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Abstract 

In this paper we propose a unified framework 
for automatic evaluation of NLP applications 
using N-gram co-occurrence statistics. The 
automatic evaluation metrics proposed to date 
for Machine Translation and Automatic 
Summarization are particular instances from 
the family of metrics we propose. We show 
that different members of the same family of 
metrics explain best the variations obtained 
with human evaluations, according to the 
application being evaluated (Machine 
Translation, Automatic Summarization, and 
Automatic Question Answering) and the 
evaluation guidelines used by humans for 
evaluating such applications. 

1 Introduction 

With the introduction of the BLEU metric for 
machine translation evaluation (Papineni et al, 
2002), the advantages of doing automatic 
evaluation for various NLP applications have 
become increasingly appreciated: they allow for 
faster implement-evaluate cycles (by by-passing 
the human evaluation bottleneck), less variation in 
evaluation performance due to errors in human 
assessor judgment, and, not least, the possibility of 
hill-climbing on such metrics in order to improve 
system performance (Och 2003). Recently, a 
second proposal for automatic evaluation has come 
from the Automatic Summarization community 
(Lin and Hovy, 2003), with an automatic 
evaluation metric called ROUGE, inspired by 
BLEU but twisted towards the specifics of the 
summarization task. 

An automatic evaluation metric is said to be 
successful if it is shown to have high agreement 
with human-performed evaluations. Human 
evaluations, however, are subject to specific 
guidelines given to the human assessors when 

performing the evaluation task; the variation in 
human judgment is therefore highly influenced by 
these guidelines. It follows that, in order for an 
automatic evaluation to agree with a human-
performed evaluation, the evaluation metric used 
by the automatic method must be able to account, 
at least to some degree, for the bias induced by the 
human evaluation guidelines. None of the 
automatic evaluation methods proposed to date, 
however, explicitly accounts for the different 
criteria followed by the human assessors, as they 
are defined independently of the guidelines used in 
the human evaluations. 

In this paper, we propose a framework for 
automatic evaluation of NLP applications which is 
able to account for the variation in the human 
evaluation guidelines. We define a family of 
metrics based on N-gram co-occurrence statistics, 
for which the automatic evaluation metrics 
proposed to date for Machine Translation and 
Automatic Summarization can be seen as particular 
instances. We show that different members of the 
same family of metrics explain best the variations 
obtained with human evaluations, according to the 
application being evaluated (Machine Translation, 
Automatic Summarization, and Question 
Answering) and the guidelines used by humans 
when evaluating such applications. 

2 An Evaluation Plane for NLP 

In this section we describe an evaluation plane 
on which we place various NLP applications 
evaluated using various guideline packages. This 
evaluation plane is defined by two orthogonal axes 
(see Figure 1): an Application Axis, on which we 
order NLP applications according to the 
faithfulness/compactness ratio that characterizes 
the application’s input and output; and a Guideline 
Axis, on which we order various human guideline 
packages, according to the precision/recall ratio 
that characterizes the evaluation guidelines. 



2.1 An Application Axis for Evaluation 

When trying to define what translating and 
summarizing means, one can arguably suggest that 
a translation is some “as-faithful-as-possible” 
rendering of some given input, whereas a summary 
is some “as-compact-as-possible” rendering of 
some given input. As such, Machine Translation 
(MT) and Automatic Summarization (AS) are on 
the extremes of a faithfulness/compactness (f/c) 
ratio between inputs and outputs. In between these 
two extremes lie various other NLP applications: a 
high f/c ratio, although lower than MT’s, 
characterizes Automatic Paraphrasing (paraphrase: 
To express, interpret, or translate with latitude); 
close to the other extreme, a low f/c ratio, although 
higher than AS’s, characterizes Automatic 
Summarization with view-points (summarization 
which needs to focus on a given point of view, 
extern to the document(s) to be summarized). 
Another NLP application, Automatic Question 
Answering (QA), has arguably a close-to-1 f/c 
ratio: the task is to render an answer about the 
thing(s) inquired for in a question (the faithfulness 
side), in a manner that is concise enough to be 
regarded as a useful answer (the compactness 
side). 

2.2 An Guideline Axis for Evaluation 

Formal human evaluations make use of various 
guidelines that specify what particular aspects of 
the output being evaluated are considered 
important, for the particular application being 
evaluated. For example, human evaluations of MT 
(e.g., TIDES 2002 evaluation, performed by NIST) 
have traditionally looked at two different aspects 
of a translation: adequacy (how much of the 
content of the original sentence is captured by the 
proposed translation) and fluency (how correct is 
the proposed translation sentence in the target 
language). In many instances, evaluation 
guidelines can be linearly ordered according to the 
precision/recall (p/r) ratio they specify. For 
example, evaluation guidelines for adequacy 
evaluation of MT  have a low p/r ratio, because of 

the high emphasis on recall (i.e., content is 
rewarded) and low emphasis on precision (i.e., 
verbosity is not penalized); on the other hand, 
evaluation guidelines for fluency of MT have a 
high p/r ratio, because of the low emphasis on 
recall (i.e., content is not rewarded) and high 
emphasis on wording (i.e., extraneous words are 
penalized). Another evaluation we consider in this 
paper, the DUC 2001 evaluation for Automatic 
Summarization (also performed by NIST), had 
specific guidelines for coverage evaluation, which 
means a low p/r ratio, because of the high 
emphasis on recall (i.e., content is rewarded). Last 
but not least, the QA evaluation for correctness we 
discuss in Section 4 has a close-to-1 p/r ratio for 
evaluation guidelines (i.e., both correct content and 
precise answer wording are rewarded). 

When combined, the application axis and the 
guideline axis define a plane in which particular 
evaluations are placed according to their 
application/guideline coordinates. In Figure 1 we 
illustrate this evaluation plane, and the evaluation 
examples mentioned above are placed in this plane 
according to their coordinates.  

3 A Unified Framework for Automatic 
Evaluation 

In this section we propose a family of evaluation 
metrics based on N-gram co-occurrence statistics. 
Such a family of evaluation metrics provides 
flexibility in terms of accommodating both various 
NLP applications and various values of 
precision/recall ratio in the human guideline 
packages used to evaluate such applications. 

3.1 A Precision-focused Family of Metrics 

Inspired by the work of Papineni et al. (2002) on 
BLEU, we define a precision-focused family of 
metrics, using as parameter a non-negative integer 
N. Part of the definition includes a list of stop-
words (SW) and a function for extracting the stem 
of a given word (ST).    

Suppose we have a given NLP application for 
which we want to evaluate the candidate answer 
set Candidates for some input sequences, given a 

Figure 1: Evaluation plane for NLP applications 

adequacy evaluation
TIDES−MT(2002)

precision
recall

precision
recall

faithfulness
compactness

low
faithfulness

compactness
AS

MT

fluency evaluation
TIDES−MT(2002)

QA(2004)
correctness evaluation

coverage evaluation
DUC−AS (2001)

Guideline Axis
  

QA

low high

high
Application
Axis



reference answer set References. For each 
individual candidate answer C, we define S(C,n)  
as the multi-set of n-grams obtained from the 
candidate answer C after stemming the unigrams 
using ST and eliminating the unigrams found in 
SW. We therefore define a precision score: 
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where Count(ngram) is the number of n-gram 
counts, and Countclip(ngram) is the maximum 
number of co-occurrences of ngram in the 
candidate answer and its reference answer. 
Because the denominator in the P(n) formula 
consists of a sum over the proposed candidate 
answers, this formula is a precision-oriented 
formula, penalizing verbose candidates.  This 
precision score, however, can be made artificially 
higher when proposing shorter and shorter 
candidate answers. This is offset by adding a 
brevity penalty, BP: 
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where |c| equals the sum of the lengths of the 
proposed answers, |r| equals the sum of the lengths 
of the reference answers, and B is a brevity 
constant.  

We define now a precision-focused family of 
metrics, parameterized by a non-negative integer 
N, as: 
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This family of metrics can be interpreted as a 
weighted linear average of precision scores for 
increasingly longer n-grams.  As the values of the 
precision scores decrease roughly exponentially 
with the increase of N, the logarithm is needed to 
obtain a linear average. Note that the metrics of 
this family are well-defined only for N’s small 
enough to yield non-zero P(n) scores. For test 
corpora of reasonable size, the metrics are usually 
well-defined for N≤4. 

The BLEU proposed by Papineni et al. (2002) 
for automatic evaluation of machine translation is 
part of the family of metrics PS(N), as the 
particular metric obtained when N=4, wn–s are 1/N, 
the brevity constant B=1, the list of stop-words SW 
is empty, and the stemming function ST is the 
identity function.  

3.2 A Recall-focused Family of Metrics 

As proposed by Lin and Hovy (2003), a 
precision-focused metric such as BLEU can be 
twisted such that it yields a recall-focused metric. 
In a similar manner, we define a recall-focused 
family of metrics, using as parameter a non-

negative integer N, with a list of stop-words (SW) 
and a function for extracting the stem of a given 
word (ST) as part of the definition. 

As before, suppose we have a given NLP 
application for which we want to evaluate the 
candidate answer set Candidates for some input 
sequences, given a reference answer set 
References. For each individual reference answer 
R, we define S(R,n)  as the multi-set of n-grams 
obtained from the reference answer R after 
stemming the unigrams using ST and eliminating 
the unigrams found in SW. We therefore define a 
recall score as: 
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where, as before, Count(ngram) is the number of 
n-gram counts, and Countclip(ngram) is the 
maximum number of co-occurrences of ngram in 
the reference answer and its corresponding 
candidate answer. Because the denominator in the 
R(n) formula consists of a sum over the reference 
answers, this formula is essentially a recall-
oriented formula, which penalizes incomplete 
candidates. This recall score, however, can be 
made artificially higher when proposing longer and 
longer candidate answers. This is offset by adding 
a wordiness penalty, WP: 





>⋅

≤⋅
=

− ||||,
||||,1

|)|/||1( rcWife
rcWif

WP rcW
 

where |c| and |r| are defined as before, and W is a 
wordiness constant. 

We define now a recall-focused family of 
metrics, parameterized by a non-negative integer 
N, as: 
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This family of metrics can be interpreted as a 
weighted linear average of recall scores for 
increasingly longer n-grams.  For test corpora of 
reasonable size, the metrics are usually well-
defined for N≤4. 

The ROUGE metric proposed by Lin and Hovy 
(2003) for automatic evaluation of machine-
produced summaries is part of the family of 
metrics RS(N), as the particular metric obtained 
when N=1, wn–s are 1/N, the wordiness constant 
W=∞, the list of stop-words SW is their own , and 
the stemming function ST is the one defined by the 
Porter stemmer (Porter 1980). 

3.3 A Unified Framework for Automatic 
Evaluation 

The precision-focused metric family PS(N) and 
the recall-focused metric family RS(N) defined in 



the previous sections are unified under the metric 
family AEv(α,N), defined as: 
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This formula extends the well-known F-measure 
that combines recall and precision numbers into a 
single number (van Rijsbergen, 1979), by 
combining recall and precision metric families into 
a single metric family. For α=0, AEv(α,N) is the 
same as the recall-focused family of metrics 
RS(N); for α=1, AEv(α, N) is the same as the 
precision-focused family of metrics PS(N). For α 
in between 0 and 1, AEv(α,N) are metrics that 
balance recall and precision according to α. For the 
rest of the paper, we restrict the parameters of the 
AEv(α,N) family as follows: α varies continuously 
in [0,1], N varies discretely in {1,2,3,4}, the linear 
weights wn are 1/N, the brevity constant is 1, the 
wordiness constant is 2, the list of stop-words SW 
is our own 626 stop-word list, and the stemming 
function ST is the one defined by the Porter 
stemmer (Porter 1980). 

We establish a correspondence between the 
parameters of the family of metrics AEv(α,N) and 
the evaluation plane in Figure 1 as follows: α 
parameterizes the guideline axis (x-axis) of the 
plane, such that α=0 corresponds to a low 
precision/recall (p/r) ratio, and α=1 corresponds to 
a high p/r ratio; N parameterizes the application 
axis (y-axis) of the plane, such that N=1 
corresponds to a low faithfulness/compactness (f/c) 
ratio (unigram statistics allow for a low 
representation of faithfulness, but a high 
representation of compactness), and N=4 
corresponds to a high f/c ratio (n-gram statistics up 
to 4-grams allow for a high representation of 
faithfulness, but a low representation of 
compactness). 

This framework enables us to predict that a 
human-performed evaluation is best approximated 
by metrics that have similar f/c ratio as the 
application being evaluated and similar p/r ratio as 
the evaluation package used by the human 
assessors. For example, an application with a high 
f/c ratio, evaluated using a low p/r ratio evaluation 
guideline package (an example of this is the 
adequacy evaluation for MT in TIDES 2002), is 
best approximated by the automatic evaluation 
metric defined by a low α and a high N; an 
application with a close-to-1 f/c ratio, evaluated 
using an evaluation guideline package 
characterized by a close-to-1 p/r ratio (such as the 
correctness evaluation for Question Answering in 
Section 4.3) is best approximated by an automatic 
metric defined by a median α and a median N. 

4 Evaluating the Evaluation Framework 

In this section, we present empirical results 
regarding the ability of our family of metrics to 
approximate human evaluations of various 
applications under various evaluation guidelines.  

We measure the amount of approximation of a 
human evaluation by an automatic evaluation as 
the value of the coefficient of determination R2 

between the human evaluation scores and the 
automatic evaluation scores for various systems 
implementing Machine Translation, 
Summarization, and Question Answering 
applications. In this framework, the coefficient of 
determination R2 is to be interpreted as the 
percentage from the total variation of the human 
evaluation (that is, why some system’s output is 
better than some other system’s output, from the 
human evaluator’s perspective) that is captured by 
the automatic evaluation (that is, why some 
system’s output is better than some other system’s 
output, from the automatic evaluation perspective). 
The values of R2 vary between 0 and 1, with a 
value of 1 indicating that the automatic evaluation 
explains perfectly the human evaluation variation, 
and a value of 0 indicating that the automatic 
evaluation explains nothing from the human 
evaluation variation. All the results for the values 
of R2 for the family of metrics AEv(α,N) are 
reported with α varying from 0 to 1 in 0.1 
increments, and N varying from 1 to 4. 

 

4.1 Machine Translation Evaluation 

The Machine Translation evaluation carried out 
by NIST in 2002 for DARPA’s TIDES programme 
involved 7 systems that participated in the 
Chinese-English track. Each system was evaluated 
by a human judge, using one reference extracted 
from a list of 4 available reference translations. 
Each of the 878 test sentences was evaluated both 
for adequacy (how much of the content of the 
original sentence is captured by the proposed 
translation) and fluency (how correct is the 
proposed translation sentence in the target 
language). From the publicly available data for this 
evaluation (TIDES 2002), we compute the values 
of R2 for 7 data points (corresponding to the 7 
systems participating in the Chinese-English 
track), using as a reference set one of the 4 sets of 
reference translations available. 

In Table 1, we present the values of the 
coefficient of determination R2 for the family of 
metrics AEv(α,N), when considering only the 
fluency scores from the human evaluation. As 
mentioned in Section 2, the evaluation guidelines 
for fluency have a high precision/recall ratio, 
whereas MT is an application with a high 



faithfulness/compactness ratio. In this case, our 
evaluation framework predicts that the automatic 
evaluation metrics that explain most of the 
variation in the human evaluation must have a high 
α and a high N. As seen in Table 1, our evaluation 
framework correctly predicts the automatic 
evaluation metrics that explain most of the 
variation in the human evaluation: metrics 
AEv(1,3), AEv(0.9,3), and AEv(1,4) capture most 
of the variation: 79.04%, 78.94%, and 78.87%, 
respectively. Since metric AEv(1,4) is almost the 
same as the BLEU metric (modulo stemming and 
stop word elimination for unigrams), our results 
confirm the current practice in the Machine 
Translation community, which commonly uses 
BLEU for automatic evaluation. For comparison 
purposes, we also computed the value of R2 for 
fluency using the BLEU score formula given in 
(Papineni et al., 2002), for the 7 systems using the 
same one reference, and we obtained a similar 
value, 78.52%; computing the value of R2 for 
fluency using the BLEU scores computed with all 4 
references available yielded a lower value for R2, 
64.96%, although BLEU scores obtained with 
multiple references are usually considered more 
reliable.  

In Table 2, we present the values of the 
coefficient of determination R2 for the family of 
metrics AEv(α,N), when considering only the 
adequacy scores from the human evaluation. As 
mentioned in Section 2, the evaluation guidelines 
for adequacy have a low precision/recall ratio, 
whereas MT is an application with high 
faithfulness/compactness ratio. In this case, our 
evaluation framework predicts that the automatic 
evaluation metrics that explain most of the 
variation in the human evaluation must have a low 
α and a high N. As seen in Table 2, our evaluation 
framework correctly predicts the automatic 
evaluation metric that explains most of the 

variation in the human evaluation: metric AEv(0,4) 
captures most of the variation, 83.04%. For 
comparison purposes, we also computed the value 
of R2 for adequacy using the BLEU score formula 
given in (Papineni et al., 2002), for the 7 systems 
using the same one reference, and we obtain a 
similar value, 83.91%; computing the value of R2 

for adequacy using the BLEU scores computed 
with all 4 references available also yielded a lower 
value for R2, 62.21%. 

4.2 Automatic Summarization Evaluation 

The Automatic Summarization evaluation 
carried out by NIST for the DUC 2001 conference 
involved 15 participating systems. We focus here 
on the multi-document summarization task, in 
which 4 generic summaries (of 50, 100, 200, and 
400 words) were required for a given set of 
documents on a single subject. For this evaluation 
30 test sets were used, and each system was 
evaluated by a human judge using one reference 
extracted from a list of 2 reference summaries.  
One of the evaluations required the assessors to 
judge the coverage of the summaries. The 
coverage of a summary was measured by 
comparing a system’s units versus the units of a 
reference summary, and assessing whether each 
system unit expresses all, most, some, hardly any, 
or none of the current reference unit. A final 
evaluation score for coverage was obtained using a 
coverage score computed as a weighted recall 
score (see (Lin and Hovy 2003) for more 
information on the human summary evaluation). 
From the publicly available data for this evaluation 
(DUC 2001), we compute the values of R2 for 15 
data points available (corresponding to the 15 
participating systems). 

In Tables 3-4 we present the values of the 
coefficient of determination R2 for the family of 
metrics AEv(α,N), when considering the coverage 

4 76.10 76.45 76.78 77.10 77.40 77.69 77.96 78.21 78.45 78.67 78.87 
3 76.11 76.6 77.04 77.44 77.80 78.11 78.38 78.61 78.80 78.94 79.04 
2 73.19 74.21 75.07 75.78 76.32 76.72 76.96 77.06 77.03 76.87 76.58 
1 31.71 38.22 44.82 51.09 56.59 60.99 64.10 65.90 66.50 66.12 64.99 
N/α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Table 1: R2 values for the family of metrics AEv(α,N), for fluency scores in MT evaluation 
 

4 83.04 82.58 82.11 81.61 81.10 80.56 80.01 79.44 78.86 78.26 77.64 
3 81.80 81.00 80.16 79.27 78.35 77.39 76.40 75.37 74.31 73.23 72.11 
2 80.84 79.46 77.94 76.28 74.51 72.63 70.67 68.64 66.55 64.42 62.26 
1 62.16 66.26 69.18 70.59 70.35 68.48 65.24 60.98 56.11 50.98 45.88 
N/α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Table 2: R2 values for the family of metrics AEv(α,N), for adequacy scores in MT evaluation 



scores from the human evaluation, for summaries 
of 200 and 400 words, respectively (the values of 
R2 for summaries of 50 and 100 words show 
similar patterns). As mentioned in Section 2, the 
evaluation guidelines for coverage have a low 
precision/recall ratio, whereas AS is an application 
with low faithfulness/compactness ratio.  In this 
case, our evaluation framework predicts that the 
automatic evaluation metrics that explain most of 
the variation in the human evaluation must have a 
low α and a low N. As seen in Tables 3-4, our 
evaluation framework correctly predicts the 
automatic evaluation metric that explain most of 
the variation in the human evaluation: metric 
AEv(0,1) explains 90.77% and 92.28% of the 
variation in the human evaluation of summaries of 
length 200 and 400, respectively. Since metric 
AEv(0, 1) is almost the same as the ROUGE metric 
proposed by Lin and Hovy (2003) (they only differ 
in the stop-word list they use), our results also 
confirm the proposal for such metrics to be used 
for automatic evaluation by the Automatic 
Summarization community. 

4.3 Question Answering Evaluation 

One of the most common approaches to 
automatic question answering (QA) restricts the 
domain of questions to be handled to so-called 
factoid questions. Automatic evaluation of factoid 
QA is often straightforward, as the number of 
correct answers is most of the time limited, and 
exhaustive lists of correct answers are available. 
When removing the factoid constraint, however, 
the set of possible answer to a (complex, beyond-
factoid) question becomes unfeasibly large, and 
consequently automatic evaluation becomes a 
challenge.  

In this section, we focus on an evaluation carried 
out in order to assess the performance of a QA 

system for answering questions from the 
Frequently-Asked-Question (FAQ) domain 
(Soricut and Brill, 2004). These are generally 
questions requiring a more elaborated answer than 
a simple factoid (e.g., questions such as: “How 
does a film qualify for an Academy Award?”). 

In order to evaluate such a system a human-
performed evaluation was performed, in which 11 
versions of the QA system (various modules were 
implemented using various algorithms) were 
separately evaluated. Each version was evaluated 
by a human evaluator, with no reference answer 
available. For this evaluation 115 test questions 
were used, and the human evaluator was asked to 
assess whether the proposed answer was correct, 
somehow related, or wrong. A unique ranking 
number was achieved using a weighted average of 
the scored answers. (See (Soricut and Brill, 2004) 
for more details concerning the QA task and the 
evaluation procedure.) 

One important aspect in the evaluation procedure 
was devising criteria for assigning a rating to an 
answer which was not neither correct nor wrong. 
One of such cases involved so-called flooded 
answers: answers which contain the correct 
information, along with several other unrelated 
pieces of information. A first evaluation has been 
carried with a guideline package asking the human 
assessor to assign the rating correct to flooded 
answers. In Table 5, we present the values of the 
coefficient of determination R2 for the family of 
metrics AEv(α,N) for this first QA evaluation. On 
the guideline side, the guideline package used in 
this first QA evaluation has a low precision/recall 
ratio, because the human judge is asked to evaluate 
based on the content provided by a given answer 
(high recall), but is asked to disregard the 
conciseness (or lack thereof) of the answer (low 
precision); consequently, systems that focus on 

4 67.10 66.51 65.91 65.29 64.65 64.00 63.34 62.67 61.99 61.30 60.61
3 69.55 68.81 68.04 67.24 66.42 65.57 64.69 63.79 62.88 61.95 61.00
2 74.43 73.29 72.06 70.74 69.35 67.87 66.33 64.71 63.03 61.30 59.51
1 90.77 90.77 90.66 90.42 90.03 89.48 88.74 87.77 86.55 85.05 83.21

N/α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Table 3: R2 for the family of metrics AEv(α,N), for coverage scores in AS evaluation (200 words) 
 

4 81.24 81.04 80.78 80.47 80.12 79.73 79.30 78.84 78.35 77.84 77.31
3 84.72 84.33 83.86 83.33 82.73 82.08 81.39 80.65 79.88 79.07 78.24
2 89.54 88.56 87.47 86.26 84.96 83.59 82.14 80.65 79.10 77.53 75.92
1 92.28 91.11 89.70 88.07 86.24 84.22 82.05 79.74 77.30 74.77 72.15

N/α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Table 4: R2 for the family of metrics AEv(α,N), for coverage scores in AS evaluation (400 words) 



giving correct and concise answers are not 
distinguished from systems that give correct 
answers, but have no regard for concision. On the 
application side, as mentioned in Section 2, QA is 
arguably an application characterized by a close-
to-1 faithfulness/compactness ratio. In this case, 
our evaluation framework predicts that the 
automatic evaluation metrics that explain most of 
the variation in the human evaluation must have a 
low α and a median N. As seen in Table 5, our 
evaluation framework correctly predicts the 
automatic evaluation metric that explain most of 
the variation in the human evaluation: metric 
AEv(0,2) explains most of the human variation, 
91.72%. Note that other members of the AEv( α,N) 
family do not explain nearly as well the variation 
in the human evaluation. For example, the 
ROUGE-like metric AEv(0,1) explains only 
61.61% of the human variation, while the BLEU-
like metric AEv(1,4) explains a mere 17.7% of the 
human variation (to use such a metric in order to 
automatically emulate  the human QA evaluation is 
close to performing an evaluation assigning 
random ratings to the output answers). 

In order to further test the prediction power of 
our evaluation framework, we carried out a second 
QA evaluation, using a different evaluation 
guideline package: a flooded answer was rated 
only somehow-related. In Table 6, we present the 
values of the coefficient of determination R2 for 
the family of metrics AEv(α,N) for this second QA 
evaluation. Instead of performing this second 
evaluation from scratch, we actually simulated it 
using the following methodology: 2/3 of the output 
answers rated correct of the systems ranked 1st, 2nd, 
3rd, and 6th by the previous human evaluation have 
been intentionally over-flooded using two long and 
out-of-context sentences, while their ratings were 
changed from correct to somehow-related. Such a 
change simulated precisely the change in the 

guideline package, by downgrading flooded 
answers. This means that, on the guideline side, the 
guideline package used in this second QA 
evaluation has a close-to-1 precision/recall ratio, 
because the human judge evaluates now based both 
on the content and the conciseness of a given 
answer. At the same time, the application remains 
unchanged, which means that on the application 
side we still have a close-to-1 
faithfulness/compactness ratio. In this case, our 
evaluation framework predicts that the automatic 
evaluation metrics that explain most of the 
variation in the human evaluation must have a 
median α and a median N. As seen in Table 6, our 
evaluation framework correctly predicts the 
automatic evaluation metric that explain most of 
the variation in the human evaluation: metric 
AEv(0.3,2) explains most of the variation in the 
human evaluation, 86.26%. Also note that, while 
the R2 values around AEv(0.3,2) are still 
reasonable, evaluation metrics that are further and 
further away from it have increasingly lower R2 

values, meaning that they are more and more 
unreliable for this task. The high correlation of 
metric AEv(0.3,2) with human judgment, however, 
suggests that such a metric is a good candidate for 
performing automatic evaluation of  QA systems 
that go beyond answering factoid questions. 

5 Conclusions 

In this paper, we propose a unified framework 
for automatic evaluation based on N-gram co-
occurrence statistics, for NLP applications for 
which a correct answer is usually an unfeasibly 
large set (e.g., Machine Translation, Paraphrasing, 
Question Answering, Summarization, etc.). The 
success of BLEU in doing automatic evaluation of 
machine translation output has often led 
researchers to blindly try to use this metric for 
evaluation tasks for which it was more or less 

4 63.40 57.62 51.86 46.26 40.96 36.02 31.51 27.43 23.78 20.54 17.70 
3 81.39 76.38 70.76 64.76 58.61 52.51 46.63 41.09 35.97 31.33 27.15 
2 91.72 89.21 85.54 80.78 75.14 68.87 62.25 55.56 49.04 42.88 37.20 
1 61.61 58.83 55.25 51.04 46.39 41.55 36.74 32.12 27.85 23.97 20.54 
N/α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Table 5: R2 for the family of metrics AEv(α,N), for correctness scores, first QA evaluation 
 

4 79.94 79.18 75.80 70.63 64.58 58.35 52.39 46.95 42.11 37.87 34.19 
3 76.15 80.44 81.19 78.45 73.07 66.27 59.11 52.26 46.08 40.68 36.04 
2 67.76 77.48 84.34 86.26 82.75 75.24 65.94 56.65 48.32 41.25 35.42 
1 56.55 60.81 59.60 53.56 45.38 37.40 30.68 25.36 21.26 18.12 15.69 
N/α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Table 6: R2 for the family of metrics AEv(α,N), for correctness scores, second QA evaluation 



appropriate (see, e.g., the paper of Lin and Hovy 
(2003), in which the authors start with the 
assumption that BLEU might work for 
summarization evaluation, and discover after 
several trials a better candidate). 

 Our unifying framework facilitates the 
understanding of when various automatic 
evaluation metrics are able to closely approximate 
human evaluations for various applications. Given 
an application app and an evaluation guideline 
package eval, the faithfulness/compactness ratio of 
the application and the precision/recall ratio of the 
evaluation guidelines determine a restricted area in 
the evaluation plane in Figure 1 which best 
characterizes the (app, eval) pair. We have 
empirically demonstrated that the metrics from the 
AEv( α,N) family that best approximate human 
judgment are those that have the α and N 
parameters in the determined restricted area. To 
our knowledge, this is the first proposal regarding 
automatic evaluation in which the automatic 
evaluation metrics are able to account for the 
variation in human judgment due to specific 
evaluation guidelines. 
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