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Abstract

We investigate a number of simple methods for
improving the word-alignment accuracy of IBM
Model 1. We demonstrate reduction in alignment
error rate of approximately 30% resulting from (1)
giving extra weight to the probability of alignment
to the null word, (2) smoothing probability esti-
mates for rare words, and (3) using a simple heuris-
tic estimation method to initialize, or replace, EM
training of model parameters.

1 Introduction

IBM Model 1 (Brown et al., 1993a) is a word-
alignment model that is widely used in working
with parallel bilingual corpora. It was originally
developed to provide reasonable initial parameter
estimates for more complex word-alignment mod-
els, but it has subsequently found a host of ad-
ditional uses. Among the applications of Model
1 are segmenting long sentences into subsentental
units for improved word alignment (Nevado et al.,
2003), extracting parallel sentences from compara-
ble corpora (Munteanu et al., 2004), bilingual sen-
tence alignment (Moore, 2002), aligning syntactic-
tree fragments (Ding et al., 2003), and estimating
phrase translation probabilities (Venugopal et al.,
2003). Furthermore, at the 2003 Johns Hopkins
summer workshop on statistical machine transla-
tion, a large number of features were tested to dis-
cover which ones could improve a state-of-the-art
translation system, and the only feature that pro-
duced a “truly significant improvement” was the
Model 1 score (Och et al., 2004).

Despite the fact that IBM Model 1 is so widely
used, essentially no attention seems to have been
paid to whether it is possible to improve on the stan-
dard Expectation-Maximization (EM) procedure for
estimating its parameters. This may be due in part
to the fact that Brown et al. (1993a) proved that the
log-likelihood objective function for Model 1 is a
strictly concave function of the model parameters,
so that it has a unique local maximum. This, in turn,

means that EM training will converge to that max-
imum from any starting point in which none of the
initial parameter values is zero. If one equates opti-
mum parameter estimation with finding the global
maximum for the likelihood of the training data,
then this result would seem to show no improve-
ment is possible.

However, in virtually every application of statisti-
cal techniques in natural-language processing, max-
imizing the likelihood of the training data causes
overfitting, resulting in lower task performance than
some other estimates for the model parameters. This
is implicitly recognized in the widespread adoption
of early stopping in estimating the parameters of
Model 1. Brown et al. (1993a) stopped after only
one iteration of EM in using Model 1 to initialize
their Model 2, and Och and Ney (2003) stop af-
ter five iterations in using Model 1 to initialize the
HMM word-alignment model. Both of these are far
short of convergence to the maximum likelihood es-
timates for the model parameters.

We have identified at least two ways in which
the standard EM training method for Model 1
leads to suboptimal performance in terms of word-
alignment accuracy. In this paper we show that by
addressing these issues, substantial improvements
in word-alignment accuracy can be achieved.

2 Definition of Model 1

Model 1 is a probabilistic generative model within
a framework that assumes a source sentence S of
length l translates as a target sentence T , according
to the following stochastic process:

• A length m for sentence T is generated.

• For each target sentence position j ∈
{1, . . . ,m}:

– A generating word si in S (including a
null word s0) is selected, and

– The target word tj at position j is gener-
ated depending on si.



Model 1 is defined as a particularly simple in-
stance of this framework, by assuming all possible
lengths for T (less than some arbitrary upper bound)
have a uniform probability ε, all possible choices of
source sentence generating words are equally likely,
and the translation probability tr(tj|si) of the gen-
erated target language word depends only on the
generating source language word—which Brown et
al. (1993a) show yields the following equation:

p(T |S) =
ε

(l + 1)m

m∏

j=1

l∑

i=0

tr(tj|si) (1)

Equation 1 gives the Model 1 estimate for the
probability of a target sentence, given a source sen-
tence. We may also be interested in the question of
what is the most likely alignment of a source sen-
tence and a target sentence, given an instance of
Model 1; where, by an alignment, we mean a speci-
fication of which source words generated which tar-
get words according to the generative model. Since
Model 1, like many other word-alignment models,
requires each target word to be generated by exactly
one source word (including the null word), an align-
ment a can be represented by a vector a1, . . . , am,
where each aj is the sentence position of the source
word generating tj according to the alignment. It is
easy to show that for Model 1, the most likely align-
ment â of S and T is given by this equation:

â = argmaxa

m∏

j=1

tr(tj|saj ) (2)

Since in applying Model 1, there are no depen-
dencies between any of the ajs, we can find the
most likely aligment simply by choosing, for each
j, the value for aj that leads to the highest value for
tr(tj|saj ).

The parameters of Model 1 for a given pair of
languages are normally estimated using EM, taking
as training data a corpus of paired sentences of the
two languages, such that each pair consists of sen-
tence in one language and a possible translation in
the other language. The training is normally ini-
tialized by setting all translation probability distri-
butions to the uniform distribution over the target
language vocabulary.

3 Problems with Model 1
Model 1 clearly has many shortcomings as a model
of translation. Some of these are structural limita-
tions, and cannot be remedied without making the
model significantly more complicated. Some of the
major structural limitations include:

• (Many-to-one) Each word in the target sen-
tence can be generated by at most one word
in the source sentence. Situations in which a
phrase in the source sentence translates as a
single word in the target sentence are not well-
modeled.

• (Distortion) The position of any word in the
target sentence is independent of the position
of the corresponding word in the source sen-
tence, or the positions of any other source lan-
guage words or their translations. The ten-
dency for a contiguous phrase in one language
to be translated as a contiguous phrase in an-
other language is not modeled at all.

• (Fertility) Whether a particular source word is
selected to generate the target word for a given
position is independent of which or how many
other target words the same source word is se-
lected to generate.

These limitations of Model 1 are all well known,
they have been addressed in other word-alignment
models, and we will not discuss them further here.
Our concern in this paper is with two other problems
with Model 1 that are not deeply structural, and can
be addressed merely by changing how the parame-
ters of Model 1 are estimated.

The first of these nonstructural problems with
Model 1, as standardly trained, is that rare words
in the source language tend to act as “garbage col-
lectors” (Brown et al., 1993b; Och and Ney, 2004),
aligning to too many words in the target language.
This problem is not unique to Model 1, but anec-
dotal examination of Model 1 alignments suggests
that it may be worse for Model 1, perhaps because
Model 1 lacks the fertility and distortion parameters
that may tend to mitigate the problem in more com-
plex models.

The cause of the problem can be easily under-
stood if we consider a situation in which the source
sentence contains a rare word that only occurs once
in our training data, plus a frequent word that has an
infrequent translation in the target sentence. Sup-
pose the frequent source word has the translation
present in the target sentence only 10% of the time
in our training data, and thus has an estimated trans-
lation probability of around 0.1 for this target word.
Since the rare source word has no other occurrences
in the data, EM training is free to assign whatever
probability distribution is required to maximize the
joint probability of this sentence pair. Even if the
rare word also needs to be used to generate its ac-
tual translation in the sentence pair, a relatively high
joint probability will be obtained by giving the rare



word a probability of 0.5 of generating its true trans-
lation and 0.5 of spuriously generating the transla-
tion of the frequent source word. The probability of
this incorrect alignment will be higher than that ob-
tained by assigning a probability of 1.0 to the rare
word generating its true translation, and generating
the true translation of the frequent source word with
a probability of 0.1. The usual fix for over-fitting
problems of this type in statistical NLP is to smooth
the probability estimates involved in some way.

The second nonstructural problem with Model 1
is that it seems to align too few target words to
the null source word. Anecdotal examination of
Model 1 alignments of English source sentences
with French target sentences reveals that null word
alignments rarely occur in the highest probability
alignment, despite the fact that French sentences
often contain function words that do not corre-
spond directly to anything in their English trans-
lation. For example, English phrases of the form
〈noun1〉〈noun2〉 are often expressed in French by a
phrase of the form 〈noun2〉 de 〈noun1〉, which may
also be expressed in English (but less often) by a
phrase of the form 〈noun2〉 of 〈noun1〉.

The structure of Model 1 again suggests why we
should not be surprised by this problem. As nor-
mally defined, Model 1 hypothesizes only one null
word per sentence. A target sentence may con-
tain many words that ideally should be aligned to
null, plus some other instances of the same word
that should be aligned to an actual source language
word. For example, we may have an English/French
sentence pair that contains two instances of of in
the English sentence, and five instances of de in the
French sentence. Even if the null word and of have
the same initial probabilty of generating de, in iter-
ating EM, this sentence is going to push the model
towards estimating a higher probabilty that of gen-
erates de and a lower estimate that the null word
generates de. This happens because there are are
two instances of of in the source sentence and only
one hypothetical null word, and Model 1 gives equal
weight to each occurrence of each source word. In
effect, of gets two votes, but the null word gets only
one. We seem to need more instances of the null
word for Model 1 to assign reasonable probabilities
to target words aligning to the null word.

4 Smoothing Translation Counts

We address the nonstructural problems of Model 1
discussed above by three methods. First, to address
the problem of rare words aligning to too many
words, at each interation of EM we smooth all the
translation probability estimates by adding virtual

counts according to a uniform probability distribu-
tion over all target words. This prevents the model
from becoming too confident about the translation
probabilities for rare source words on the basis of
very little evidence. To estimate the smoothed prob-
abilties we use the following formula:

tr(t|s) =
C(t, s) + n

C(s) + n · |V | (3)

where C(t, s) is the expected count of s generating
t, C(s) is the corresponding marginal count for s,
|V | is the hypothesized size of the target vocabulary
V , and n is the added count for each target word in
V . |V | and n are both free parameters in this equa-
tion. We could take |V | simply to be the total num-
ber of distinct words observed in the target language
training, but we know that the target language will
have many words that we have never observed. We
arbitrarily chose |V | to be 100,000, which is some-
what more than the total number of distinct words
in our target language training data. The value of n
is empirically optimized on annotated development
test data.

This sort of “add-n” smoothing has a poor repu-
tation in statistical NLP, because it has repeatedly
been shown to perform badly compared to other
methods of smoothing higher-order n-gram mod-
els for statistical language modeling (e.g., Chen and
Goodman, 1996). In those studies, however, add-n
smoothing was used to smooth bigram or trigram
models. Add-n smoothing is a way of smooth-
ing with a uniform distribution, so it is not surpris-
ing that it performs poorly in language modeling
when it is compared to smoothing with higher or-
der models; e.g, smoothing trigrams with bigrams
or smoothing bigrams with unigrams. In situations
where smoothing with a uniform distribution is ap-
propriate, it is not clear that add-n is a bad way
to do it. Furthermore, we would argue that the
word translation probabilities of Model 1 are a case
where there is no clearly better alternative to a uni-
form distribution as the smoothing distribution. It
should certainly be better than smoothing with a un-
igram distribution, since we especially want to ben-
efit from smoothing the translation probabilities for
the rarest words, and smoothing with a unigram dis-
tribution would assume that rare words are more
likely to translate to frequent words than to other
rare words, which seems counterintuitive.

5 Adding Null Words to the Source
Sentence

We address the lack of sufficient alignments of tar-
get words to the null source word by adding extra



null words to each source sentence. Mathematically,
there is no reason we have to add an integral number
of null words, so in fact we let the number of null
words in a sentence be any positive number. One
can make arguments in favor of adding the same
number of null words to every sentence, or in fa-
vor of letting the number of null words be propor-
tional to the length of the sentence. We have chosen
to add a fixed number of null words to each source
sentence regardless of length, and will leave for an-
other time the question of whether this works better
or worse than adding a number of null words pro-
portional to the sentence length.

Conceptually, adding extra null words to source
sentences is a slight modification to the structure of
Model 1, but in fact, we can implement it without
any additional model parameters by the simple ex-
pedient of multiplying all the translation probabili-
ties for the null word by the number of null words
per sentence. This multiplication is performed dur-
ing every iteration of EM, as the translation proba-
bilities for the null word are re-estimated from the
corresponding expected counts. This makes these
probabilities look like they are not normalized, but
Model 1 can be applied in such a way that the trans-
lation probabilities for the null word are only ever
used when multiplied by the number of null words
in the sentence, so we are simply using the null word
translation parameters to keep track of this prod-
uct pre-computed. In training a version of Model
1 with only one null word per sentence, the param-
eters have their normal interpretation, since we are
multiplying the standard probability estimates by 1.

6 Initializing Model 1 with Heuristic
Parameter Estimates

Normally, the translation probabilities of Model 1
are initialized to a uniform distribution over the tar-
get language vocabulary to start iterating EM. The
unspoken justification for this is that EM training
of Model 1 will always converge to the same set of
parameter values from any set of initial values, so
the intial values should not matter. But this is only
the case if we want to obtain the parameter values at
convergence, and we have strong reasons to believe
that these values do not produce the most accurate
sentence alignments. Even though EM will head to-
wards those values from any initial position in the
parameter space, there may be some starting points
we can systematically find that will take us closer
to the optimal parameter values for alignment accu-
racy along the way.

To test whether a better set of initial parame-
ter estimates can improve Model 1 alignment ac-

curacy, we use a heuristic model based on the log-
likelihood-ratio (LLR) statistic recommended by
Dunning (1993). We chose this statistic because it
has previously been found to be effective for au-
tomatically constructing translation lexicons (e.g.,
Melamed, 2000; Moore, 2001). In our application,
the statistic can be defined by the following formula:

∑

t?∈{t,¬t}

∑

s?∈{s,¬s}
C(t?, s?) log

p(t?|s?)
p(t?)

(4)

In this formula t and s mean that the correspond-
ing words occur in the respective target and source
sentences of an aligned sentence pair, ¬t and ¬s
mean that the corresponding words do not occur
in the respective sentences, t? and s? are variables
ranging over these values, and C(t?, s?) is the ob-
served joint count for the values of t? and s?. All
the probabilities in the formula refer to maximum
likelihood estimates.1

These LLR scores can range in value from 0 to
N · log(2), where N is the number of sentence pairs
in the training data. The LLR score for a pair of
words is high if the words have either a strong pos-
itive association or a strong negative association.
Since we expect translation pairs to be positively as-
sociated, we discard any negatively associated word
pairs by requiring that p(t, s) > p(t) · p(s).

To use LLR scores to obtain initial estimates for
the translation probabilities of Model 1, we have to
somehow transform them into numbers that range
from 0 to 1, and sum to no more than 1 for all the
target words associated with each source word. We
know that words with high LLR scores tend to be
translations, so we want high LLR scores to cor-
respond to high probabilities, and low LLR scores
to correspond to low probabilities. The simplest
approach would be to divide each LLR score by
the sum of the scores for the source word of the
pair, which would produce a normalized conditional
probability distribution for each source word.

Doing this, however, would discard one of the
major advantages of using LLR scores as a measure
of word association. All the LLR scores for rare
words tend to be small; thus we do not put too much
confidence in any of the hypothesized word associ-
ations for such words. This is exactly the property
needed to prevent rare source words from becom-
ing garbage collectors. To maintain this property,
for each source word we compute the sum of the

1This is not the form in which the LLR statistic is usually
presented, but it can easily be shown by basic algebra to be
equivalent to −λ in Dunning’s paper. See Moore (2004) for
details.



LLR scores over all target words, but we then di-
vide every LLR score by the single largest of these
sums. Thus the source word with the highest LLR
score sum receives a conditional probability distri-
bution over target words summing to 1, but the cor-
responding distribution for every other source word
sums to less than 1, reserving some probability mass
for target words not seen with that word, with more
probability mass being reserved the rarer the word.

There is no guarantee, of course, that this is the
optimal way of discounting the probabilities as-
signed to less frequent words. To allow a wider
range of possibilities, we add one more parameter
to the model by raising each LLR score to an empir-
ically optimized exponent before summing the re-
sulting scores and scaling them from 0 to 1 as de-
scribed above. Choosing an exponent less than 1.0
decreases the degree to which low scores are dis-
counted, and choosing an exponent greater than 1.0
increases degree of discounting.

We still have to define an initialization of the
translation probabilities for the null word. We can-
not make use of LLR scores because the null word
occurs in every source sentence, and any word oc-
curing in every source sentence will have an LLR
score of 0 with every target word, since p(t|s) =
p(t) in that case. We could leave the distribution
for the null word as the uniform distribution, but we
know that a high proportion of the words that should
align to the null word are frequently occuring func-
tion words. Hence we initialize the distribution for
the null word to be the unigram distribution of target
words, so that frequent function words will receive
a higher probability of aligning to the null word than
rare words, which tend to be content words that do
have a translation. Finally, we also effectively add
extra null words to every sentence in this heuristic
model, by multiplying the null word probabilities by
a constant, as described in Section 5.

7 Training and Evaluation

We trained and evaluated our various modifications
to Model 1 on data from the bilingual word align-
ment workshop held at HLT-NAACL 2003 (Mihal-
cea and Pedersen, 2003). We used a subset of the
Canadian Hansards bilingual corpus supplied for
the workshop, comprising 500,000 English-French
sentences pairs, including 37 sentence pairs desig-
nated as “trial” data, and 447 sentence pairs desig-
nated as test data. The trial and test data had been
manually aligned at the word level, noting particular
pairs of words either as “sure” or “possible” align-
ments, as described by Och and Ney (2003).

To limit the number of translation probabilities

that we had to store, we first computed LLR associ-
ation scores for all bilingual word pairs with a posi-
tive association (p(t, s) > p(t)·p(s)), and discarded
from further consideration those with an LLR score
of less that 0.9, which was chosen to be just low
enough to retain all the “sure” word alignments in
the trial data. This resulted in 13,285,942 possible
word-to-word translation pairs (plus 66,406 possi-
ble null-word-to-word pairs).

For most models, the word translation parame-
ters are set automatically by EM. We trained each
variation of each model for 20 iterations, which was
enough in almost all cases to discern a clear mini-
mum error on the 37 sentence pairs of trial data, and
we chose as the preferred iteration the one with the
lowest alignment error rate on the trial data. The
other parameters of the various versions of Model 1
described in Sections 4–6 were optimized with re-
spect to alignment error rate on the trial data using
simple hill climbing. All the results we report for
the 447 sentence pairs of test data use the parameter
values set to their optimal values for the trial data.

We report results for four principal versions of
Model 1, trained using English as the source lan-
guage and French as the target language:

• The standard model is initialized using
uniform distributions, and trained without
smoothing using EM, for a number of itera-
tions optimized on the trial data.

• The smoothed model is like the standard
model, but with optimized values of the null-
word weight and add-n parameter.

• The heuristic model simply uses the initial
heuristic estimates of the translation parameter
values, with an optimized LLR exponent and
null-word weight, but no EM re-estimation.

• The combined model initializes the translation
parameter values with the heuristic estimates,
using the LLR exponent and null-word weight
from the optimal heuristic model, and applies
EM using optimized values of the null-word
weight and add-n parameters. The null-word
weight used during EM is optimized separately
from the null-word weight used in the initial
heuristic parameter estimates.

We also performed ablation experiments in which
we ommitted each applicable modification in turn
from each principal version of Model 1, to observe
the effect on alignment error. All non-EM-trained
parameters were re-optimized on the trial data for
each version of Model 1 tested, with the exception



Model Trial Test Test Test LLR Init EM Add EM
(Ablation) AER AER Recall Precision Exp NW NW n Iter
Standard 0.311 0.298 0.810 0.646 NA NA 1.0 0.0000 17
Smoothed 0.261 0.271 0.646 0.798 NA NA 10.0 0.0100 15
(EM NW) 0.285 0.273 0.833 0.671 NA NA 1.0 0.0100 20
(Add n) 0.302 0.300 0.638 0.751 NA NA 13.0 0.0000 14

Heuristic 0.234 0.255 0.655 0.844 1.3 2.4 NA NA NA
(LLR Exp) 0.257 0.259 0.655 0.844 1.0 2.4 NA NA NA
(Init NW) 0.300 0.308 0.740 0.657 1.5 1.0 NA NA NA
Combined 0.203 0.215 0.724 0.839 1.3 2.4 7.0 0.005 1
(LLR Exp) 0.258 0.272 0.636 0.809 1.0 2.4 10.0 0.0035 3
(Init NW) 0.197 0.209 0.722 0.854 1.5 1.0 10.0 0.0005 1
(EM NW) 0.281 0.267 0.833 0.680 1.3 2.4 1.0 0.0080 8
(Add n) 0.208 0.221 0.724 0.826 1.3 2.4 8.0 0.0000 1

Table 1: Evaluation Results.

that the value of the LLR exponent and initial null-
word weight in the combined model were carried
over from the heuristic model.

8 Results
We report the performance of our different versions
of Model 1 in terms of precision, recall, and align-
ment error rate (AER) as defined by Och and Ney
(2003). These three performance statistics are de-
fined as

recall =
|A ∩ S|
|S| (5)

precision =
|A ∩ P |
|A| (6)

AER = 1 − |A ∩ S| + |A ∩ P |
|A| + |S| (7)

where S denotes the annotated set of sure align-
ments, P denotes the annotated set of possible
alignments, and A denotes the set of alignments
produced by the model under test.2 We take AER,
which is derived from F-measure, as our primary
evaluation metric.

The results of our evaluation are presented in Ta-
ble 1. The columns of the table present (in order) a
description of the model being tested, the AER on
the trial data, the AER on the test data, test data re-
call, and test data precision, followed by the optimal
values on the trial data for the LLR exponent, the
initial (heuristic model) null-word weight, the null-
word weight used in EM re-estimation, the add-n
parameter value used in EM re-estimation, and the
number of iterations of EM. “NA” means a parame-
ter is not applicable in a particular model.

2As is customary, alignments to the null word are not ex-
plicitly counted.

Results for the four principal versions of Model 1
are presented in bold. For each principal version, re-
sults of the corresponding ablation experiments are
presented in standard type, giving the name of each
omitted modification in parentheses.3 Probably the
most striking result is that the heuristic model sub-
stantially reduces the AER compared to the standard
or smoothed model, even without EM re-estimation.
The combined model produces an additional sub-
stantial reduction in alignment error, using a single
iteration of EM.

The ablation experiments show how important
the different modifications are to the various mod-
els. It is interesting to note that the importance of
a given modification varies from model to model.
For example, the re-estimation null-word weight
makes essentially no contribution to the smoothed
model. It can be tuned to reduce the error on the trial
data, but the improvement does not carry over to the
test data. The smoothed model with only the null-
word weight and no add-n smoothing has essen-
tially the same error as the standard model; and the
smoothed model with add-n smoothing alone has
essentially the same error as the smoothed model
with both the null-word weight and add-n smooth-
ing. On the other hand, the re-estimation null-word
weight is crucial to the combined model. With it, the
combined model has substantially lower error than
the heuristic model without re-estimation; without
it, for any number of EM iterations, the combined
model has higher error than the heuristic model.

A similar analysis shows that add-n smoothing
is much less important in the combined model than

3Modificiations are “omitted” by setting the corresponding
parameter to a value that is equivalent to removing the modifi-
cation from the model.



the smoothed model. The probable explanation for
this is that add-n smoothing is designed to address
over-fitting from many iterations of EM. While the
smoothed model does require many EM iterations
to reach its minimum AER, the combined model,
with or without add-n smoothing, is at its minimum
AER with only one EM iteration.

Finally, we note that, while the initial null-word
weight is crucial to the heuristic model without re-
estimation, the combined model actually performs
better without it. Presumably, the re-estimation
null-word weight makes the inital null-word weight
redundant. In fact, the combined model without the
initial null word-weight has the lowest AER on both
the trial and test data of any variation tested (note
AERs in italics in Figure 1). The relative reduction
in AER for this model is 29.9% compared to the
standard model.

We tested the significance of the differences in
alignment error between each pair of our principal
versions of Model 1 by looking at the AER for each
sentence pair in the test set using a 2-tailed paired
t test. The differences between all these models
were significant at a level of 10−7 or better, except
for the difference between the standard model and
the smoothed model, which was “significant” at the
0.61 level—that is, not at all significant. The rea-
son for this is probably the very different balance
between precision and recall with the standard and
smoothed models, which indicates that the models
make quite different sorts of errors, making statisti-
cal significance hard to establish. This conjecture is
supported by considering the smoothed model omit-
ting the re-estimation null-word weight, which has
substantially the same AER as the full smoothed
model, but with a precision/recall balance much
closer to the standard model. The 2-tailed paired
t test comparing this model to the standard model
showed significance at a level of better than 10−10.
We also compared the combined model with and
without the initial null-word weight, and found that
the improvement without the weight was significant
at the 0.008 level.

9 Conclusions

We have demonstrated that it is possible to improve
the performance of Model 1 in terms of alignment
error by about 30%, simply by changing the way its
parameters are estimated. Almost half this improve-
ment is obtained with a simple heuristic model that
does not require EM re-estimation.

It is interesting to contrast our heuristic model
with the heuristic models used by Och and Ney
(2003) as baselines in their comparative study of

alignment models. The major difference between
our model and theirs is that they base theirs on the
Dice coefficient, which is computed by the formula4

2 · C(t, s)
C(t) + C(s)

(8)

while we use the log-likelihood-ratio statistic de-
fined in Section 6. Och and Ney find that the stan-
dard version of Model 1 produces more accurate
alignments after only one iteration of EM than ei-
ther of the heuristic models they consider, while we
find that our heuristic model outperforms the stan-
dard version of Model 1, even with an optimal num-
ber of iterations of EM.

While the Dice coefficient is simple and
intuitive—the value is 0 for words never found to-
gether, and 1 for words always found together—it
lacks the important property of the LLR statistic that
scores for rare words are discounted; thus it does not
address the over-fitting problem for rare words.

The list of applications of IBM word-alignment
Model 1 given in Section 1 should be sufficient to
convince anyone of the relevance of improving the
model. However, it is not clear that AER as defined
by Och and Ney (2003) is always the appropriate
way to evaluate the quality of the model, since the
Viterbi word alignment that AER is based on is sel-
dom used in applications of Model 1.5 Moreover, it
is notable that while the versions of Model 1 having
the lowest AER have dramatically higher precision
than the standard version, they also have quite a bit
lower recall. If AER does not reflect the optimal
balance between precision and recall for a particu-
lar application, then optimizing AER may not pro-
duce the best task-based performance for that appli-
cation. Thus the next step in this research must be
to test whether the improvements in AER we have
demonstrated for Model 1 lead to improvements on
task-based performance measures.
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