input; they report 
86.5% precision and 72.9% recall (F1 = 79.1%) on 
the detection task.  For Dienes and Dubey, the 
further task of finding antecedents for empty 



categories is integrated with their own PCFG 
parser, so they report no numbers directly relevant 
to the task of detection and resolution given perfect 
input. 

5.2 Parser output 

The system was also run using as input the output 
of Charniak’s parser (Charniak, 2000).  The 
results, again using the label and string position 
method, are given in Table 3. 

 
Task Prec. Rec. F1 
Detection only 85.2 81.7 83.4 
Detection + resolution 78.3 75.1 76.7 
Table 3:  Detection and resolution of empty 
categories on parser output (label + string position 
method), expressed as percentage 
 
Again the results exceed those previously reported.  
Johnson (2002) reports 85% precision and 74% 
recall (F1 = 79%) for detection and 73% precision 
and 63% recall (F1 = 68%) for detection plus 
resolution on the output of Charniak’s parser.  
Dienes and Dubey (2003b) integrate the results of 
their detection task into their own PCFG parser, 
and report 81.5% precision and 68.7% recall (F1 = 
74.6%) on the combined task of detection and 
resolution. 

5.3 Perfect input with no function tags 

The lower results on parser output obviously 
reflect errors introduced by the parser, but may 
also be due to the parser not outputting function 
tags on any nodes.  As mentioned in Section 4, it is 
believed that the results of the current method on 
parser output would improve if that output were 
reliably assigned function tags, perhaps along the 
lines of Blaheta and Charniak (2000).   

Testing this hypothesis directly is beyond the 
scope of the present work, but a simple experiment 
can give some idea of the extent to which the 
current algorithm relies on function tags in the 
input.  The system was run on PTB trees with all 
nodes stripped of function tags; the results are 
given in Table 4. 

 
Task Prec. Rec. F1 
Detection only 94.1 89.5 91.7 
Detection + resolution 89.5 85.2 87.3 
Table 4:  Detection and resolution of empty 
categories on PTB input without function tags 
(label + string position method), expressed as 
percentage 

 
While not as good as the results on perfect input 

with function tags, these results are much better 
than the results on parser output.  This suggests 

that function tag assignment should improve the 
results shown on parser output, but that the greater 
part of the difference between the results on perfect 
input and on parser output is due to errors 
introduced by the parser. 

5.4 Refining the evaluation 

The results reported in the previous subsections are 
quite good, and demonstrate that the current 
approach outperforms previously reported 
approaches on the detection and resolution of 
empty categories.  In this subsection some 
refinements to the evaluation method are 
considered. 

The label and string position method is useful if 
one sees the task as inserting empty nodes into a 
string, and thus is quite useful for evaluating 
systems that detect empty categories without parse 
trees, as in Dienes and Dubey (2003a).  However, 
if the task is to insert empty nodes into a tree, then 
the method leads both to false positives and to 
false negatives.  Suppose for example that the 
sentence When do you expect to finish? has the 
bracketing shown below, where ‘1’ and ‘2’ 
indicate two possible locations in the tree for the 
trace of the WHADVP: 

 
When do you [VP expect to [VP finish 1 ] 2 ] 

 
Suppose position 1 is correct; i.e. it represents the 
position of the trace in the gold standard.  Since 1 
and 2 correspond to the same string position, if a 
system inserts the trace in position 2, the string 
position evaluation method will count it as correct. 

This is a serious problem with the string-based 
method of evaluation, if one assumes, as seems 
reasonable, that the purpose of inserting empty 
categories into trees is to be able to recover 
semantic information such as predicate-argument 
structure and modification relations.  In the above 
example, it is clearly semantically relevant whether 
the system proposes that when modifies expect 
instead of finish. 

Conversely, suppose the sentence Who (besides 
me) cares? has the bracketing shown: 

 
Who [S 1 (besides me) 2 [VP cares]] 

 
Again suppose that position 1 represents the 
placement of the WHNP trace in the gold standard.  
If a system places the trace in position 2 instead, 
the string position method will count it as an error, 
since 1 and 2 have different string positions.  
However it is not at all clear what it means to say 
that one of those two positions is correct and the 
other not, since there is no semantic, grammatical, 
or textual indicator of its exact position.  If the task 



is to be able to recover semantic information using 
traces, then it does not matter in this case whether 
the system inserts the trace to the left or to the right 
of the parenthetical. 

Given that both false positives and false 
negatives are possible, I propose that future 
evaluations of this task should identify empty 
categories by their label and by their parent 
category, instead of, or perhaps in addition to, 
doing so by label and string position.  Since the 
parent of an empty node is always an overt node4, 
the parent could be identified by its label and string 
position (left and right edges).  Resolution is 
evaluated by a natural extension, by identifying the 
antecedent (which could itself be an empty 
category) according to its label and its parent’s 
label and string position.  This would serve to 
identify an empty category by its position in the 
tree, rather than in the string, and would avoid the 
false positives and false negatives described above. 

In addition to an evaluation based on tree 
position rather than string position, I propose to 
evaluate the entire recovery task, i.e., including 
function tag assignment, not just detection and 
resolution.  

The revised evaluation is still not perfect:  when 
inserting an NP* or NP*T* into a double-object 
construction, it clearly matters semantically 
whether it is the first or second object, though both 
positions have the same parent.5  Ideally, we would 
evaluate based on a richer set of grammatical 
relations than are annotated in the PTB, or perhaps 
based on thematic roles.  However, it is difficult to 
see how to accomplish this without additional 
annotation.  It is probable that constructions of this 
sort are relatively rare in the PTB in any case, so 
for now the proposed evaluation method, however 
imperfect, will suffice. 

The result of this revised evaluation, given 
perfect input, is presented in Table 5.  The first two 
rows are comparable to the string-based results in 
Table 2; the last row, showing the results of the 
full recovery task (i.e., including antecedents and 
function tags), is not much lower, suggesting that 
labeling empty categories with function tags does 
not pose any serious difficulties. 

 

                                                      
4  The only exception is the 0 complementizer and 

S*T* daughters of the SBAR category in Table 1; but 
since the entire SBAR is treated as a single empty node 
for evaluation purposes, this does not pose a problem. 

5 I am indebted to two ACL reviewers for calling this 
to my attention. 

Task Prec. Rec. F1 
Detection only 95.6 91.9 93.7 
Detection + resolution 90.8 87.3 89.0 
Recovery 
(det.+res.+func. tags) 

89.8 86.3 88.0 

Table 5:  Detection, resolution and recovery of 
empty categories given perfect input (label + 
parent method), expressed as percentage 
 

Three similar evaluations were also run, using 
parser output as input to the algorithm; the results 
are given in Table 6.   

 
Task Prec. Rec. F1 
Detection only 78.4 75.2 76.7 
Detection + resolution 72.3 69.3 70.8 
Recovery 
(det.+res.+func. tags) 

69.7 66.8 68.2 

Table 6:  Detection, resolution and recovery of 
empty categories on parser output (label + parent 
method), expressed as percentage 
 

The results here are less impressive, no doubt 
reflecting errors introduced by the parser in the 
labeling and bracketing of the parent category, a 
problem which does not affect a string-based 
evaluation.  However it does not seem reasonable 
to have an effective evaluation of empty node 
insertion in parser output that does not depend to 
some extent on the correctness of the parse.  The 
fact that our proposed evaluation metric depends 
more heavily on the accuracy of the input structure 
may be an unavoidable consequence of using a 
tree-based evaluation. 

6 Discussion 

The empty category recovery algorithm reported 
on here outperforms previously published 
approaches on the detection and resolution tasks; it 
also does well on the task of function tag 
assignment to empty categories, which has not 
been considered in other work.  As suggested in 
the introduction, the reason a rule-based approach 
works so well in this domain may be that empty 
categories are not naturally in the text, but are only 
inserted by the annotator, who is consciously 
following explicit linguistic principles, in this case, 
the principles of early GB theory. 

As a result, the recovery of empty categories is, 
for the most part, more amenable to a rule-based 
approach than to a learning approach.  It makes 
little sense to learn, for example, that NP* occurs 
as the object of a passive verb or as the subject of 
certain infinitives in the PTB, if that information is 
already explicit in the annotation guidelines. 

This is not to say that learning approaches have 
nothing to contribute to this task.  Information 



about individual lexical items, such as valency, the 
raising/ECM distinction, or subject vs. object 
control, which is presumably most robustly 
acquired from large amounts of data, would 
probably help in the task of detecting certain empty 
categories. 

Consider for example an input structure V [S to 
VP].  GB principles, which are enforced in the 
annotation guidelines, dictate that an empty 
category must be inserted as the subject of the 
infinitival S; but exactly which empty category, 
NP* or NP*T*, depends on properties of the 
governing verb, including whether it is a raising or 
control verb, such as seem or try, or an ECM verb, 
such as believe.  In the present algorithm, the rule 
that inserts NP* applies first, without access to 
lexical information of any kind, so NP* is inserted, 
instead of NP*T*, regardless of the value of V.  
This leads to some errors which might be corrected 
given learned lexical information.  Such errors are 
fewer than might have been expected, however:  
the present system achieved 97.7% precision and 
97.3% recall (F1 = 97.5%) on the isolated task of 
detecting NP*, even without lexical knowledge 
(see Table 7). 

A combined learning and rule-based algorithm 
might stand to make a bigger gain in the task of 
deciding whether NP* in subject position has an 
antecedent or not, and if it does, whether the 
antecedent is a subject or not.  The annotation 
guidelines and the theory that underlies it are less 
explicit on the principles underlying this task than 
they are on the other subtasks.  As a result, the 
accuracy of the current system drops considerably 
when this task is taken into account, from 97.5% 
F1 to 86.9% (see Table 7).  Dienes and Dubey 
(2003a), on the other hand, claim this as one of the 
strengths of their learning-based system. 

 
Empty 
category 
type 

Detection 
only (F1) 

Detection  
+ resolution (F1) 

NP* 97.5 86.9 
NP*T* 96.2 96.0 
*U* 98.6 - 
0 98.5 - 
ADVP*T* 79.9 79.9 
S*T* 92.7 92.7 
WHNP 0 92.4 - 
SBAR 84.4 84.4 
WHADVP 0 73.3 - 
Table 7:  F1 for detection and resolution of empty 
categories by type, using perfect input (label + 
parent method), expressed as percentage 

7 Conclusion 

In this paper I have presented an algorithm for the 
recovery of empty categories in PTB-style trees 
that otherwise lack them.  Unlike previous 
approaches, the current algorithm is rule-based 
rather than learning-based, which I have argued is 
appropriate for this task, given the highly 
theoretical nature of empty categories in the PTB.  
Moreover, the algorithm has no access to lexical 
information such as valency or verb class. 

Using the string-based evaluation metric 
proposed by Johnson (2002), the current system 
outperforms previously published algorithms on 
detection alone, as well as on detection combined 
with resolution, both on perfect input and in 
combination with parsing.  In addition, we have 
performed additional evaluation using a tree-based 
metric, and including an evaluation of function tag 
assignment as well. 
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Appendix:  Sample rules 

To insert 0 Comp: 
if X=SBAR & !Comp(X) & !WHXP daughter(X) 
& ∃ S daughter Y of X  
& !(parent(X)=NP & sister(X)=NP) 
 then insert 0 to left of Y 
 
To insert WHNP/WHADVP: 
if X=SBAR & parent(X)=NP  
& sister(X)=NP & !Comp(X)  
& !WHXP daughter(X) & ∃ S daughter Y of X 
 if head(parent(X)) in {reason(s) way(s)  
 time(s) day(s) place(s)} 
  then insert WHADVP to left of Y 
 else insert WHNP to left of Y 
 
To insert *U*: 
insert *U* / $ CD+ _ 
 
To insert WH-trace: 
if X=SBAR & ∃ S daughter Y of X  
& ∃ WHXP daughter W of X 
 then find trace(W) in Y 
 
To find trace(W) in X: 

 
insert trace: 
(for W = WHXP, insert XP*T*) 
if X has conjuncts 
 then find trace(W) in each conjunct of X 
else if X has a PP daughter Y with no object  
& W=WHNP 
 then insert *T* to right of P 
else if X=S and !subject(X) & W=WHNP 
 then insert *T* as last pre-mod of X 
else if X contains a VP Y 
 then find trace(W) in Y 
else if X contains ADJP or clausal complement Y 

& W=WHNP 

 then find trace(W) in Y 
else if W=WHNP  
& ∃ infinival rel. clause R, R=sister(W)  
& X=VP & X has an object NP  
& subject(R) is an empty node E 
 then insert *T* as last pre-mod of R 
 then delete E 
else if W=WHNP 
       then insert *T* as first post-mod of X 
else insert *T* as last post-mod of X 
 
assign function tag: 
if W = WHNP & *T* a pre-mod of S 
       then assign ‘SBJ’ to *T* 
if W = WHADVP & W is not empty  
       if W = ‘why’ 
 then assign ‘PRP’ to *T* 
       if W = ‘when’ 
 then assign ‘TMP’ to *T* 
       if W = ‘where’ 
 then assign ‘LOC’ to *T* 
       if W = ‘how’ 
 then assign ‘MNR’ to *T* 
else if W = WHADVP & parent(parent(W)) =NP  
       if head(sister(parent(W))) = ‘reason(s)’ 
 then assign ‘PRP’ to *T* 
       if head(sister(parent(W)))=‘time(s)’ or ‘day(s)’ 
 then assign ‘TMP’ to *T* 
       if head(sister(parent(W))) = ‘place(s)’ 
 then assign ‘LOC’ to *T* 
       if head(sister(parent(W))) = ‘way(s)’ 
 then assign ‘MNR’ to *T* 
 


