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Abstract

Aligning words from sentences which are mutual
translations is an important problem in different set-
tings, such as bilingual terminology extraction, Ma-
chine Translation, or projection of linguistic fea-
tures. Here, we view word alignment as matrix fac-
torisation. In order to produce proper alignments,
we show that factors must satisfy a number of con-
straints such as orthogonality. We then propose an
algorithm for orthogonal non-negative matrix fac-
torisation, based on a probabilistic model of the
alignment data, and apply it to word alignment. This
is illustrated on a French-English alignment task
from the Hansard.

1 Introduction

Aligning words from mutually translated sentences
in two different languages is an important and dif-
ficult problem. It is important because a word-
aligned corpus is typically used as a first step in or-
der to identify phrases or templates in phrase-based
Machine Translation (Och et al., 1999), (Tillmann
and Xia, 2003), (Koehn et al., 2003, sec. 3), or
for projecting linguistic annotation across languages
(Yarowsky et al., 2001). Obtaining a word-aligned
corpus usually involves training a word-based trans-
lation models (Brown et al., 1993) in each directions
and combining the resulting alignments.

Besides processing time, important issues are
completeness and propriety of the resulting align-
ment, and the ability to reliably identify general N-
to-M alignments. In the following section, we in-
troduce the problem of aligning words from a cor-
pus that is already aligned at the sentence level. We
show how this problem may be phrased in terms
of matrix factorisation. We then identify a number
of constraints on word alignment, show that these
constraints entail that word alignment is equivalent
to orthogonal non-negative matrix factorisation, and
we give a novel algorithm that solves this problem.
This is illustrated using data from the shared tasks
of the 2003 HLT-NAACL Workshop on Building

le droit de permis ne augmente pas

the licence fee does not increase

Figure 1: 1-1, M-1, 1-N and M-N alignments.

and Using Parallel Texts (Mihalcea and Pedersen,
2003).

2 Word alignments

We address the following problem: Given a source
sentence f = f1 . . . fi . . . fI and a target sentence
e = e1 . . . ej . . . eJ , we wish to find words fi and ej

on either side which are aligned, ie in mutual corre-
spondence. Note that words may be aligned without
being directly “dictionary translations”. In order to
have proper alignments, we want to enforce the fol-
lowing constraints:

Coverage: Every word on either side must be
aligned to at least one word on the other side
(Possibly taking “null” words into account).

Transitive closure: If fi is aligned to ej and e`, any
fk aligned to e` must also de aligned to ej .

Under these constraints, there are only 4 types
of alignments: 1-1, 1-N, M-1 and M-N (fig. 1).
Although the first three are particular cases where
N=1 and/or M=1, the distinction is relevant, because
most word-based translation models (eg IBM mod-
els (Brown et al., 1993)) can typically not accom-
modate general M-N alignments.

We formalise this using the notion of cepts: a
cept is a central pivot through which a subset of e-
words is aligned to a subset of f -words. General
M-N alignments then correspond to M-1-N align-
ments from e-words, to a cept, to f -words (fig. 2).
Cepts naturally guarantee transitive closure as long
as each word is connected to a single cept. In ad-
dition, coverage is ensured by imposing that each
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Figure 2: Same as figure 1, using cepts (1)-(4).
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Figure 3: Matrix factorisation of the example from
fig. 1, 2. Black squares represent alignments.

word is connected to a cept. A unique constraint
therefore guarantees proper alignments:

Propriety: Each word is associated to exactly one
cept, and each cept is associated to at least one
word on each side.

Note that our use of cepts differs slightly from that
of (Brown et al., 1993, sec.3), inasmuch cepts may
not overlap, according to our definition.

The motivation for our work is that better word
alignments will lead to better translation mod-
els. For example, we may extract better chunks
for phrase-based translation models. In addition,
proper alignments ensure that cept-based phrases
will cover the entire source and target sentences.

3 Matrix factorisation
Alignments between source and target words may
be represented by a I × J alignment matrix A =
[aij ], such that aij > 0 if fi is aligned with ej and
aij = 0 otherwise. Similarly, given K cepts, words
to cepts alignments may be represented by a I ×
K matrix F and a J × K matrix E, with positive
elements indicating alignments. It is easy to see that
matrix A = F × E> then represents the resulting
word-to-word alignment (fig. 3).

Let us now assume that we start from a I×J ma-
trix M = [mij ], which we call the translation ma-
trix, such that mij ≥ 0 measures the strength of the
association between fi and ej (large values mean
close association). This may be estimated using a
translation table, a count (eg from a N-best list), etc.
Finding a suitable alignment matrix A corresponds
to finding factors F and E such that:

M ≈ F × S × E> (1)

where without loss of generality, we introduce a di-
agonal K × K scaling matrix S which may give
different weights to the different cepts. As factors
F and E contain only positive elements, this is an
instance of non-negative matrix factorisation, aka
NMF (Lee and Seung, 1999). Because NMF de-
composes a matrix into additive, positive compo-
nents, it naturally yields a sparse representation.

In addition, the propriety constraint imposes that
words are aligned to exactly one cept, ie each row
of E and F has exactly one non-zero component, a
property we call extreme sparsity. With the notation
F = [Fik], this means that:

∀i, ∀k 6= l, Fik.Fil = 0

As line i contains a single non-zero element, either
Fik or Fil must be 0. An immediate consequence is
that

∑

i Fik.Fil = 0: columns of F are orthogonal,
that is F is an orthogonal matrix (and similarly, E
is orthogonal). Finding the best alignment starting
from M therefore reduces to performing a decom-
position into orthogonal non-negative factors.

4 An algorithm for Orthogonal
Non-negative Matrix Factorisation

Standard NMF algorithms (Lee and Seung, 2001)
do not impose orthogonality between factors. We
propose to perform the Orthogonal Non-negative
Matrix Factorisation (ONMF) in two stages: We
first factorise M using Probabilistic Latent Seman-
tic Analysis, aka PLSA (Hofmann, 1999), then we
orthogonalise factors using a Maximum A Poste-
riori (MAP) assignment of words to cepts. PLSA
models a joint probability P (f, e) as a mixture
of conditionally independent multinomial distribu-
tions:

P (f, e) =
∑

c

P (c)P (f |c)P (e|c) (2)

With F = [P (f |c)], E = [P (e|c)] and S =
diag(P (c)), this is exactly eq. 1. Note also that
despite the additional matrix S, if we set E =
[P (e, c)], then P (f |e) would factor as F × E>, the
original NMF formulation). All factors in eq. 2
are (conditional) probabilities, and therefore posi-
tive, so PLSA also implements NMF.

The parameters are learned from a matrix M =
[mij ] of (fi, ej) counts, by maximising the like-
lihood using the iterative re-estimation formula of
the Expectation-Maximisation algorithm (Dempster
et al., 1977), cf. fig. 4. Convergence is guaran-
teed, leading to a non-negative factorisation of M.
The second step of our algorithm is to orthogonalise



E-step: P (c|fi, ej) =
P (c)P (fi|c)P (ej |c)

∑

cP (c)P (fi|c)P (ej |c)
(3)

M-step: P (c) =
1

N

∑

ij

mijP (c|fi, ej) (4)

M-step: P (fi|c) ∝
∑

j

mijP (c|fi, ej) (5)

M-step: P (ej |c) ∝
∑

i

mijP (c|fi, ej) (6)

Figure 4: The EM algorithm iterates these E and
M-steps until convergence.

the resulting factors. Each source word fi is as-
signed the most probable cept, ie cept c for which
P (c|fi) ∝ P (c)P (fi|c) is maximal. Factor F is
therefore set to:

Fik ∝

{

1 if k = argmaxc P (c|fi)
0 otherwise (7)

where proportionality ensures that column of F sum
to 1, so that F stays a conditional probability ma-
trix. We proceed similarly for target words ej to
orthogonalise E. Thanks to the MAP assignment,
each line of F and E contains exactly one non-zero
element. We saw earlier that this is equivalent to
having orthogonal factors. The result is therefore an
orthogonal, non-negative factorisation of the origi-
nal translation matrix M.

4.1 Number of cepts

In general, the number of cepts is unknown and
must be estimated. This corresponds to choos-
ing the number of components in PLSA, a classi-
cal model selection problem. The likelihood may
not be used as it always increases as components
are added. A standard approach to optimise the
complexity of a mixture model is to maximise the
likelihood, penalised by a term that increases with
model complexity, such as AIC (Akaike, 1974) or
BIC (Schwartz, 1978). BIC asymptotically chooses
the correct model size (for complete models), while
AIC always overestimates the number of compo-
nents, but usually yields good predictive perfor-
mance. As the largest possible number of cepts is
min(I, J), and the smallest is 1 (all fi aligned to
all ej), we estimate the optimal number of cepts
by maximising AIC or BIC between these two ex-
tremes.

4.2 Dealing with null alignments

Alignment to a “null” word may be a feature of the
underlying statistical model (eg IBM models), or it

may be introduced to accommodate words which
have a low association measure with all other words.
Using PLSA, we can deal with null alignments in a
principled way by introducing a null word on each
side (f0 and e0), and two null cepts (“f-null” and
“e-null”) with a 1-1 alignment to the correspond-
ing null word, to ensure that null alignments will
only be 1-N or M-1. This constraint is easily im-
plemented using proper initial conditions in EM.
Denoting the null cepts as cf∅ and ce∅, 1-1 align-
ments between null cepts and the corresponding null
words impose the conditions:

1. P (f0|cf∅) = 1 and ∀i 6= 0, P (fi|cf∅) = 0;

2. P (e0|ce∅) = 1 and ∀j 6= 0, P (ej |ce∅) = 0.

Stepping through the E-step and M-step equations
(3–6), we see that these conditions are preserved by
each EM iteration. In order to deal with null align-
ments, the model is therefore augmented with two
null cepts, for which the probabilities are initialised
according to the above conditions. As these are pre-
served through EM, we maintain proper 1-N and M-
1 alignments to the null words. The main difference
between null cepts and the other cepts is that we
relax the propriety constraint and do not force null
cepts to be aligned to at least one word on either
side. This is because in many cases, all words from
a sentence can be aligned to non-null words, and do
not require any null alignments.

4.3 Modelling noise

Most elements of M usually have a non-zero asso-
ciation measure. This means that for proper align-
ments, which give zero probability to alignments
outside identified blocks, actual observations have
exactly 0 probability, ie the log-likelihood of param-
eters corresponding to proper alignments is unde-
fined. We therefore refine the model, adding a noise
component indexed by c = 0:

P (f, e) =
∑

c>0

P (c)P (f |c)P (e|c)

+P (c = 0)P (f, e|c = 0)

The simplest choice for the noise component is a
uniform distribution, P (f, e|c = 0) ∝ 1. E-step
and M-steps in eqs. (3–6) are unchanged for c > 0,
and the E-step equation for c = 0 is easily adapted:
P (c=0|f, e) ∝ P (c=0)P (f, e|c=0).

5 Example

We first illustrate the factorisation process on a
simple example. We use the data provided for



the French-English shared task of the 2003 HLT-
NAACL Workshop on Building and Using Par-
allel Texts (Mihalcea and Pedersen, 2003). The
data is from the Canadian Hansard, and reference
alignments were originally produced by Franz Och
and Hermann Ney (Och and Ney, 2000). Using
the entire corpus (20 million words), we trained
English→French and French→English IBM4 mod-
els using GIZA++. For all sentences from the trial
and test set (37 and 447 sentences), we generated up
to 100 best alignments for each sentence and in each
direction. For each pair of source and target words
(fi, ej), the association measure mij is simply the
number of times these words were aligned together
in the two N-best lists, leading to a count between 0
(never aligned) and 200 (always aligned).

We focus on sentence 1023, from the trial set.
Figure 5 shows the reference alignments together
with the generated counts. There is a background
“noise” count of 3 to 5 (small dots) and the largest
counts are around 145-150. The N-best counts seem
to give a good idea of the alignments, although
clearly there is no chance that our factorisation al-
gorithm will recover the alignment of the two in-
stances of ’de’ to ’need’, as there is no evidence for
it in the data. The ambiguity that the factorisation
will have to address, and that is not easily resolved
using, eg, thresholding, is whether ’ont’ should be
aligned to ’They’ or to ’need’.

The N-best count matrix serves as the transla-
tion matrix. We estimate PLSA parameters for
K = 1 . . . 6, and find out that AIC and BIC reach
their maximum for K = 6. We therefore select 6
cepts for this sentence, and produce the alignment
matrices shown on figure 6. Note that the order
of the cepts is arbitrary (here the first cept corre-
spond ’et’ — ’and’), except for the null cepts which
are fixed. There is a fixed 1-1 correspondence be-
tween these null cepts and the corresponding null
words on each side, and only the French words ’de’
are mapped to a null cept. Finally, the estimated
noise level is P (c = 0) = 0.00053. The ambigu-
ity associated with aligning ’ont’ has been resolved
through cepts 4 and 5. In our resulting model,
P (c=4|’ont’) ≈ 0.40 while P (c=6|’ont’) ≈ 0.54:
The MAP assignment forces ’ont’ to be aligned to
cept 5 only, and therefore to ’need’.

Note that although the count for (need,ont) is
slightly larger than the count for (they,ont) (cf. fig.
5), this is not a trivial result. The model was able to
resolve the fact that they and need had to be aligned
to 2 different cepts, rather than eg a larger cept
corresponding to a 2-4 alignment, and to produce
proper alignments through the use of these cepts.

6 Experiments
In order to perform a more systematic evaluation of
the use of matrix factorisation for aligning words,
we tested this technique on the full trial and test data
from the 2003 HLT-NAACL Workshop. Note that
the reference data has both “Sure” and “Probable”
alignments, with about 77% of all alignments in the
latter category. On the other hand, our system pro-
poses only one type of alignment. The evaluation
is done using the performance measures described
in (Mihalcea and Pedersen, 2003): precision, recall
and F-score on the probable and sure alignments, as
well as the Alignment Error Rate (AER), which in
our case is a weighted average of the recall on the
sure alignments and the precision on the probable.
Given an alignment A and gold standards GS and
GP (for sure and probable alignments, respectively):

PT =
|A ∩ GT |

|A|
(8)

RT =
|A ∩ GT |

|GT |
(9)

FT =
2PT RT

PT + RT

=
2|A ∩ GT |

|GT | + |A|
(10)

where T is either S or P , and:

AER = 1 −
|GS |RS + |A|PP

|GS | + |A|
(11)

Using these measures, we first evaluate the per-
formance on the trial set (37 sentences): as we
produce only one type of alignment and evaluate
against “Sure” and “Probable”, we observe, as ex-
pected, that the recall is very good on sure align-
ments, but precision relatively poor, with the re-
verse situation on the probable alignments (table 1).
This is because we generate an intermediate number
of alignments. There are 338 sure and 1446 prob-
able alignments (for 721 French and 661 English
words) in the reference trial data, and we produce
707 (AIC) or 766 (BIC) alignments with ONMF.
Most of them are at least probably correct, as at-
tested by PP , but only about half of them are in the
“Sure” subset, yielding a low value of PS . Sim-
ilarly, because “Probable” alignments were gener-
ated as the union of alignments produced by two
annotators, they sometimes lead to very large M-
N alignments, which produce on average 2.5 to 2.7
alignments per word. By contrast ONMF produces
less than 1.2 alignments per word, hence the low
value of RP . As the AER is a weighted average of
RS and PP , the resulting AER are relatively low for
our method.
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Figure 5: Left: reference alignments, large squares are sure, medium squares are probable; Right: accumu-
lated counts from IBM4 N-best lists, bigger squares are larger counts.
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Figure 6: Resulting word-to-cept and word-to-word alignments for sentence 1023.

Method PS RS FS PP RP FP AER
ONMF + AIC 45.26% 94.67% 61.24% 86.56% 34.30% 49.14% 10.81%
ONMF + BIC 42.69% 96.75% 59.24% 83.42% 35.82% 50.12% 12.50%

Table 1: Performance on the 37 trial sentences for orthogonal non-negative matrix factorisation (ONMF)
using the AIC and BIC criterion for choosing the number of cepts, discounting null alignments.

We also compared the performance on the 447
test sentences to 1/ the intersection of the align-
ments produced by the top IBM4 alignments in ei-
ther directions, and 2/ the best systems from (Mi-
halcea and Pedersen, 2003). On limited resources,
Ralign.EF.1 (Simard and Langlais, 2003) produced
the best F -score, as well as the best AER when
NULL alignments were taken into account, while
XRCE.Nolem.EF.3 (Dejean et al., 2003) produced

the best AER when NULL alignments were dis-
counted. Tables 2 and 3 show that ONMF improves
on several of these results. In particular, we get bet-
ter recall and F -score on the probable alignments
(and even a better precision than Ralign.EF.1 in ta-
ble 2). On the other hand, the performance, and in
particular the precision, on sure alignments is dis-
mal. We attribute this at least partly to a key dif-
ference between our model and the reference data:



Method PS RS FS PP RP FP AER
ONMF + AIC 49.86% 95.12% 65.42% 84.63% 37.39% 51.87% 11.76%
ONMF + BIC 46.50% 96.01% 62.65% 80.92% 38.69% 52.35% 14.16%
IBM4 intersection 71.46% 90.04% 79.68% 97.66% 28.44% 44.12% 5.71%
HLT-03 best F 72.54% 80.61% 76.36% 77.56% 38.19% 51.18% 18.50%
HLT-03 best AER 55.43% 93.81% 69.68% 90.09% 35.30% 50.72% 8.53%

Table 2: Performance on the 447 English-French test sentences, discounting NULL alignments, for orthog-
onal non-negative matrix factorisation (ONMF) using the AIC and BIC criterion for choosing the number of
cepts. HLT-03 best F is Ralign.EF.1 and best AER is XRCE.Nolem.EF.3 (Mihalcea and Pedersen, 2003).

our model enforces coverage and makes sure that
all words are aligned, while the “Sure” reference
alignments have no such constraints and actually
have a very bad coverage. Indeed, less than half the
words in the test set have a “Sure” alignment, which
means that a method which ensures that all words
are aligned will at best have a sub 50% precision. In
addition, many reference “Probable” alignments are
not proper alignments in the sense defined above.

Note that the IBM4 intersection has a bias similar
to the sure reference alignments, and performs very
well in FS , PP and especially in AER, even though
it produces very incomplete alignments. This points
to a particular problem with the AER in the context
of our study. In fact, a system that outputs exactly
the set of sure alignments achieves a perfect AER of
0, even though it aligns only about 23% of words,
clearly an unacceptable drawback in many applica-
tions. We think that this issue may be addressed
in two different ways. One time-consuming possi-
bility would be to post-edit the reference alignment
to ensure coverage and proper alignments. An-
other possibility would be to use the probabilistic
model to mimic the reference data and generate both
“Sure” and “Probable” alignments using eg thresh-
olds on the estimated alignment probabilities. This
approach may lead to better performance according
to our metrics, but it is not obvious that the pro-
duced alignments will be more reasonable or even
useful in a practical application.

We also tested our approach on the Romanian-
English task of the same workshop, cf. table 4.
The ’HLT-03 best’ is our earlier work (Dejean et
al., 2003), simply based on IBM4 alignment us-
ing an additional lexicon extracted from the corpus.
Slightly better results have been published since
(Barbu, 2004), using additional linguistic process-
ing, but those were not presented at the workshop.
Note that the reference alignments for Romanian-
English contain only “Sure” alignments, and there-
fore we only report the performance on those. In ad-
dition, AER = 1−FS in this setting. Table 4 shows
that the matrix factorisation approach does not offer

any quantitative improvements over these results. A
gain of up to 10 points in recall does not offset a
large decrease in precision. As a consequence, the
AER for ONMF+AIC is about 10% higher than in
our earlier work. This seems mainly due to the fact
that the ’HLT-03 best’ produces alignments for only
about 80% of the words, while our technique en-
sure coverage and therefore aligns all words. These
results suggest that remaining 20% seem particu-
larly problematic. These quantitative results are
disappointing given the sofistication of the method.
It should be noted, however, that ONMF provides
the qualitative advantage of producing proper align-
ments, and in particular ensures coverage. This may
be useful in some contexts, eg training a phrase-
based translation system.

7 Discussion

7.1 Model selection and stability

Like all mixture models, PLSA is subject to lo-
cal minima. Although using a few random restarts
seems to yield good performance, the results on
difficult-to-align sentences may still be sensitive to
initial conditions. A standard technique to stabilise
the EM solution is to use deterministic annealing or
tempered EM (Rose et al., 1990). As a side effect,
deterministic annealing actually makes model se-
lection easier. At low temperature, all components
are identical, and they differentiate as the temper-
ature increases, until the final temperature, where
we recover the standard EM algorithm. By keep-
ing track of the component differentiations, we may
consider multiple effective numbers of components
in one pass, therefore alleviating the need for costly
multiple EM runs with different cept numbers and
multiple restarts.

7.2 Other association measures

ONMF is only a tool to factor the original trans-
lation matrix M, containing measures of associa-
tions between fi and ej . The quality of the re-
sulting alignment greatly depends on the way M is



Method PS RS FS PP RP FP AER
ONMF + AIC 42.88% 95.12% 59.11% 75.17% 37.20% 49.77% 18.63%
ONMF + BIC 40.17% 96.01% 56.65% 72.20% 38.49% 50.21% 20.78%
IBM4 intersection 56.39% 90.04% 69.35% 81.14% 28.90% 42.62% 15.43%
HLT-03 best 72.54% 80.61% 76.36% 77.56% 36.79% 49.91% 18.50%

Table 3: Performance on the 447 English-French test sentences, taking NULL alignments into account, for
orthogonal non-negative matrix factorisation (ONMF) using the AIC and BIC criterion for choosing the
number of cepts. HLT-03 best is Ralign.EF.1 (Mihalcea and Pedersen, 2003).

no NULL alignments with NULL alignments
Method PS RS FS AER PS RS FS AER
ONMF + AIC 70.34% 65.54% 67.85% 32.15% 62.65% 62.10% 62.38% 37.62%
ONMF + BIC 55.88% 67.70% 61.23% 38.77% 51.78% 64.07% 57.27% 42.73%
HLT-03 best 82.65% 62.44% 71.14% 28.86% 82.65% 54.11% 65.40% 34.60%

Table 4: Performance on the 248 Romanian-English test sentences (only sure alignments), for orthogonal
non-negative matrix factorisation (ONMF) using the AIC and BIC criterion for choosing the number of
cepts. HLT-03 best is XRCE.Nolem (Mihalcea and Pedersen, 2003).

filled. In our experiments we used counts from N-
best alignments obtained from IBM model 4. This
is mainly used as a proof of concept: other strate-
gies, such as weighting the alignments according to
their probability or rank in the N-best list would be
natural extensions. In addition, we are currently in-
vestigating the use of translation and distortion ta-
bles obtained from IBM model 2 to estimate M at
a lower cost. Ultimately, it would be interesting
to obtain association measures mij in a fully non-
parametric way, using corpus statistics rather than
translation models, which themselves perform some
kind of alignment. We have investigated the use
of co-occurrence counts or mutual information be-
tween words, but this has so far not proved success-
ful, mostly because common words, such as func-
tion words, tend to dominate these measures.

7.3 M-1-0 alignments

In our model, cepts ensure that resulting alignments
are proper. There is however one situation in which
improper alignments may be produced: If the MAP
assigns f-words but no e-words to a cept (because
e-words have more probable cepts), we may pro-
duce “orphan” cepts, which are aligned to words
only on one side. One way to deal with this situa-
tion is simply to remove cepts which display this be-
haviour. Orphaned words may then be re-assigned
to the remaining cepts, either directly or after re-
training PLSA on the remaining cepts (this is guar-
anteed to converge as there is an obvious solution
for K = 1).

7.4 Independence between sentences
One natural comment on our factorisation scheme is
that cepts should not be independent between sen-
tences. However it is easy to show that the fac-
torisation is optimally done on a sentence per sen-
tence basis. Indeed, what we factorise is the associ-
ation measures mij . For a sentence-aligned corpus,
the association measure between source and tar-
get words from two different sentence pairs should
be exactly 0 because words should not be aligned
across sentences. Therefore, the larger translation
matrix (calculated on the entire corpus) is block
diagonal, with non-zero association measures only
in blocks corresponding to aligned sentence. As
blocks on the diagonal are mutually orthogonal, the
optimal global orthogonal factorisation is identi-
cal to the block-based (ie sentence-based) factori-
sation. Any corpus-induced dependency between
alignments from different sentences must therefore
be built in the association measure mij , and can-
not be handled by the factorisation method. Note
that this is the case in our experiments, as model 4
alignments rely on parameters obtained on the en-
tire corpus.

8 Conclusion
In this paper, we view word alignment as 1/ estimat-
ing the association between source and target words,
and 2/ factorising the resulting association measure
into orthogonal, non-negative factors. For solving
the latter problem, we propose an algorithm for
ONMF, which guarantees both proper alignments
and good coverage. Experiments carried out on the
Hansard give encouraging results, in the sense that



we improve in several ways over state-of-the-art re-
sults, despite a clear bias in the reference align-
ments. Further investigations are required to ap-
ply this technique on different association measures,
and to measure the influence that ONMF may have,
eg on a phrase-based Machine Translation system.
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