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Abstract a CFGG by the LR parsing strategy and apply it on

We discuss existing approaches to train LR parsersan input sentence, then the set of output stringd of

which have been used for statistical resolution Ofrbpresents the set of all right-most derivations that

structural ambiguity. These approaches are nonqllows for that sentence. Such an output string enu-

. ) ) ... merates the rules (or labels that identify the rules
optimal, in the sense that a collection of probability : L
S . : uniquely) that occur in the corresponding right-most
distributions cannot be obtained. In particular, some, " =7/ .
e S derivation, in reversed order.
probability distributions expressible in terms of a

context-free grammar cannot be expressed in termt%v geLnRaﬂi:izrtisvg()trg?];ﬁ%enLoilr(\?ehe;c(je tgaﬂggl?_%?(%'
of the LR parser constructed from that grammar, ns, they
arsers. More generally, if LR parsers look ah&ad

under the restrictions of the existing approaches t(g mbols, they are called LR) parsers; some sim-
training of LR parsers. We present an alternative y  they P ’

o ; ; lified LR parsing models that use lookahead are
way of training that is provably optimal, and that al- P ; :
lows all probability distributions expressible in the called SLRf) and LALR(k) parsing (Sippu and

context-free grammar to be carried over to the LR(?iZ?iZ?o-r?O\;yelznaet?ét;i?l gf?())'mlE;Ldelggokzggggf%’nt?ﬁs
parser. We also demonstrate empirically that this ’ 9

: - . : article, and ‘LR parsing’ can further be read as
Elggbjr;[[(ammg can be effectively applied on a Iarge‘LR(O) parsing’. We would like to point out how-

ever that our observations carry over to LR parsing
with lookahead.

The theory of probabilistic pushdown automata
The LR parsing strategy was originally devised(Santos, 1972) can be easily applied to LR parsing.
for programming languages (Sippu and SoisalonA probability is then assigned to each transition, by
Soininen, 1990), but has been used in a wide ranga function that we will call thgarobability function
of other areas as well, such as for natural languagg 4, and the probability of an accepting computa-
processing (Lavie and Tomita, 1993; Briscoe andion of A is the product of the probabilities of the
Carroll, 1993; Ruland, 2000). The main differenceapplied transitions. As each accepting computation
between the application to programming languagegroduces a right-most derivation as output string, a
and the application to natural languages is that irprobabilistic LR parser defines a probability distri-
the latter case the parsers should be nondetermimpution on the set of parses, and thereby also a prob-
istic, in order to deal with ambiguous context-free ability distribution on the set of sentences generated
grammars (CFGs). Nondeterminism can be hanby grammarG. Disambiguation of an ambiguous
dled in a number of ways, but the most efficientsentence can be achieved on the basis of a compari-
is tabulation, which allows processing in polyno- son between the probabilities assigned to the respec-
mial time. Tabular LR parsing is known from the tive parses by the probabilistic LR model.
work by (Tomita, 1986), but can also be achieved The probability function can be obtained on the
by the generic tabulation technique due to (Langpasis of a treebank, as proposed by (Briscoe and
1974; Billot and Lang, 1989), which assumes an in-Carroll, 1993) (see also (Su et al., 1991)). The
put pushdown transducer (PDT). In this context, themodel by (Briscoe and Carroll, 1993) however in-
LR parsing strategy can be seen as a particular magorporated a mistake involving lookahead, which
ping from context-free grammars to PDTSs. was corrected by (Inui et al., 2000). As we will not

The acronym ‘LR’ stands for ‘Left-to-right pro- discuss lookahead here, this matter does not play a
cessing of the input, producing a Right-most deriva-significant role in the current study. Noteworthy is
tion (in reverse)’. When we construct a PDIfrom  that (Sornlertlamvanich et al., 1999) showed empir-
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ically that an LR parser may be more accurate tharfCFGs from which they were constructed, if we con-

the original CFG, if both are trained on the basisstrain probability functiong 4 to be proper. In this

of the same treebank. In other words, the resultingespect, LR parsing differs from at least one other
probability functionp 4 on transitions of the PDT well-known parsing strategy, viz. left-corner pars-

allows better disambiguation than the corresponding. See (Nederhof and Satta, 2004) for a discus-
ing functionpg on rules of the original grammar.  sion of a property that is shared by left-corner pars-

A plausible explanation of this is that stack sym-ing but not by LR parsing, and which explains the
bols of an LR parser encode some amount of lefabove difference.
context, i.e. information on rules applied earlier, so As main contribution of this paper we establish
that the probability function on transitions may en-that this restriction on expressible probability dis-
code dependencies between rules that cannot be effiibutions can be dispensed with, without losing the
coded in terms of the original CFG extended withability to perform training by relative frequency es-
rule probabilities. The explicit use of left con- timation. What comes in place of properness is
text in probabilistic context-free models was inves-reverse-propernessvhich can be seen as proper-
tigated by e.g. (Chitrao and Grishman, 1990; Johnhess of the reversed pushdown automaton that pro-
son, 1998), who also demonstrated that this mag€esses input from right to left instead of from left to
significantly improve accuracy. Note that the prob-right, interpreting the transitions ofl backwards.
ability distributions of language may be beyond theAs we will show, reverse-properness does not re-
reach of a given context-free grammar, as pointe@tl’ict the space of probability distributions express-
out by e.g. (Collins, 2001). Therefore, the use of leftible by an LR automaton. More precisely, assume
context, and the resulting increase in the number oc$ome probability distribution on the set of deriva-
parameters of the model, may narrow the gap betions is specified by a probability functigns on
tween the given grammar and ill-understood mechtransitions of PDTA that realizes the LR strat-
anisms underlying actual language. egy for a given grammag. Then the same prob-

One important assumption that is made byablllty distribution can be specified by an alterna-

(Briscoe and Carroll, 1993) and (Inui et al., 2000) V& such functiory/, that is reverse-proper. In ad-
is that trained probabilistic LR parsers should bedition, for each probability distribution on deriva-
proper, i.e. if several transitions are applicable for 10NS expressible by a probability functigg for G,
a given stack, then the sum of probabilities as-N€re i & reverse-proper probability functjeg for

signed to those transitions by probability function“A that expresses the same probability distribution.
p4 should be 1. This assumption may be moti- 1 nereby we ensure that LR parsers become at least

vated by pragmatic considerations, as such a propd&S Powerful as the original CFGs in terms of allow-
model is easy to train belative frequency estima- aple probability distributions.

tion: count the number of times a transition is ap- __11is article is organized as follows. ~In Sec-
plied with respect to a treebank, and divide it bytion 2 we outline our formalization of LR pars-
the number of times the relevant stack symbol (of"d @S & construction of PDTs from CFGs, making
pair of stack symbols) occurs at the top of the stackS0Me superficial changes with respect to standard
Let us call the resulting probability functiop,.. formu_latlons. I?ropemess and reverse-properness
This function is provably optimal in the sense that&r€ discussed in Section 3, where we will show
the likelihood it assigns to the training corpus is that reverse-properness does not restrict the space

maximal among all probability functions; that are of probability distributions. Section 4 reports on ex-
proper in the above sense. periments, and Section 5 concludes this article.

However, properness restricts the space of probz
ability distributions that a PDT allows. This means
that a (consistent) probability functigny may ex-  As LR parsing has been extensively treated in exist-
ist that is not proper and that assigns a higher likeing literature, we merely recapitulate the main defi-
lihood to the training corpus tham,s does. (By nitions here. For more explanation, the reader is re-
‘consistent’ we mean that the probabilities of all ferred to standard literature such as (Harrison, 1978;
strings that are accepted sum to 1.) It may everSippu and Soisalon-Soininen, 1990).
be the case that a (proper and consistent) probabil- An LR parser is constructed on the basis of a CFG
ity function pg on the rules of the input grammgr  that is augmented with an additional rfé — - S,
exists that assigns a higher likelihood to the corpusvhere S is the former start symbol, and the new
thanp,r., and therefore it is not guaranteed that LRnonterminal ST becomes the start symbol of the
parsers allow better probability estimates than theaugmented grammar. The new termihahcts as

LR parsing



an imaginary start-of-sentence marker. We denoteg,,;. The computed output consists of the string of
the set of terminals by’ and the set of nontermi- terminalsb, - - - b, from the output components of
nals by N. We assume each rule has a unique labethe applied transitions. For the PDTs that we will
r. use, this output string will consist of a sequence of

As explained before, we construct LR parsers asule labels expressing a right-most derivation of the
pushdown transducers. The main stack symbolgput. On the basis of the original grammar, the cor-
of these automata are sets ddtted rules which  responding parse tree can be constructed from such
consist of rules from the augmented grammar withan output string.

a distinguished position in the right-hand side in-  There are a few superficial differences with LR
dicated by a dote’. The initial stack symbol is parsing as it is commonly found in the literature.

Pinit = {S" — - 5} The most obvious difference is that we divide re-
We define the closure of a sebf dotted rules as  ductions into ‘binary’ steps. The main reason is that
the smallest satlosurgp) such that: this allows tabular interpretation with a time com-

plexity cubic in the length of the input. Otherwise,

the time complexity would b€ (n™+1), wherem

2. for (B — « e Ap) € closurgp) andA — g the length of the longest right-hand side of a rule
v arule in the grammar, alspd — o v) € iy the CFG. This observation was made before by

1. p C closurgp); and

closurgp). (Kipps, 1991), who proposed a solution similar to
We define the operatiogoto on a setp of dotted ~ OUrS, albeit formulated differently. See also a related
Satta, 1996).
gota(p, X) = {A—aX e[ | To be more specific, instead of one step of the
(A — o e Xf3) € closurep)} PDT taking stack:
The set olLR statess the smallest set such that; ~ CP0P1 "~ Pm .
immediately to stack:
1. p;nit IS an LR state; and opog

) =q # 0, for where (A — X;---X,, ®) € pp,, o is a string

of stack symbols andgoto(py, A) = ¢, we have
a number of smaller steps leading to a series of
We will assume that PDTs consist of three typesstacks:

of transitions, of the formP “p Q@ (a push tran-  opopP1 - Pm—1Pm
opop1 - Pm—1(A, m—1)
opop1 - -+ (A, m=2)

2. if pis an LR state andoto(p, X
someX € Y U N, theng is an LR state.

sition), of the formP il Q@ (a swap transition), and

of the formP @ “ R (a pop transition). Her®, @
and R are stack symbols, is one input terminal or
is the empty string, andb is one output terminal or apo(4,0)
is the empty string. In our notation, stacks grow 9P04

from left to right, so thai® “p @ means thaf) is There are two additional differences. First, we
pushed on top of’. We do not have internal states want to avoid steps of the form:
next to stack symbols. opo(A,0)

For the PDT that implements the LR strategy, the 54
stack symbols are the LR states, plus symbols of th
form [p; X|, wherep is an LR state and” is a gram-
mar symbol, and symbols of the forip, A, m),
wherep is an LR state A is the left-hand side of

Sy transitiongpg (A, 0) ¥ po ¢, @s such transitions
complicate the generic definition of ‘properness’
for PDTs, to be discussed in the following section.

some rule, andh is the length of some prefix of the For this reason, we use stack symbols of the form

. £,€ .
right-hand side of that rule. More explanation on 73 X] nexttop, and split uppy (A4, 0) = po ¢ into
these additional stack symbols will be given below. POP [po; Xo] (4,0) & [po; A] and pushipg; A] =

The stack symbols and transitions are simultanetpo; 4] ¢. This is a harmless modification, which in-
ously defined in Flgure 1. The final stack symbolcreases the number of steps in any computation by
iS Pfinal = (pinit, ST,0). This means that an input at most a factor 2.
ai---apis accepted if and only if itis entirely read  Secondly, we use stack symbols of the form
by a sequence of transitions that take the stack conp, A, m) instead of( A, m). This concerns the con-
sisting only ofp;,;; to the stack consisting only of ditions of reverse-properness to be discussed in the



For LR statep anda € X' such thagoto(p, a) # 0:

p = [psal (1)
e For LR statep and(A — e) € p, whereA — ¢ has label:
p > [p; Al )
e For LR statep and(A — « e) € p, wherela| = m > 0 andA — « has label:
P (p, A,;m—1) 3
e For LR statep and(A — « @ X3) € p, where|a| = m > 0, such thagoto(p, X) = ¢ # 0:
[ X] (0, A,m) = (p, A,m — 1) (4)
e For LR statep and(A — e X(3) € p, such thagoto(p, X) = q # :
[p; X] (g, 4,0) == [p; A] (5)
e For LR statep and X € ¥ U N such thagoto(p, X) = ¢ # 0:
[p; X] 75 [p; X] g (6)

Figure 1: The transitions of a PDT implementing LR(0) parsing.

following section. By this condition, we consider 3 Properness and reverse-properness

LR parsing as being performed from right to left, so . .

backwards with regard to the normal processing orlf @ PDT is regarded to process input from left to

der. If we were to omit the first componentdrom  "ght, starting with a stack consisting only pf,

stack symbolgp, A, m), we may obtain ‘dead ends’ @nd ending in a stack consisting onlygf,.;, then

in the computation. We know that such dead endd S€ems reasonable to cast this process into a prob-

make a (reverse-)proper PDT inconsistent, as probaPilistic framework in such a way that the sum of

bility mass lost in dead ends causes the sum of prog2robabilities of all choices that are possible at any

abilities of all computations to be strictly smaller 9iven momentis 1. This is similar to how the notion

than 1. (See also (Nederhof and Satta, 2004).) |pf ‘properness’ is defined for probablllstlc. context--

is interesting to note that the addition of the compo-€€ grammars (PCFGs); we say a PCFG is proper if

nentsp to stack symbolép, A, m) doesnotincrease fo_r each nonter_mlnaa, the probabilities of all rules

the number of transitions, and the nature of LR parsWith left-hand sided sum to 1.

ing in the normal processing order from left to right  Properness for PCFGs does not restrict the space

is preserved. of probability distributions on the set of parse trees.

) . In other words, if a probability distribution can be
W'.th all these changes_ 'together, .redl.mt'onsdefined by attaching probabilities to rules, then we

are implemented by transitions resulting in the 5 reassign the probabilities such that that PCFG

following sequence of stacks: becomes proper, while preserving the probability

o' [po; Xol[p1; X1] -+ [Pm—15 Xm—1]Pm distribution. This even holds if the input grammar
o'[po; Xo|[p1; X1] -+ - [Pm—1; Xm—1](Pm, A,m—1)  is non-tight, meaning that probability mass is lost
o'[po; Xol[p1; X1] - - - (pm—1, A, m—2) in ‘infinite derivations’ (%inchez and BengdL997;

: Chi and Geman, 1998; Chi, 1999; Nederhof and
G’[po; Xo](pl,A, 0) Satta, 2003) .

o' [po; A] Although CFGs and PDTs are weakly equiva-
o' [po; Alq lent, they behave very differently when they are ex-

tended with probabilities. In particular, there seems

Please note that transitions of the formto be no notion similar to PCFG properness that

[p; X] (g, A, m) 25 (p,A,m—1) may corre- can be imposed on all types of PDTs without los-
spond to several dotted ruléd — « e X3) € p, ing generality. Below we will discuss two con-

with differenta of lengthm and differents. If we  straints, which we will call properness and reverse-

were to multiply such transitions for differeatand  properness. Neither of these is suitable for all types

0, the PDT would become prohibitively large. of PDTs, but as we will show, the second is more



suitable for probabilistic LR parsing than the first.  For this reason, we investigate a practical alter-
This is surprising, as only properness has been dexative, viz. reverse-properness. Now we have to as-
scribed in existing literature on probabilistic PDTs sume that for each stack symh®| we either have

(PPEE)" _InL[?rticulgr, ?}” existing apgroaches ©one or more transitions of the fori? “* R or
probabilistic parsing have assume propernesa P & R, or one or more transitions of the form
rather than anything related to reverse-properness.

a,b . . .
For properness we have to assume that for each — P R, but no combination thereof. In the first
stack symbolP, we either have one or more tran- C2S€, reverse-properness demands that the sum of

S . a,b a,b
sitions of the formP b p Qor P a,b Q, or one probabllltl_es of all transition®® — RorQQ P+ R
is 1, and in the second case reverse-properness de-

. a,b
or more transitions of the for@ P = R, but N0 manqs that the sum of probabilities of transitions
combination thereof. In the first case, properness

demands that the sum of probabilities of all transi-E = £ R is 1 for eachP. Again, our assumption

. ab ab . ) above is without loss of generality.
tionsP +~ P Q andP +~ @ is 1, and in the second

case properness demands that the sum of probabili- !N °'der o apply relative frequency estimation,
we now sum the total number of occurrences of tran-

. . a,b .
ties of all transitiong) P +> R is 1 for eachQ). sitions P “ R or oPr @b b for eachR, and we

Note that our assumption above is without 10SSg;; the total number of occurrences of transitions
of generality, as we may introduce swap transitionsy, a.b 5, R for each pair P, R)

P &5 P andP &5 P, whereP, and P, are new
e We now prove that reverse-properness does not
stack symbols, and replace transitiofis— P Q  restrict the space of probability distributions, by

and P % Q by P, ik P Q and P, ot Q, and means of the construction of a ‘cover’ grammar

replace transition§ P @b p by Q P @b from an input CFG, as reported in Figure 2. This
The notion of properness underlies the normaf*eVer CFG has almost the same structure as the PDT

training process for PDTs, as follows. We assumeresUItIng frqm Figure 1. Rules _and transitions al-
most stand in a one-to-one relation. The only note-

a corpus of PDT computations. In these computa- . . L
tions IOwe count the nuFr)nber of occurrences forpeacllf"orthy difference is between transitions of type (6)

transition. For eacl® we sum the total number of and rules of type (12). The right—hand_sides of _those
. ab ab rules can be because the corresponding transitions
all occurrences of transitionS = P Q) 3er = Q- are deterministic if seen from right to left. Now it
The probability of, say, a transitioR + P () is  becomes clear why we needed the compongints
now estimated by dividing the number of occur- stack symbols of the forrfp, A, m). Without it, one
rences thereof in the corpus by the above total numeould obtain an LR state that does not match the
ber of occurrences of transitions within the left-  underlying[p; X] in a reversed computation.
hand side. Similarly, for each paie), P) we sum We may assume without loss of generality that
the total numg)ber of occurrences of all transitions ofy a5 of type (12) are assigned probability 1, as a
the form@ P — R, and thereby estimate the proba- probability other than 1 could be moved to corre-
bility of a particular transitiorQ P &Y R by relative ~ sponding rules of types (10) or (11) where state
frequency estimation. The resulting PPDT is properg Was inthdUCQd- In the same way, we may as-
It has been shown that imposing properness i§ume that transitions of type (6) are assigned prob-
without loss of generality in the case of PDTsability 1. After making these assumptions, we ob-
constructed by a wide range of parsing strategied@in a bijection between probability functiopg for
among which are top-down parsing and left-cornethe PDT and probability functionsg for the cover
parsing. This does not hold for PDTs constructed bycFG- As was shown by e.g. (Chi, 1999) and (Neder-
the LR parsing strategy however, and in fact, properl0f and Satta, 2003), properness for CFGs does not
ness for such automata may reduce the expressiV€strict the space of probability distributions, and
power in terms of available probability distributions thereby the same holds for reverse-properness for
to strictly less than that offered by the original CFG. PDTs that implement the LR parsing strategy.
This was formally proven by (Nederhof and Satta, It is now also clear that a reverse-proper LR
2004), after (Ng and Tomita, 1991) and (Wright andparser can describe any probability distribution that
Wrigley, 1991) had already suggested that creatinghe original CFG can. The proof is as follows.
a probabilistic LR parser that is equivalent to an in-Given a probability functiomg for the input CFG,
put PCFG is difficult in general. The same difficulty we define a probability functiom4 for the LR
for ELR parsing was suggested by (Tendeau, 1997 )parser, by letting transitions of types (2) and (3)



For LR statep anda € X' such thagoto(p, a) # 0:

[p;a] —p ()
e For LR statep and(A — e) € p, whereA — ¢ has label:
[p; Al —pr (8)
e For LR statep and(A — « e) € p, wherela| = m > 0 andA — « has label:
(p,Am—1)—pr 9)
e For LR statep and(A — « e X[3) € p, where|a| = m > 0, such thagoto(p, X) = g # 0:
e For LR statep and(A — e X3) € p, such thagoto(p, X) = q # 0:
[p; A] — [p; X] (¢, A, 0) (11)
e For LR statey:
q—¢€ (12)

Figure 2: A grammar that describes the set of computations of the LR(0) parser. Start sypyhgl is
(pinit, ST,0). Terminals are rule labels. Generated language consists of right-most derivations in reverse.

have probabilitypg(r), and letting all other transi- corpus is consistent with earlier attempts to derive
tions have probability 1. This gives us the requiredCFGs from that corpus, as e.g. by (Johnson, 1998).
probability distribution in terms of a PPDT that is The obtained CFG has 10,035 rules. The dimen-
not reverse-proper in general. This PPDT can nowsions of the LR parser constructed from this gram-
be recast into reverse-proper form, as proven by thenar are given in Table 1.

above. The PDT was then trained on the trees from the
] same sections 02-21, to determine the number of
4 Experiments times that transitions are used. At first sight it is not

We have implemented both the traditional trainingclear how to determine this on the basis of the tree-
method for LR parsing and the novel one, and havéank, as the structure of LR parsers is very differ-
compared their performance, with two concrete ob-€nt from the structure of the grammars from which
jectives: they are constructed. The solution is to construct a
second PDT from the PDT to be trained, replacing
1. We show that the number of free parameters . ab . .
is significantly larger with the new training eac? transitior: = § with label r by transition
method. (The number of free parameters isc — 3. By this second PDT we parse the tree-
the number of probabilities of transitions that bank, encoded as a series of right-most derivations
can be freely chosen within the constraints ofin reverse For each input string, there is exactly
properness or reverse-properness.) one parse, of which the output is the list of used

transitions. The same method can be used for other

2. The larger number of free parameters does norgarsing strategies as well, such as left-corner pars-

make thg problem of sparse data any worsei,ng’ replacing right-most derivations by a suitable
and precision and recall are at least compara;

) ~ “alternative representation of parse trees.
ble to, if not better than, what we would obtain P P .
. . By the counts of occurrences of transitions, we
with the established method.

may then perform maximum likelihood estimation
The experiments were performed on the Wallto obtain probabilities for transitions. This can
Street Journal (WSJ) corpus, from the Penn Treebe done under the constraints of properness or of
bank, version Il. Training was done on sections 02r€verse-properness, as explained in the previous
21, i.e., first a context-free grammar was derivedsection. We have not applied any form of smooth-
from the ‘stubs' of the combined trees, t_aking parts We have observed an enormous gain in computational ef-
O,f speech as leaves c_)f the trees, omitting "_’1” af'ﬁciency when we also incorporate the ‘shifts’ next to ‘reduc-
fixes from the nonterminal names, and remowiAg  tions’ in these right-most derivations, as this eliminates a con-
generating subtrees. Such preprocessing of the WSilerable amount of nondeterminism.




total # transitions 8,340,315 The most important conclusion that can be drawn
# push transitions 753,224 from this is that the substantially larger space of
# swap transitions 589,811 obtainable probability distributions offered by the
# pop transitions 6,997,280 reverse-properness method does not come at the ex-

pense of a degradation of accuracy for large gram-
mars such as those derived from the WSJ. For com-
parison, with a standard PCFG we obtain labelled
precision and recall of 0.725 and 0.670, respec-
tively.

Table 1: Dimensions of PDT implementing LR
strategy for CFG derived from WSJ, sect. 02-21.

proper  rev.-prop. . .

# free parameters 577650 6,589,716 _We would like to stre_zss.that our experiments
# non-zero probabilities 137,134 137.134 did not have as main object'lve the improvement of
labelled precision 0.772 0.777 state-of_-the-art parsers, _vyhlch can cer_talnly not be
labelled recall 0.747 0.749 done without much additional fine-tuning and the

incorporation of some form of lexicalization. Our

main objectives concerned the relation between our
Table 2: The two methods of training, based onnewly proposed training method for LR parsers and
properness and reverse-properness. the traditional one.

ing or back-off, as this could obscure properties in—5 Conclusions

herent in the difference between the two discussedlVe have presented a novel way of assigning proba-
training methods. (Back-off for probabilistic LR bilities to transitions of an LR automaton. Theoreti-
parsing has been proposed by (Ruland, 2000).) Altal analysis and empirical data reveal the following.
transitions that were not seen during training were
given probability O.

The results are outlined in Table 2. Note that the
number of free parameters in the case of reverse-
properness is much larger than in the case of normal
properness. Despite of this, the number of transi-
tions that actually receive non-zero probabilities is
(predictably) identical in both cases, viz. 137,134.
However, the potential for fine-grained probability
estimates and for smoothing and parameter-tying
techniques is clearly greater in the case of reverse-

e The efficiency of LR parsing remains unaf-
fected. Although a right-to-left order of read-
ing input underlies the novel training method,
we may continue to apply the parser from left
to right, and benefit from the favourable com-
putational properties of LR parsing.

e The available space of probability distributions
is significantly larger than in the case of the
methods published before. In terms of the
number of free parameters, the difference that

properness.
That in both cases the number of non-zero prob-
abilities is lower than the total number of parame-
ters can be explained as follows. First, the treebank
contains many rules that occur a small number of
times. Secondly, the LR automaton is much larger

than the CFG; in general, the size of an LR automa- e

ton is bounded by a function that is exponential in
the size of the input CFG. Therefore, if we use the
same treebank to estimate the probability function,
then many transitions are never visited and obtain a
zero probability.

we found empirically exceeds one order of
magnitude. By the same criteria, we can now
guarantee that LR parsers are at least as pow-
erful as the CFGs from which they are con-
structed.

Despite the larger number of free parameters,
no increase of sparse data problems was ob-
served, and in fact there was a small increase
in accuracy.
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